1
|
Ancajas CMF, Oyedele AS, Butt CM, Walker AS. Advances, opportunities, and challenges in methods for interrogating the structure activity relationships of natural products. Nat Prod Rep 2024; 41:1543-1578. [PMID: 38912779 PMCID: PMC11484176 DOI: 10.1039/d4np00009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Indexed: 06/25/2024]
Abstract
Time span in literature: 1985-early 2024Natural products play a key role in drug discovery, both as a direct source of drugs and as a starting point for the development of synthetic compounds. Most natural products are not suitable to be used as drugs without further modification due to insufficient activity or poor pharmacokinetic properties. Choosing what modifications to make requires an understanding of the compound's structure-activity relationships. Use of structure-activity relationships is commonplace and essential in medicinal chemistry campaigns applied to human-designed synthetic compounds. Structure-activity relationships have also been used to improve the properties of natural products, but several challenges still limit these efforts. Here, we review methods for studying the structure-activity relationships of natural products and their limitations. Specifically, we will discuss how synthesis, including total synthesis, late-stage derivatization, chemoenzymatic synthetic pathways, and engineering and genome mining of biosynthetic pathways can be used to produce natural product analogs and discuss the challenges of each of these approaches. Finally, we will discuss computational methods including machine learning methods for analyzing the relationship between biosynthetic genes and product activity, computer aided drug design techniques, and interpretable artificial intelligence approaches towards elucidating structure-activity relationships from models trained to predict bioactivity from chemical structure. Our focus will be on these latter topics as their applications for natural products have not been extensively reviewed. We suggest that these methods are all complementary to each other, and that only collaborative efforts using a combination of these techniques will result in a full understanding of the structure-activity relationships of natural products.
Collapse
Affiliation(s)
| | | | - Caitlin M Butt
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
| | - Allison S Walker
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
Drummond GJ, Grant PS, Geurts AM, Furkert DP, Brimble MA. Synthesis of the bicyclic butenolide core of pallamolide A: a biomimetic approach. Org Biomol Chem 2024; 22:8032-8036. [PMID: 39259177 DOI: 10.1039/d4ob01380h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Pallamolide A is a 7,8-seco-labdane terpenoid possessing a unique bicyclo[2.2.2]octane core and a spiro-butenolide moiety. A biomimetic synthesis of the bicyclic butenolide core over 10 steps is reported, featuring an unexpected autoxidation ring opening, and a vinylogous Mukaiyama aldol reaction which was spontaneously followed by an unusual intramolecular vinylogous aldol reaction to assemble the spiro-butenolide moiety and bicyclic core of pallamolide A.
Collapse
Affiliation(s)
- Grace J Drummond
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand.
| | - Phillip S Grant
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand.
| | - Alisha M Geurts
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand.
| | - Daniel P Furkert
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiversity, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiversity, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| |
Collapse
|
3
|
Reisenbauer JC, Sicinski KM, Arnold FH. Catalyzing the future: recent advances in chemical synthesis using enzymes. Curr Opin Chem Biol 2024; 83:102536. [PMID: 39369557 DOI: 10.1016/j.cbpa.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024]
Abstract
Biocatalysis has the potential to address the need for more sustainable organic synthesis routes. Protein engineering can tune enzymes to perform in cascade reactions and for efficient synthesis of enantiomerically enriched compounds, using both natural and new-to-nature reaction pathways. This review highlights recent achievements in biocatalysis, especially the development of novel enzymatic syntheses to access versatile small molecule intermediates and complex biomolecules. Biocatalytic strategies for the degradation of persistent pollutants and approaches for biomass valorization are also discussed. The transition of chemical synthesis to a greener future will be accelerated by implementing enzymes and engineering them for high performance and new activities.
Collapse
Affiliation(s)
- Julia C Reisenbauer
- Division of Chemistry and Chemical Engineering, 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, United States
| | - Kathleen M Sicinski
- Division of Chemistry and Chemical Engineering, 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, United States
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, United States.
| |
Collapse
|
4
|
Liu X, Xu Y, Li L, Li J. Chemoenzymatic Oxidation of Labdane and Formal Synthesis of Nimbolide. J Am Chem Soc 2024; 146:26243-26250. [PMID: 39276077 DOI: 10.1021/jacs.4c07956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
In nature, basic terpene skeletons are produced and subsequently undergo enzymatic or nonenzymatic oxidative transformations, leading to diverse structural variations. To date, thousands of natural products featuring a variety of oxidation patterns have been isolated solely from the labdane family. This work describes a strategy for the comprehensive introduction of oxidation states into the labdane core by employing a combination of enzyme library screening, directed evolution, and sequential chemical oxidation processes. Furthermore, we showcase the functional viability of our chemoenzymatic approach by accomplishing a formal synthesis of nimbolide, highlighting its potential for streamlining the synthesis of complex natural products.
Collapse
Affiliation(s)
- Xiaotao Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaoyao Xu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingling Li
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Wang J, Zhao J, Yu Z, Wang S, Guo F, Yang J, Gao L, Lei X. Concise and Modular Chemoenzymatic Total Synthesis of Bisbenzylisoquinoline Alkaloids. Angew Chem Int Ed Engl 2024:e202414340. [PMID: 39305151 DOI: 10.1002/anie.202414340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Indexed: 11/03/2024]
Abstract
The bisbenzylisoquinoline alkaloids (bisBIAs) have attracted tremendous attention from the synthetic community due to their diverse and intriguing biological activities. Herein, we report the convergent and modular chemoenzymatic syntheses of eight bisBIAs bearing various substitutes and linkages in 5-7 steps. The gram-scale synthesis of various well-designed enantiopure benzylisoquinoline monomers was accomplished through an enzymatic stereoselective Pictet-Spengler reaction, followed by regioselective enzymatic methylation or chemical functionalization in a sequential one-pot process. A modified intermolecular copper-mediated Ullmann coupling enabled the concise and efficient total synthesis of five different linear bisBIAs with either head-to-tail or tail-to-tail linkage. A biomimetic oxidative phenol dimerization selectively formed the sterically hindered, electron-rich diaryl ether bond, and subsequent intramolecular Suzuki-Miyaura domino reaction or Ullmann coupling facilitated the first enantioselective total synthesis of three macrocyclic bisBIAs, including ent-isogranjine, tetrandrine and O-methylrepandine. This study highlights the great potential of chemoenzymatic strategies in the total synthesis of diverse bisBIAs and paves the way to further explore the biological functions of these natural products.
Collapse
Affiliation(s)
- Jin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Jianxiong Zhao
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
| | - Zhenyang Yu
- Department of Chemistry, National University of Singapore, Singapore, Republic of, Singapore
| | - Siyuan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Fusheng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Jun Yang
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
| | - Lei Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
| |
Collapse
|
6
|
Hollmann F, Sanchis J, Reetz MT. Learning from Protein Engineering by Deconvolution of Multi-Mutational Variants. Angew Chem Int Ed Engl 2024; 63:e202404880. [PMID: 38884594 DOI: 10.1002/anie.202404880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
This review analyzes a development in biochemistry, enzymology and biotechnology that originally came as a surprise. Following the establishment of directed evolution of stereoselective enzymes in organic chemistry, the concept of partial or complete deconvolution of selective multi-mutational variants was introduced. Early deconvolution experiments of stereoselective variants led to the finding that mutations can interact cooperatively or antagonistically with one another, not just additively. During the past decade, this phenomenon was shown to be general. In some studies, molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) computations were performed in order to shed light on the origin of non-additivity at all stages of an evolutionary upward climb. Data of complete deconvolution can be used to construct unique multi-dimensional rugged fitness pathway landscapes, which provide mechanistic insights different from traditional fitness landscapes. Along a related line, biochemists have long tested the result of introducing two point mutations in an enzyme for mechanistic reasons, followed by a comparison of the respective double mutant in so-called double mutant cycles, which originally showed only additive effects, but more recently also uncovered cooperative and antagonistic non-additive effects. We conclude with suggestions for future work, and call for a unified overall picture of non-additivity and epistasis.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, Netherlands
| | - Joaquin Sanchis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Manfred T Reetz
- Max-Plank-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45481, Mülheim, Germany
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
7
|
Jiang Y, Renata H. Modular chemoenzymatic synthesis of ten fusicoccane diterpenoids. Nat Chem 2024; 16:1531-1538. [PMID: 38710830 DOI: 10.1038/s41557-024-01533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
Fusicoccane diterpenoids display intriguing biological activities, including the ability to act as modulators of 14-3-3 protein-protein interactions. However, their innate structural complexity and diverse oxygenation patterns present enormous synthetic challenges. Here we develop a modular chemoenzymatic approach that combines de novo skeletal construction and late-stage hybrid C-H oxidations to achieve the synthesis of ten complex fusicoccanes in 8-13 steps each. A convergent fragment coupling strategy allowed rapid access to a key tricyclic intermediate, which was subjected to chemical and enzymatic C-H oxidations to modularly prepare five oxidized family members. We also conceived a complementary biomimetic skeletal remodelling strategy to synthetically access five rearranged fusicoccanes with unusual bridgehead double bonds. This work may facilitate future investigation into the biological activities of the fusicoccanes and also inspire the implementation of similar hybrid strategies to provide family-level synthetic solutions to other natural product scaffolds.
Collapse
Affiliation(s)
- Yanlong Jiang
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX, USA
| | - Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX, USA.
| |
Collapse
|
8
|
Xu H, Zhao J, Renata H. Discovery, Characterization and Synthetic Application of a Promiscuous Nonheme Iron Biocatalyst with Dual Hydroxylase/Desaturase Activity. Angew Chem Int Ed Engl 2024:e202409143. [PMID: 39207909 DOI: 10.1002/anie.202409143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Alpha-ketoglutarate-dependent dioxygenases (αKGDs) have recently emerged as useful biocatalysts for C-H oxidation and functionalization. In this work, we characterized a new αKGD from aculene biosynthesis, AneA, which displays broad promiscuity toward a number of substrates with different ring systems. Unexpectedly, AneA was found to be capable of both desaturation and hydroxylation and require an amino ester motif on its substrate for productive catalysis. Insights gathered from the functional characterization and substrate-activity profiling of AneA enabled the development of a chemoenzymatic strategy toward several complex sesquiterpenoids.
Collapse
Affiliation(s)
- Hao Xu
- Department of Chemistry, Rice University Bioscience Research Collaborative, Houston, TX 77005, USA
| | - Jidong Zhao
- Department of Chemistry, Rice University Bioscience Research Collaborative, Houston, TX 77005, USA
| | - Hans Renata
- Department of Chemistry, Rice University Bioscience Research Collaborative, Houston, TX 77005, USA
| |
Collapse
|
9
|
Stout CN, Renata H. Total Synthesis Facilitates In Vitro Reconstitution of the C-S Bond-Forming P450 in Griseoviridin Biosynthesis. J Am Chem Soc 2024; 146:21815-21823. [PMID: 39042396 DOI: 10.1021/jacs.4c06080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Griseoviridin is a group A streptogramin natural product from Streptomyces with broad-spectrum antibacterial activity. A hybrid polyketide-nonribosomal peptide, it comprises a 23-membered macrocycle, an embedded oxazole motif, and a macrolactone with a unique ene-thiol linkage. Recent analysis of the griseoviridin biosynthetic gene cluster implicated SgvP, a cytochrome P450 monooxygenase, in late-stage installation of the critical C-S bond. While genetic and crystallographic experiments provided indirect evidence to support this hypothesis, the exact function of SgvP has never been confirmed biochemically. Herein, we report a convergent total synthesis of pre-griseoviridin, the putative substrate of P450 SgvP and precursor to griseoviridin. Our strategy features concise and rapid assembly of two fragments joined via sequential peptide coupling and Stille macrocyclization. Access to pre-griseoviridin then enabled in vitro validation of SgvP as the C-S bond-forming P450 during griseoviridin biosynthesis, culminating in a nine-step chemoenzymatic synthesis of griseoviridin.
Collapse
Affiliation(s)
- Carter N Stout
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas 77005, United States
- Skaggs Doctoral Program in the Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
10
|
Gary S, Woolley J, Goia S, Bloom S. Unlocking flavin photoacid catalysis through electrophotochemistry. Chem Sci 2024; 15:11444-11454. [PMID: 39055006 PMCID: PMC11268482 DOI: 10.1039/d4sc03054k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Molecular flavins are one of the most versatile photocatalysts. They can coordinate single and multiple electron transfer processes, gift hydrogen atoms, form reversible covalent linkages that support group transfer mechanisms, and impart photonic energy to ground state molecules, priming them for downstream reactions. But one mechanism that has not featured extensively is the ability of flavins to act as photoacids. Herein, we disclose our proof-of-concept studies showing that electrophotochemistry can transform fully oxidized flavin quinones to super-oxidized flavinium photoacids that successfully guide proton-transfer and deliver acid-catalyzed products. We also show that these species can adopt a second mechanism wherein they react with water to release hydroxyl radicals that facilitate hydrogen-atom abstraction and sp3C-H functionalization protocols. Together, this unprecedented bimodal reactivity enables electro-generated flavinium salts to affect synthetic chemistries previously unknown to flavins, greatly expanding their versatility as catalysts.
Collapse
Affiliation(s)
- Samuel Gary
- Department of Medicinal Chemistry, University of Kansas Lawrence 66045 USA
| | - Jack Woolley
- Department of Physics, University of Warwick Coventry CV4 7AL UK
| | - Sofia Goia
- Forensic Centre for Digital Scanning and 3D Printing, WMG, University of Warwick Coventry CV4 7AL UK
| | - Steven Bloom
- Department of Medicinal Chemistry, University of Kansas Lawrence 66045 USA
| |
Collapse
|
11
|
Tanifuji R, Oguri H. Chemo-enzymatic total synthesis: current approaches toward the integration of chemical and enzymatic transformations. Beilstein J Org Chem 2024; 20:1693-1712. [PMID: 39076288 PMCID: PMC11285072 DOI: 10.3762/bjoc.20.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
A steadily increasing number of reports have been published on chemo-enzymatic synthesis methods that integrate biosynthetic enzymatic transformations with chemical conversions. This review focuses on the total synthesis of natural products and classifies the enzymatic reactions into three categories. The total synthesis of five natural products: cotylenol, trichodimerol, chalcomoracin, tylactone, and saframycin A, as well as their analogs, is outlined with an emphasis on comparing these chemo-enzymatic syntheses with the corresponding natural biosynthetic pathways.
Collapse
Affiliation(s)
- Ryo Tanifuji
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Oguri
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Kissman EN, Sosa MB, Millar DC, Koleski EJ, Thevasundaram K, Chang MCY. Expanding chemistry through in vitro and in vivo biocatalysis. Nature 2024; 631:37-48. [PMID: 38961155 DOI: 10.1038/s41586-024-07506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/01/2024] [Indexed: 07/05/2024]
Abstract
Living systems contain a vast network of metabolic reactions, providing a wealth of enzymes and cells as potential biocatalysts for chemical processes. The properties of protein and cell biocatalysts-high selectivity, the ability to control reaction sequence and operation in environmentally benign conditions-offer approaches to produce molecules at high efficiency while lowering the cost and environmental impact of industrial chemistry. Furthermore, biocatalysis offers the opportunity to generate chemical structures and functions that may be inaccessible to chemical synthesis. Here we consider developments in enzymes, biosynthetic pathways and cellular engineering that enable their use in catalysis for new chemistry and beyond.
Collapse
Affiliation(s)
- Elijah N Kissman
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Max B Sosa
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Douglas C Millar
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Edward J Koleski
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | | | - Michelle C Y Chang
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
13
|
Zhang Y, Chen L, Jia Y. Total Synthesis of Pallamolides A-E. Angew Chem Int Ed Engl 2024; 63:e202319127. [PMID: 38504637 DOI: 10.1002/anie.202319127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
We have achieved the first total synthesis of pallamolides A-E. Of these compounds, pallamolides B-E possess intriguing tetracyclic skeletons with novel intramolecular transesterifications. Key transformations include highly diastereoselective sequential Michael addition reactions to construct the bicyclo[2.2.2]octane core with the simultaneous generation of two quaternary carbon centers, a one-pot SmI2-mediated intramolecular ketyl-enoate cyclization/ketone reduction to generate the key oxabicyclo[3.3.1]nonane moiety, and an acid-mediated deprotection/oxa-Michael addition/β-hydroxy elimination cascade sequence to assemble the tetracyclic pallamolide skeleton. Kinetic resolution of ketone 14 through Corey-Bakshi-Shibata reduction enabled the asymmetric synthesis of pallamolides A-E.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing, 100191, P. R. China
| | - Lijun Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing, 100191, P. R. China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing, 100191, P. R. China
| |
Collapse
|
14
|
Gani I, Sofi ZI, Kaur G, Goswami A, Bhat KA. Hemisynthesis and cytotoxic evaluation of manoyl oxide analogs from sclareol: effect of two tertiary hydroxyls & Heck coupling on cytotoxicity. Nat Prod Res 2024:1-10. [PMID: 38635350 DOI: 10.1080/14786419.2024.2342558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/06/2024] [Indexed: 04/20/2024]
Abstract
Sclareol, a bioactive diterpene alcohol isolated from Salvia sclarea, was subjected to structural modification and cytotoxic evaluation. Boron-Heck-coupled analogs of manoyl oxide were prepared from sclareol in a two-step reaction scheme. In the first step manoyl oxide was prepared from sclareol using cerium (IV) ammonium nitrate. Further the structural modification of manoyl oxide via Palladium (II) catalysed Boron-Heck coupling reaction produced a new series of compounds. All the synthesised compounds were screened for in vitro cytotoxic evaluation against four cancer cell lines HCT-116, MCF-7, MDA-MB231and MDA-MB468. The results showed that manoyl oxide is less active than sclareol. Sclareol shows an IC50 of 2.0 µM compared to manoyl oxide with an IC50 of 50 µM against the MCF-7 cell line. From the results it was inferred that the presence of two tertiary hydroxyls in sclareol are necessary for its cytotoxic activity and Heck coupled analogs are more active than sclareol and manoyl oxide.
Collapse
Affiliation(s)
- Ifshana Gani
- Bio-organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Zahidul Islam Sofi
- Bio-organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India
| | - Gursimar Kaur
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Anindya Goswami
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Khursheed Ahmad Bhat
- Bio-organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
15
|
Li H, Zhang Y, Huang Y, Duan P, Ge R, Han X, Zhang W. A Simple Access to γ- and ε-Keto Arenes via Enzymatic Divergent C─H Bond Oxyfunctionalization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304605. [PMID: 37870171 PMCID: PMC10700168 DOI: 10.1002/advs.202304605] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/28/2023] [Indexed: 10/24/2023]
Abstract
Performing divergent C─H bond functionalization on molecules with multiple reaction sites is a significant challenge in organic chemistry. Biocatalytic oxyfunctionalization reactions of these compounds to the corresponding ketones/aldehydes are typically hindered by selectivity issues. To address these challenges, the catalytic performance of oxidoreductases is explored. The results show that combining the peroxygenase-catalyzed propargylic C─H bond oxidation with the Old Yellow Enzyme-catalyzed reduction of conjugated C─C triple bonds in one-pot enables the regio- and chemoselective oxyfunctionalization of sp3 C─H bonds that are distant from benzylic sites. This enzymatic approach yielded a variety of γ-keto arenes with diverse structural and electronic properties in yields of up to 99% and regioselectivity of 100%, which are difficult to achieve using other chemocatalysis and enzymes. By adjusting the C─C triple bond, the carbonyl group's position can be further tuned to yield ε-keto arenes. This enzymatic approach can be combined with other biocatalysts to establish new synthetic pathways for accessing various challenging divergent C─H bond functionalization reactions.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityXi'an710049China
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Yalan Zhang
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Yawen Huang
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Peigao Duan
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityXi'an710049China
| | - Ran Ge
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Xiaofeng Han
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Wuyuan Zhang
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
- National Innovation Center for Synthetic Biotechnology32 West 7th AvenueTianjin300308China
| |
Collapse
|
16
|
Sun Y, Gerke J, Becker K, Kuhnert E, Verwaaijen B, Wibberg D, Kalinowski J, Stadler M, Cox RJ. Rapid discovery of terpene tailoring enzymes for total biosynthesis. Chem Sci 2023; 14:13463-13467. [PMID: 38033887 PMCID: PMC10686045 DOI: 10.1039/d3sc04172g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Twenty oxygenated aristolochene congeners were rapidly synthesised by combining genes from four different fungal pathways in the fungal host organism Aspergillus oryzae. Compounds produced in a single step include the natural product hypoxylan A and an epimer of guignaderemophilane C. A new fungal aromatase was discovered that produces phenols by oxidative demethylation.
Collapse
Affiliation(s)
- Yunlong Sun
- Institute for Organic Chemistry, Leibniz Universität Hannover Germany
| | - Jennifer Gerke
- Institute for Organic Chemistry, Leibniz Universität Hannover Germany
| | - Kevin Becker
- Institute for Organic Chemistry, Leibniz Universität Hannover Germany
| | - Eric Kuhnert
- Institute for Organic Chemistry, Leibniz Universität Hannover Germany
| | | | | | | | - Marc Stadler
- Helmholtz-Zentrum für Infektionsforschung Braunschweig Germany
| | - Russell J Cox
- Institute for Organic Chemistry, Leibniz Universität Hannover Germany
| |
Collapse
|
17
|
Abstract
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christian A Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
18
|
Stanfield JK, Onoda H, Ariyasu S, Kasai C, Burfoot EM, Sugimoto H, Shoji O. Investigating the applicability of the CYP102A1-decoy-molecule system to other members of the CYP102A subfamily. J Inorg Biochem 2023; 245:112235. [PMID: 37167731 DOI: 10.1016/j.jinorgbio.2023.112235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 05/13/2023]
Abstract
Cytochrome P450 enzymes (CYPs) have attracted much promise as biocatalysts in a push for cleaner and more environmentally friendly catalytic systems. However, changing the substrate specificity of CYPs, such as CYP102A1, can be a challenging task, requiring laborious mutagenesis. An alternative approach is the use of decoy molecules that "trick" the enzyme into becoming active by impersonating the native substrate. Whilst the decoy molecule system has been extensively developed for CYP102A1, its general applicability for other CYP102-family enzymes has yet to be shown. Herein, we demonstrate that decoy molecules can "trick" CYP102A5 and A7 into becoming active and hydroxylating non-native substrates. Furthermore, significant differences in decoy molecule selectivity as well as decoy molecule binding were observed. The X-ray crystal structure of the CYP102A5 haem domain was solved at 2.8 Å, delivering insight into a potential substate-binding site that differs significantly from CYP102A1.
Collapse
Affiliation(s)
- Joshua Kyle Stanfield
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hiroki Onoda
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Shinya Ariyasu
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Chie Kasai
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Eleanor Mary Burfoot
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Hiroshi Sugimoto
- SR Life Science Instrumentation Team, RIKEN SPring-8 Centre, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Osami Shoji
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
19
|
Abstract
The P450 superfamily comprises some of the most powerful and versatile enzymes for the site-selective oxidation of small molecules. One of the main drawbacks for the applications of the P450s in biotechnology is that the majority of these enzymes is multicomponent in nature and requires the presence of suitable redox partners to support their functions. Nevertheless, the discovery of several self-sufficient P450s, namely those from Classes VII and VIII, has served as an inspiration for fusion approaches to generate chimeric P450 systems that are self-sufficient. In this Perspective, we highlight the domain organizations of the Class VII and Class VIII P450 systems, summarize recent case studies in the engineering of catalytically self-sufficient P450s based on these systems, and outline outstanding challenges in the field, along with several emerging technologies as potential solutions.
Collapse
Affiliation(s)
- Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX, 77005
| |
Collapse
|
20
|
Hashimoto Y, Harada S, Kato R, Ikeda K, Nonnhoff J, Gröger H, Nemoto T. Merging Chemo- and Biocatalysis to Facilitate the Syntheses of Complex Natural Products: Enantioselective Construction of an N-Bridged [3.3.1] Ring System in Indole Terpenoids. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yoshinori Hashimoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ryosuke Kato
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kotaro Ikeda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Jannis Nonnhoff
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
21
|
Abstract
The limonoids have attracted significant attention from the synthetic community owing to their striking structural complexity and medicinal potential. Recent efforts notwithstanding, synthetic access to many intact or ring D-seco limonoids still remains elusive. Here, we report the first de novo synthesis of gedunin, a ring D-seco limonoid with HSP90 inhibitory activity, that proceeds in 13 steps. Two enabling features in our strategy are the application of modern catalytic transformations to set the key quaternary centers in the carbocyclic core and the use of biocatalytic oxidation at C3 to establish a chemical handle to access the A-ring enone motif. The strategy presented herein may provide an entry point to a wider range of oxidized limonoids.
Collapse
Affiliation(s)
- Jian Li
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas 77005, United States
| | - Fang Chen
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas 77005, United States
| | - Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
22
|
Zhao Y, Zhang B, Sun ZQ, Zhang H, Wang W, Wang ZR, Guo ZK, Yu S, Tan RX, Ge HM. Biocatalytic C14-Hydroxylation on Androstenedione Enabled Modular Synthesis of Cardiotonic Steroids. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yang Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zi Qian Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zi Ru Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhi Kai Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Bio-technology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|