1
|
Sasmal R, Som A, Kumari P, Nair RV, Show S, Barge NS, Pahwa M, Das Saha N, Rao S, Vasu S, Agarwal R, Agasti SS. Supramolecular Guest Exchange in Cucurbit[7]uril for Bioorthogonal Fluorogenic Imaging across the Visible Spectrum. ACS CENTRAL SCIENCE 2024; 10:1945-1959. [PMID: 39463826 PMCID: PMC11503495 DOI: 10.1021/acscentsci.4c01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024]
Abstract
Fluorogenic probes that unmask fluorescence signals in response to bioorthogonal reactions are a powerful new addition to biological imaging. They can significantly reduce background fluorescence and minimize nonspecific signals, potentially enabling real-time, high-contrast imaging without the need to wash out excess fluorophores. While diverse classes of highly refined synthetic fluorophores are now readily available, integrating them into a bioorthogonal fluorogenic scheme still requires extensive design efforts and customized structural alterations to optimize quenching mechanisms for each specific fluorophore scaffold. Herein, we present a highly generalizable strategy that can produce an efficient bioorthogonal fluorogenic response from essentially any readily available fluorophore without further structural alterations. We designed this strategy based on the macrocyclic cucurbit[7]uril (CB7) host, where a fluorogenic response is achieved by programming a guest exchange reaction within the macrocyclic cavity. We employed this strategy to rapidly create fluorogenic probes across the visible spectrum from diverse fluorophore scaffolds, which enabled no-wash imaging in live cells and tissues with minimal background signal. Finally, we demonstrated that this strategy can be combined with metabolic labeling for fluorogenic detection of metabolically tagged mycobacteria under no-wash conditions and paired with covalently clickable probes for high-contrast super-resolution and multiplexed imaging in cells and tissues.
Collapse
Affiliation(s)
- Ranjan Sasmal
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Arka Som
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Pratibha Kumari
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Resmi V. Nair
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Sushanta Show
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Nisha Sanjay Barge
- Department
of Bioengineering, Indian Institute of Science, Bengaluru 560012, Karnataka India
| | - Meenakshi Pahwa
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Nilanjana Das Saha
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Sushma Rao
- Evolutionary
and Integrative Biology Unit and Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Sheeba Vasu
- Evolutionary
and Integrative Biology Unit and Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Rachit Agarwal
- Department
of Bioengineering, Indian Institute of Science, Bengaluru 560012, Karnataka India
| | - Sarit S. Agasti
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| |
Collapse
|
2
|
Wang H, Wei Y, He Y, He TJ, Lin YW. Phosphine-Catalyzed Ring-Opening Regioselective Addition of Cyclopropenones with Amides. J Org Chem 2024; 89:10093-10098. [PMID: 38935753 DOI: 10.1021/acs.joc.4c00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
A series of amides, including α-bromo hydroxamates, N-alkoxyamides, and N-aryloxyamides, were subjected to phosphine-catalyzed ring-opening O-selective addition with cyclopropenones, producing various special α,β-unsaturated esters containing oxime ether motif, in moderate to excellent yields, with high regioselectivity, and exclusive O-selectivity. The methodology is highly atom-economical, with simple operation procedures, and compatible with a wide substrate scope (more than 44 examples).
Collapse
Affiliation(s)
- Huamin Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, P. R. China
| | - Yibo Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, P. R. China
| | - Yongjun He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, P. R. China
| | - Tian-Juan He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, P. R. China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, P. R. China
- Hengyang Medical College, University of South China, Hengyang 421001, P. R. China
- Laboratory of Protein Structure and Function, University of South China Medical School, Hengyang 421001, P. R. China
| |
Collapse
|
3
|
Yao YX, Zhang J, Min X, Qin L, Wei Y, Gao Y, Hu XQ. Expedient access to polysubstituted acrylamides via strain-release-driven dual phosphine and palladium catalysis. Chem Commun (Camb) 2024; 60:6532-6535. [PMID: 38837153 DOI: 10.1039/d4cc01968g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Polysubstituted acrylamides are ubiquitous in bioactive molecules and natural products. However, synthetic methods for the assembly of these important motifs remain underdeveloped. Herein, we report the expedient synthesis of structurally diverse and synthetically challenging polysubstituted acrylamides from readily available aromatic amines, cyclopropenones (CpOs), and aryl halides via the synergistic merging of nucleophilic phosphine-mediated amidation and palladium-catalyzed C-H arylation. The reaction is scalable, and some obtained acrylamides proved to be solid state luminogens with obvious aggregation-induced emission (AIE) properties, demonstrating the synthetic potential in drug discovery and material development.
Collapse
Affiliation(s)
- Yu-Xiang Yao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central MinZu University, Wuhan 430074, China.
| | - Jing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central MinZu University, Wuhan 430074, China.
| | - Xuehong Min
- Equine Science Research and Doping Control Center, Wuhan Business University, Wuhan 430056, China
| | - Lan Qin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central MinZu University, Wuhan 430074, China.
| | - Yi Wei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central MinZu University, Wuhan 430074, China.
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central MinZu University, Wuhan 430074, China.
| |
Collapse
|
4
|
Deng Y, Shen T, Yu X, Li J, Zou P, Gong Q, Zheng Y, Sun H, Liu X, Wu H. Tetrazine-Isonitrile Bioorthogonal Fluorogenic Reactions Enable Multiplex Labeling and Wash-Free Bioimaging of Live Cells. Angew Chem Int Ed Engl 2024; 63:e202319853. [PMID: 38242857 DOI: 10.1002/anie.202319853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
Developing fluorogenic probes for simultaneous live cell labeling of multiple targets is crucial for understanding complex cellular events. The emerging [4+1] cycloaddition between tetrazine and isonitriles holds promise as a bioorthogonal tool, yet existing tetrazine probes lack reactivity and fluorogenicity. Here, we present the development of a series of tetrazine-functionalized bioorthogonal probes. By incorporating pyrazole adducts into the fluorophore scaffolds, the post-reacted probes displayed remarkable fluorescence turn-on ratios, up to 3184-fold. Moreover, these modifications are generalizable to various fluorophores, enabling a broad emission range from 473 to 659 nm. Quantum chemical calculations further elucidate the turn-on mechanisms. These probes enable the simultaneous labeling of multiple targets in live cells, without the need for a washing step. Consequently, our findings pave the way for advanced multiplex imaging and detection techniques for cellular studies.
Collapse
Affiliation(s)
- Yingqiao Deng
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan Road, 610041, Chengdu, China
| | - Tianruo Shen
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Xinyu Yu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan Road, 610041, Chengdu, China
| | - Jie Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan Road, 610041, Chengdu, China
| | - Peixuan Zou
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, No.17 People's South Road, 610041, Chengdu, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No.17 People's South Road, 610041, Chengdu, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan Road, 610041, Chengdu, China
| | - Yongxiang Zheng
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, No.17 People's South Road, 610041, Chengdu, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No.17 People's South Road, 610041, Chengdu, China
| | - Hongbao Sun
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan Road, 610041, Chengdu, China
| | - Xiaogang Liu
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Haoxing Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan Road, 610041, Chengdu, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No.17 People's South Road, 610041, Chengdu, China
| |
Collapse
|
5
|
Zielke FM, Rutjes FPJT. Recent Advances in Bioorthogonal Ligation and Bioconjugation. Top Curr Chem (Cham) 2023; 381:35. [PMID: 37991570 PMCID: PMC10665463 DOI: 10.1007/s41061-023-00445-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
The desire to create biomolecules modified with functionalities that go beyond nature's toolbox has resulted in the development of biocompatible and selective methodologies and reagents, each with different scope and limitations. In this overview, we highlight recent advances in the field of bioconjugation from 2016 to 2023. First, (metal-mediated) protein functionalization by exploiting the specific reactivity of amino acids will be discussed, followed by novel bioorthogonal reagents for bioconjugation of modified biomolecules.
Collapse
Affiliation(s)
- Florian M Zielke
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Floris P J T Rutjes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Abstract
As chemical biologists sought methods to modify and study biomolecules in their native environments, the need for bioorthogonal chemical reactions emerged. These fast and selective reactions between otherwise inert, abiotic functional groups have enabled exploration of some of the most intriguing and challenging questions in chemical biology. Further, the ability to perform organic reactions in cells and organisms has led to important applications in clinical spaces, and one reaction is now an integral part of a phase 2 trial for treating solid tumors. Given that bioorthogonal chemistry was a recipient of the 2022 Nobel Prize, we expect this field to be even more energized. Here, we highlight some of the most recent studies in this sphere and how these set the stage for where bioorthogonal chemistry is headed.
Collapse
Affiliation(s)
- Kaitlin M. Hartung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ellen M. Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Kistwal T, Dasgupta S, Chowdhury A, Datta A. Disruption of aggregates of a Zn2+-complex of a schiff base in water by surfactants: Insights from fluorescence spectroscopy in ensemble and single molecule levels. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
8
|
Dasgupta S, Chowdhury A, Sahoo DK, Datta A. Interplay of conformational relaxation and hydrogen bond dynamics in the excited states of fluorescent Schiff base anions. Phys Chem Chem Phys 2022; 25:304-313. [PMID: 36477682 DOI: 10.1039/d2cp05007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Time resolved fluorescence spectroscopic investigation of four Schiff base anions has established that their excited state dynamics is governed by several solvent properties: polarity, viscosity and hydrogen bond donating ability. With viscous protic solvents like glycerol, fluorescence lifetimes of anions have been found to be markedly longer than those in ethanol, implying that conformational relaxation of molecules plays a key role in their nonradiative relaxation. Surprisingly, the lifetimes in less viscous aprotic solvents, like acetonitrile, are found to be even longer. The only plausible rationalization of this observation is in the light of hydrogen bond-assisted nonradiative phenomena that are operative in protic solvents. This contention draws support from a time evolution of the emission in the red end of the spectrum in low to moderately hydrogen bond donating protic solvents, with regard to an absence of such a rise time in aprotic solvents and strongly hydrogen bond donating solvents, viz., 2,2,2-trifluoroethanol. Rudimentary quantum chemical calculations provide a preliminary idea about the nature of excited state hydrogen bond redistribution involved in the process.
Collapse
Affiliation(s)
- Souradip Dasgupta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| | - Arkaprava Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| | - Dipak Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| |
Collapse
|
9
|
Dorn RS, Prescher JA. Bioorthogonal Phosphines: Then and Now. Isr J Chem 2022. [DOI: 10.1002/ijch.202200070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Robert S. Dorn
- Departments of Chemistry University of California Irvine California 92697 United States
| | - Jennifer A. Prescher
- Departments of Chemistry University of California Irvine California 92697 United States
- Molecular Biology & Biochemistry University of California Irvine California 92697 United States
- Pharmaceutical Sciences University of California Irvine California 92697 United States
| |
Collapse
|
10
|
Xiao M, Zhang YK, Li R, Li S, Wang D, An P. Photoactivatable Fluorogenic Azide-Alkyne Click Reaction: A Dual-Activation Fluorescent Probe. Chem Asian J 2022; 17:e202200634. [PMID: 35819362 DOI: 10.1002/asia.202200634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/01/2022] [Indexed: 11/12/2022]
Abstract
Aryl azide and diaryl tetrazole are both photoactive molecules, which can form nitrene and nitrile imine intermediates respectively by photolysis. Depending on the new finding that the azide can suppress the photolysis of tetrazole in the azide-tetrazole conjugated system, we developed aryl azide-tetrazole probes for the photoactivatable fluorogenic azide alkyne click (PFAAC) reaction, in which the aryl azide-tetrazole probes were not phoroactivatable fluorogenic itself, but the triazole products after click reaction were prefluorophore that can be activated by light. Therefore, in PFAAC chemistry, the fluorescent probes can be activated by two orthogonal events: azide-alkyne click reaction and light, which leads to spatiotemporal resolution and high signal-to-noise ratio. This PFAAC process was proved in vitro by copper catalyzed or strain-promoted azide-alkyne reactions and in live cells by spatiotemporally controlled organelle imaging. By incorporation a linker to the azide-tetrazole conjugate, this PFAAC chemistry could covalently label extra probes to the biomolecules and spatiotemporally detecting this process by photoinduced fluorescence.
Collapse
Affiliation(s)
| | | | | | | | - Di Wang
- Yunnan University, chemistry, CHINA
| | - Peng An
- Yunnan University, school of chemical science and technology, South Outer Ring Road, 650500, Kunming, CHINA
| |
Collapse
|
11
|
Istrate A, Geeson MB, Navo CD, Sousa BB, Marques MC, Taylor RJ, Journeaux T, Oehler SR, Mortensen MR, Deery MJ, Bond AD, Corzana F, Jiménez-Osés G, Bernardes GJL. Platform for Orthogonal N-Cysteine-Specific Protein Modification Enabled by Cyclopropenone Reagents. J Am Chem Soc 2022; 144:10396-10406. [PMID: 35658467 PMCID: PMC9490850 DOI: 10.1021/jacs.2c02185] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein conjugates are valuable tools for studying biological processes or producing therapeutics, such as antibody-drug conjugates. Despite the development of several protein conjugation strategies in recent years, the ability to modify one specific amino acid residue on a protein in the presence of other reactive side chains remains a challenge. We show that monosubstituted cyclopropenone (CPO) reagents react selectively with the 1,2-aminothiol groups of N-terminal cysteine residues to give a stable 1,4-thiazepan-5-one linkage under mild, biocompatible conditions. The CPO-based reagents, all accessible from a common activated ester CPO-pentafluorophenol (CPO-PFP), allow selective modification of N-terminal cysteine-containing peptides and proteins even in the presence of internal, solvent-exposed cysteine residues. This approach enabled the preparation of a dual protein conjugate of 2×cys-GFP, containing both internal and N-terminal cysteine residues, by first modifying the N-terminal residue with a CPO-based reagent followed by modification of the internal cysteine with a traditional cysteine-modifying reagent. CPO-based reagents enabled a copper-free click reaction between two proteins, producing a dimer of a de novo protein mimic of IL2 that binds to the β-IL2 receptor with low nanomolar affinity. Importantly, the reagents are compatible with the common reducing agent dithiothreitol (DTT), a useful property for working with proteins prone to dimerization. Finally, quantum mechanical calculations uncover the origin of selectivity for CPO-based reagents for N-terminal cysteine residues. The ability to distinguish and specifically target N-terminal cysteine residues on proteins facilitates the construction of elaborate multilabeled bioconjugates with minimal protein engineering.
Collapse
Affiliation(s)
- Alena Istrate
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Michael B Geeson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Barbara B Sousa
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Marta C Marques
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ross J Taylor
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Toby Journeaux
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Sebastian R Oehler
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Michael R Mortensen
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Michael J Deery
- Cambridge Centre for Proteomics, Gleeson Building, University of Cambridge, Tennis Court Road, CB2 1QR Cambridge, United Kingdom
| | - Andrew D Bond
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Gonçalo J L Bernardes
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom.,Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|