1
|
Cao Q, Fan HZ, Xie M, Cai Z, Zhu JB. Solubility-Equilibrium-Assisted Kinetic Resolution Polymerization toward Isotactic Polyesters Containing Axial Chirality. J Am Chem Soc 2024. [PMID: 39680619 DOI: 10.1021/jacs.4c14778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
High-level control over polymer stereochemistry leverages the fine-tuning of material properties, but it is still a formidable challenge in synthetic polymer chemistry. Herein we prepared a new class of salph yttrium catalysts bearing axially chiral binaphthyl moieties for axially stereocontrolled polymerization of rac-Me-DBO. (S)-Y3-bearing bulkier binaphthyl units accomplished moderate isoselectivity via kinetic resolution polymerization, affording P(Me-BDO) with a Pm of up to 0.80. Remarkably, exploiting the solubility equilibrium to maintain a constant for the concentration of two enantiopure monomer pairs in the solution state contributed to a boost in polymerization isoselectivity and furnished isotactic P(Me-DBO) products with a Pm of up to 0.93. Detailed mechanistic investigations supported our solubility-equilibrium shifting hypothesis. This solubility-equilibrium-assisted kinetic resolution polymerization strategy was expected to become a versatile platform to improve stereocontrol without de novo catalyst design.
Collapse
Affiliation(s)
- Qing Cao
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu 610064, P. R. China
| | - Hua-Zhong Fan
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu 610064, P. R. China
| | - Min Xie
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu 610064, P. R. China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu 610064, P. R. China
| | - Jian-Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu 610064, P. R. China
| |
Collapse
|
2
|
Khazeber R, Pathak S, Sureshan KM. Simultaneous and in situ syntheses of an enantiomeric pair of homochiral polymers as their perfect stereocomplex in a crystal. Nat Commun 2024; 15:6639. [PMID: 39103331 DOI: 10.1038/s41467-024-50948-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
Circumventing the issues of conventional stereocomplexation of preformed polymers, herein, we synthesize two enantiopure polymers of opposite chirality simultaneously and in situ as their 1:1 stereocomplex via topochemical polymerization. We design and synthesize an inositol-based achiral monomer for topochemical ene-azide cycloaddition (TEAC) polymerization. In the crystal, the monomer exhibits conformational enantiomerism, and its conformational enantiomers are self-sorted in an arrangement for TEAC polymerization to yield two enantiopure polymers of opposite chirality. Upon heating the monomer crystals, each self-sorted set of conformational enantiomers undergoes regio- and stereospecific polymerization in a single-crystal-to-single-crystal fashion, generating two 1, 4-triazolinyl-linked polymers of opposite chirality simultaneously. The new chiral carbons in all the triazoline rings of a particular polymer chain have the same absolute configuration. These homochiral polymer strands align parallelly, forming a layer, and such enantiopure layers of opposite chirality stack alternately, forming a perfect 1:1 stereocomplex, which we confirmed using single-crystal XRD analysis.
Collapse
Affiliation(s)
- Ravichandran Khazeber
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Sourav Pathak
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
3
|
Tutoni GG, McDonald SM, Zhong R, Lu A, Huang TJ, Becker ML. Microfluidic Assembly of Degradable, Stereocomplexed Hydrogel Microparticles. J Am Chem Soc 2024; 146:14705-14714. [PMID: 38749060 DOI: 10.1021/jacs.4c02317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Hydrogel microparticles (HMPs) have been investigated widely for their use in tissue engineering and drug delivery applications. However, translation of these highly tunable systems has been hindered by covalent cross-linking methods within microparticles. Stereocomplexation, a stereospecific form of physical cross-linking, provides a robust yet degradable alternative for creating translationally relevant HMPs. Herein, 4-arm polyethylene glycol (PEG) stars were used as macromolecular initiators from which oligomeric poly(l-lactic acid) (PLLA) was polymerized with a degree of polymerization (DPn) of 20 on each arm. Similarly, complementary propargyl-containing ABA cross-linkers with enantiomeric poly(d-lactic acid) (PDLA) segments (DPn = 20) on each arm. Droplets of these gel precursors were formed via a microfluidic organic-in-oil-in-water system where microparticles self-assembled via stereocomplexation and were stabilized after precipitation in deionized water. By varying the flow rate of the dispersed phase, well-defined microparticles with diameters of 33.7 ± 0.5, 62.4 ± 0.6, and 105.7 ± 0.8 μm were fabricated. Gelation due to stereocomplexation was confirmed via wide-angle X-ray scattering in which HMPs exhibited the signature diffraction pattern of stereocomplexed PLA at 2θ = 12.2, 21.2, 24.2°. Differential scanning calorimetry also confirmed stereocomplexation by the appearance of a crystallization exotherm (Tc = 37 °C) and a high-temperature endotherm (Tm = 159 °C) that does not appear in the homocrystallization of PLLA or the hydrogel precursors. Additionally, the propargyl handle present on the cross-linker allows for pre- or post-assembly thiol-yne "click" functionalization as demonstrated by the addition of thiol-containing fluorophores to the HMPs.
Collapse
Affiliation(s)
- Gianna G Tutoni
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Samantha M McDonald
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ruoyu Zhong
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Annette Lu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Department of Orthopedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
4
|
Cao Q, Tu YM, Fan HZ, Shan SY, Cai Z, Zhu JB. Torsional Strain Enabled Ring-Opening Polymerization towards Axially Chiral Semiaromatic Polyesters with Chemical Recyclability. Angew Chem Int Ed Engl 2024; 63:e202400196. [PMID: 38356038 DOI: 10.1002/anie.202400196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/16/2024]
Abstract
The development of new chemically recyclable polymers via monomer design would provide a transformative strategy to address the energy crisis and plastic pollution problem. Biaryl-fused cyclic esters were targeted to generate axially chiral polymers, which would impart new material performance. To overcome the non-polymerizability of the biaryl-fused monomer DBO, a cyclic ester Me-DBO installed with dimethyl substitution was prepared to enable its polymerizability via enhancing torsional strain. Impressively, Me-DBO readily went through well-controlled ring-opening polymerization, producing polymer P(Me-DBO) with high glass transition temperature (Tg >100 °C). Intriguingly, mixing these complementary enantiopure polymers containing axial chirality promoted a transformation from amorphous to crystalline material, affording a semicrystalline stereocomplex with a melting transition temperature more than 300 °C. P(Me-DBO) were capable of depolymerizing back to Me-DBO in high efficiency, highlighting an excellent recyclability.
Collapse
Affiliation(s)
- Qing Cao
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Yi-Min Tu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Hua-Zhong Fan
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Si-Yi Shan
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Jian-Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| |
Collapse
|
5
|
Xie X, Huo Z, Jang E, Tong R. Recent advances in enantioselective ring-opening polymerization and copolymerization. Commun Chem 2023; 6:202. [PMID: 37775528 PMCID: PMC10541874 DOI: 10.1038/s42004-023-01007-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Precisely controlling macromolecular stereochemistry and sequences is a powerful strategy for manipulating polymer properties. Controlled synthetic routes to prepare degradable polyester, polycarbonate, and polyether are of recent interest due to the need for sustainable materials as alternatives to petrochemical-based polyolefins. Enantioselective ring-opening polymerization and ring-opening copolymerization of racemic monomers offer access to stereoregular polymers, specifically enantiopure polymers that form stereocomplexes with improved physicochemical and mechanical properties. Here, we highlight the state-of-the-art of this polymerization chemistry that can produce microstructure-defined polymers. In particular, the structures and performances of various homogeneous enantioselective catalysts are presented. Trends and future challenges of such chemistry are discussed.
Collapse
Affiliation(s)
- Xiaoyu Xie
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia, 24061, USA
| | - Ziyu Huo
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia, 24061, USA
| | - Eungyo Jang
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia, 24061, USA
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia, 24061, USA.
| |
Collapse
|
6
|
Xia Y, Yuan P, Zhang Y, Sun Y, Hong M. Converting Non-strained γ-Valerolactone and Derivatives into Sustainable Polythioesters via Isomerization-driven Cationic Ring-Opening Polymerization of Thionolactone Intermediate. Angew Chem Int Ed Engl 2023; 62:e202217812. [PMID: 36757807 DOI: 10.1002/anie.202217812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 02/10/2023]
Abstract
This contribution reports the efficient conversion of γ-valerolactone and its derivatives, abundant but unexplored renewable feedstocks, into sustainable and degradable polythioesters via the establishment of the first isomerization-driven ring-opening polymerizations (IROPs) of corresponding thionolactone intermediates. The key to this success relies on the development of a new simple and robust [Et3 O]+ [B(C6 F5 )4 ]- cationic initiator which possesses high activity, exclusive selectivity, living nature, and broad scope of thionolactones. A complete inversion of configuration during IROP of enantiopure γ-thionovalerolactone is also disclosed, affording isotactic semicrystalline polythioesters (Tm =87.0 °C) with mechanical property compared well to the representative commodity polyolefins. The formation of a highly crystalline supramolecular stereocomplex with enhanced thermal property (Tm =117.6 °C) has also been revealed.
Collapse
Affiliation(s)
- Yongliang Xia
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Pengjun Yuan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yanping Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yangyang Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Miao Hong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
7
|
Zhou D, Xu M, Gan Z, Yan XY, Ma Z, Zheng J, Dong XH. Discrete Diblock Copolymers with Precise Stereoconfiguration. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Dongdong Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Miao Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Zhanhui Gan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Xiao-Yun Yan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Zhuang Ma
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Juncheng Zheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
Wang X, Huo Z, Xie X, Shanaiah N, Tong R. Recent Advances in Sequence-Controlled Ring-Opening Copolymerizations of Monomer Mixtures. Chem Asian J 2023; 18:e202201147. [PMID: 36571563 DOI: 10.1002/asia.202201147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Transforming renewable resources into functional and degradable polymers is driven by the ever-increasing demand to replace unsustainable polyolefins. However, the utility of many degradable homopolymers remains limited due to their inferior properties compared to commodity polyolefins. Therefore, the synthesis of sequence-defined copolymers from one-pot monomer mixtures is not only conceptually appealing in chemistry, but also economically attractive by maximizing materials usage and improving polymers' performances. Among many polymerization strategies, ring-opening (co)polymerization of cyclic monomers enables efficient access to degradable polymers with high control on molecular weights and molecular weight distributions. Herein, we highlight recent advances in achieving one-pot, sequence-controlled polymerizations of cyclic monomer mixtures using a single catalytic system that combines multiple catalytic cycles. The scopes of cyclic monomers, catalysts, and polymerization mechanisms are presented for this type of sequence-controlled ring-opening copolymerization.
Collapse
Affiliation(s)
- Xiaoqian Wang
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| | - Ziyu Huo
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| | - Xiaoyu Xie
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| | - Narasimhamurthy Shanaiah
- Department of Chemistry, Virginia Polytechnic Institute and State University, 1040 Drillfield Drive, 24061, Blacksburg, VA, USA
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| |
Collapse
|
9
|
Stereocomplex crystallization of chiral hydroxyalkanoic acid-based biodegradable alternating copolyesters with two types of chiral centers and opposite monomer configurational combinations of L-D and D-L (S-R and R–S). POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Zhang Z, Shi C, Scoti M, Tang X, Chen EYX. Alternating Isotactic Polyhydroxyalkanoates via Site- and Stereoselective Polymerization of Unsymmetrical Diolides. J Am Chem Soc 2022; 144:20016-20024. [PMID: 36256876 DOI: 10.1021/jacs.2c08791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Naturally produced, biodegradable polyhydroxyalkanoates (PHAs) promise more sustainable alternatives to nonrenewable/degradable plastics, but biological PHA's stereomicrostructures are strictly confined to isotactic (R)-polymers or copolymers of random sequences. Chemical synthesis via catalyzed ring-opening polymerization (ROP) of cyclic (di)esters offers expedient access to diverse PHA microstructures, including those with defined comonomer sequences and tacticities. However, the synthesis of alternating isotactic PHAs has not been achieved by the existing methodologies. Here, we report the design of unsymmetrically disubstituted eight-membered diolides (rac-8DLR1-R2) and their site- and stereoselective ROP with discrete chiral catalysts, enabling the synthesis of alternating isotactic PHAs, poly(3-hydroxybutyrate-alt-3-hydroxyvalerate) (alt-P3HBV) and poly(3-hydroxybutyrate-alt-3-hydroxyheptanoate) (alt-P3HBHp), with high to quantitative (>99%) alternation and isotacticity and Mn up to 113 kDa and Đ = 1.01. Physical properties of such PHAs are substantially determined by the degree of backbone sequence alternation and tacticity, ranging from amorphous to semi-crystalline materials. The alt-P3HBV shows significantly improved mechanical performance relative to the constituent homopolymers. Intriguingly, enantiomeric (R)-alt-P3HBV and (S)-alt-P3HBV, synthesized by kinetically resolved ROP of rac-8DLMe-Et, form a stereocomplex with a significantly enhanced Tm (by 53 °C), while the enantiomeric homopolymers do not form a stereocomplex.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Miriam Scoti
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States.,Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Monte S. Angelo, Via Cintia, Napoli 80126, Italy
| | - Xiaoyan Tang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|