1
|
Rom CL, Novick A, McDermott MJ, Yakovenko AA, Gallawa JR, Tran GT, Asebiah DC, Storck EN, McBride BC, Miller RC, Prieto AL, Persson KA, Toberer E, Stevanović V, Zakutayev A, Neilson JR. Mechanistically Guided Materials Chemistry: Synthesis of Ternary Nitrides, CaZrN 2 and CaHfN 2. J Am Chem Soc 2024; 146:4001-4012. [PMID: 38291812 DOI: 10.1021/jacs.3c12114] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Recent computational studies have predicted many new ternary nitrides, revealing synthetic opportunities in this underexplored phase space. However, synthesizing new ternary nitrides is difficult, in part because intermediate and product phases often have high cohesive energies that inhibit diffusion. Here, we report the synthesis of two new phases, calcium zirconium nitride (CaZrN2) and calcium hafnium nitride (CaHfN2), by solid state metathesis reactions between Ca3N2 and MCl4 (M = Zr, Hf). Although the reaction nominally proceeds to the target phases in a 1:1 ratio of the precursors via Ca3N2 + MCl4 → CaMN2 + 2 CaCl2, reactions prepared this way result in Ca-poor materials (CaxM2-xN2, x < 1). A small excess of Ca3N2 (ca. 20 mol %) is needed to yield stoichiometric CaMN2, as confirmed by high-resolution synchrotron powder X-ray diffraction. In situ synchrotron X-ray diffraction studies reveal that nominally stoichiometric reactions produce Zr3+ intermediates early in the reaction pathway, and the excess Ca3N2 is needed to reoxidize Zr3+ intermediates back to the Zr4+ oxidation state of CaZrN2. Analysis of computationally derived chemical potential diagrams rationalizes this synthetic approach and its contrast from the synthesis of MgZrN2. These findings additionally highlight the utility of in situ diffraction studies and computational thermochemistry to provide mechanistic guidance for synthesis.
Collapse
Affiliation(s)
- Christopher L Rom
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Andrew Novick
- Department of Physics, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Matthew J McDermott
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Andrey A Yakovenko
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jessica R Gallawa
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Gia Thinh Tran
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Dominic C Asebiah
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Emily N Storck
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Brennan C McBride
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Rebecca C Miller
- Analytical Resources Core, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Amy L Prieto
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Kristin A Persson
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Eric Toberer
- Department of Physics, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Vladan Stevanović
- Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Andriy Zakutayev
- Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - James R Neilson
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
2
|
Lakshan A, Buxi K, Dutta A, Wang F, Jana PP. Cu 4TiTe 4: Synthesis, Crystal Structure, and Chemical Bonding. Inorg Chem 2023; 62:748-755. [PMID: 36603150 DOI: 10.1021/acs.inorgchem.2c02928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A new compound Cu4TiTe4 in the Cu-Ti-Te ternary system is prepared using high-temperature solid-state synthesis and characterized by single-crystal X-ray diffraction and energy-dispersive X-ray spectroscopy. The average structure of Cu4TiTe4 crystallizes in the cubic space group P4̅3m (cP9; a = 5.9484(1) Å) and adopts the Cu4TiSe4 structure type. Like Cu4TiSe4, it shows positional disorder in one of the two Cu sites. The three-dimensional structure of Cu4TiTe4 is viewed as a cubic close-packed (ccp) array of Te, where half of the tetrahedral holes are orderly occupied by three Cu and one Ti and the disordered Cu atoms effectively occupied 1/4 of the octahedral holes. The calculated density of states (DOS) discerns that the compound is a narrow-bandgap semiconductor, and the crystal orbital Hamilton population (COHP) analysis shows that though the individual Cu-Te short contact is relatively weak compared to the Ti-Te contact, Cu-Te bonds largely contribute toward the overall stability. Due to the unique atomic arrangements, some Te atoms in the unit cell have unsaturated coordination, which presents 5s2 lone pairs on the Te atoms. This has been confirmed by the density of states (DOS) and electron localization function (ELF) calculations.
Collapse
Affiliation(s)
| | - Krishnendu Buxi
- Department of Chemistry, IIT Kharagpur, Kharagpur 721302, India
| | - Arnab Dutta
- Department of Chemistry, IIT Kharagpur, Kharagpur 721302, India
| | - Fei Wang
- Chemistry and Biochemistry Department, Missouri State University, Springfield, Missouri 65897, United States
| | | |
Collapse
|