1
|
Wang X, Chen H, Lei Y, Li Y, Xiao B. Photoconductance Induced by Excited-State Intramolecular Proton Transfer (ESIPT) in Single-Molecule Junctions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2413529. [PMID: 39520356 DOI: 10.1002/adma.202413529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Excited-state intramolecular Proton Transfer (ESIPT) molecules have been drawing considerable attention due to their unique photophysical properties and potential applications in optoelectronic devices. Although ground and excited-state tautomerism in various proton transfer systems associated with ESIPT has been extensively studied both experimentally and theoretically, the charge-transport characteristics of ESIPT molecules at the single-molecule level has been little investigated. In this work, scanning tunneling microscope-based fixed junction technique (STM-FJ) is employed with theoretical calculations to explore the electronic properties of SMe-PhOH (with ESIPT properties), together with its photoconductance induced by ESIPT photocycle processes under continuous light illumination (254/275/295/310 nm). The conductance variation of SMe-PhOH with different UV wavelengths exhibits a continuous photoconductance distribution, which is highly consistent with the results of its UV-vis absorption spectrum. Theoretical calculations indicate that the interaction between localized HOMO and delocalized LUMO of SMe-PhOH K*-state gives rise to Fano resonance, thereby leading to enhanced conductance compared with its E-state. It reveals the microscopic mechanism of ESIPT process at the nanoscale and provides a constructive perspective for optimizing the photoresponsive properties of ESIPT-type molecules, as well as designing high-performance single-molecule devices.
Collapse
Affiliation(s)
- Xu Wang
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Faculty of Materials, Wuhan University of Science and Technology, 947 Heping Avenue, Qingshan District, Wuhan, 430081, P. R. China
| | - Haobing Chen
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Faculty of Materials, Wuhan University of Science and Technology, 947 Heping Avenue, Qingshan District, Wuhan, 430081, P. R. China
| | - Yongjiu Lei
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Faculty of Materials, Wuhan University of Science and Technology, 947 Heping Avenue, Qingshan District, Wuhan, 430081, P. R. China
| | - Yunchuan Li
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Faculty of Materials, Wuhan University of Science and Technology, 947 Heping Avenue, Qingshan District, Wuhan, 430081, P. R. China
| | - Bohuai Xiao
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Faculty of Materials, Wuhan University of Science and Technology, 947 Heping Avenue, Qingshan District, Wuhan, 430081, P. R. China
| |
Collapse
|
2
|
Wu SD, Chen ZZ, Sun WJ, Shi LYY, Shen AK, Cao JJ, Liu Z, Lambert CJ, Zhang HL. Boosting the Photoresponse of Azobenzene Single-Molecule Junctions via Mechanical Interlock and Dynamic Anchor. ACS NANO 2024; 18:31547-31558. [PMID: 39476419 DOI: 10.1021/acsnano.4c13010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
As the most classic photoisomerization system, azobenzene has been widely utilized as a building unit in various photoswitching applications. However, attempts to build azobenzene-based single-molecule photoswitches have met with limited success, giving low on/off ratios. Herein, we demonstrate two designs of azobenzene-based photoresponsive single-molecule junctions, based on mechanically interlocked diazocine and azobenzene-based dynamic anchors, respectively. Molecular conductance measurements using the scanning tunneling microscope breaking junction (STMBJ) technique revealed dramatic conductance changes upon photoillumination, achieving a high on/off ratio of ∼3.7. Using density functional theory (DFT), we revealed peculiar quantum interference (QI) effects in the diazocine molecular switch, indicating that diazocine is an excellent candidate for molecular photoswitches. The asymmetric azobenzene devices with a dynamic anchor exhibit switching behavior between a fully off state and a highly conductive state associated with the trans/cis conformation transition. The findings of this work not only present the design and development of functional molecular devices based on azobenzene units but also provide insight into the fundamental properties of light-induced quantum interference in azobenzene-based molecular devices.
Collapse
Affiliation(s)
- Shun-Da Wu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Zi-Zhen Chen
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Wen-Jing Sun
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Li-Yu-Yang Shi
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - An-Kang Shen
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jing-Jing Cao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Colin J Lambert
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
3
|
Yang ZX, Albalawi S, Zhao S, Li YG, Zhang H, Zou YL, Hou S, Chen LC, Shi J, Yang Y, Wu Q, Lambert C, Hong W. Single-Molecule Cross-Plane Conductance of Polycyclic Aromatic Hydrocarbon Derivatives. Chemistry 2024; 30:e202402095. [PMID: 38943462 DOI: 10.1002/chem.202402095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
In the cross-plane single-molecule junctions, the correlation between molecular aromaticity and conductance remained puzzling. Cross-plane break junction (XPBJ) provides new insight into understanding the role of aromaticity and conjugation to molecules on charge transport through the planar molecules. In this work, we investigated the modulation of cross-plane charge transport in pyrene derivatives by hydrogenation and substituents based on the XPBJ method that differs from those used in-plane transport. We measured the electrical conductance of the hydrogenated derivatives of the pyrenes and found that hydrogenation reduces conductance, and the fully hydrogenated molecule has the lowest conductance. Conductance of pyrene derivatives increased after substitution by both electron-donating and electron-withdrawing groups. By calculating, the trend in decreased conductance of hydrogenated pyrene was found to be consistent with the change in aromaticity. Electron-withdrawing substituents reduce the aromaticity of the molecule and narrow the HOMO-LUMO gap, while electron-donating groups increase the aromaticity but also narrow the gap. Our work reveals the potential of fine-tuning the structure of the pyrene molecule to control the cross-plane charge transport through the single-molecule junctions.
Collapse
Affiliation(s)
- Zi-Xian Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Shadiah Albalawi
- Department of Physics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk, Saudi Arabia
| | - Shiqiang Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Yao-Guang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Hewei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Yu-Ling Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Songjun Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Li-Chuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Qingqing Wu
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| | - Colin Lambert
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| |
Collapse
|
4
|
Hu W, Zhang Z, Xiong W, Li M, Yan Y, Yang C, Zou Q, Lü JT, Tian H, Guo X. Direct flipping dynamics and quantized enrichment of chirality at single-molecule resolution. SCIENCE ADVANCES 2024; 10:eado1125. [PMID: 38996014 PMCID: PMC11244442 DOI: 10.1126/sciadv.ado1125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Chirality is an important aspect of nature, and numerous macroscopic methods have been developed to understand and control chirality. For the chiral tertiary amines, their flexible flipping process makes it possible to achieve high chiral controllability without bond formation and breaking. Here, we present a type of stable chiral single-molecule devices formed by tertiary amines, using graphene-molecule-graphene single-molecule junctions. These single-molecule devices allow real-time, in situ, and long-time measurements of the flipping process of an individual chiral nitrogen center with high temporal resolution. Temperature- and bias voltage-dependent experiments, along with theoretical investigations, revealed diverse chiral intermediates, indicating the regulation of the flipping dynamics by energy-related factors. Angle-dependent measurements further demonstrated efficient enrichment of chiral states using linearly polarized light by a symmetry-related factor. This approach offers a reliable means for understanding the chirality's origin, elucidating microscopic chirality regulation mechanisms, and aiding in the design of effective drugs.
Collapse
Affiliation(s)
- Weilin Hu
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Wan Xiong
- School of Physics, Institute for Quantum Science and Engineering and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - Mingyao Li
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Yong Yan
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Center for Molecular Systems and Organic Devices, Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Caiyao Yang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Qi Zou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jing-Tao Lü
- School of Physics, Institute for Quantum Science and Engineering and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| |
Collapse
|
5
|
Hu W, Li M, Xiong W, Zhou S, Zou Q, Lü JT, Tian H, Guo X. Real-Time Direct Monitoring of Chirality Fixation and Recognition at the Single-Molecule Level. J Am Chem Soc 2024; 146:17765-17772. [PMID: 38902874 DOI: 10.1021/jacs.4c03071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Chirality, a fundamental attribute of nature, significantly influences a wide range of phenomena related to physical properties, chemical reactions, biological pharmacology, and so on. As a pivotal aspect of chirality research, chirality recognition contributes to the synthesis of complex chiral products from simple chiral compounds and exhibits intricate interplay between chiral materials. However, macroscopic detection technologies cannot unveil the dynamic process and intrinsic mechanisms of single-molecule chirality recognition. Herein, we present a single-molecule detection platform based on graphene-molecule-graphene single-molecule junctions to measure the chirality recognition involving interactions between amines and chiral alcohols. This approach leads to the realization of in situ and real-time direct observation of chirality recognition at the single-molecule level, demonstrating that chiral alcohols exhibit compelling potential to induce the formation of the corresponding chiral configuration of molecules. The amalgamation of theoretical analyses with experimental findings reveals a synergistic action between electrostatic interactions and steric hindrance effects in the chirality recognition process, thus substantiating the microscopic mechanism governing the chiral structure-activity relationship. These studies open up a pathway for exploring novel chiral phenomena from the fundamental limits of chemistry, such as chiral origin and chiral amplification, and offer important insights into the precise synthesis of chiral materials.
Collapse
Affiliation(s)
- Weilin Hu
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Mingyao Li
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Wan Xiong
- School of Physics, Institute for Quantum Science and Engineering and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, P. R. China
| | - Shuyao Zhou
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Qi Zou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai 200237, P. R. China
| | - Jing-Tao Lü
- School of Physics, Institute for Quantum Science and Engineering and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai 200237, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| |
Collapse
|
6
|
Zhang Z, Wang Q, Zhang X, Mei J, Tian H. Multimode Stimuli-Responsive Room-Temperature Phosphorescence Achieved by Doping Butterfly-like Fluorogens into Crystalline Small-Molecular Hosts. JACS AU 2024; 4:1954-1965. [PMID: 38818060 PMCID: PMC11134381 DOI: 10.1021/jacsau.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024]
Abstract
Materials with stimuli-responsive purely organic room-temperature phosphorescence (RTP) exempt from exquisite molecular design and complex preparation are highly desirable but still relatively rare. Moreover, most of them work in a single switching mode. Herein, we employ a versatile host-guest-doped strategy to facilely construct efficient RTP systems with multimode stimuli-responsiveness without ingenious molecular design. By conveniently doping butterfly-like guests, namely, N,N'-diphenyl-dihydrodibenzo[a,c]phenazines (DPACs), featured with vibration-induced emission into the small-molecular hosts via various methods, RTP systems with finely tunable photophysical properties are readily obtained. Through systematic mechanistic studies and with the aid of a series of control experiments, we unveil the critical role of the host crystallinity in achieving efficient RTP. By virtue of the inherent environmental sensitivity of both RTP and fluorescence of the DPACs, our systems exhibit multiple-stimuli-responsiveness with the luminescence not only switching between the fluorescence and phosphorescence but also continuously changing in the fluorescence color. Advanced dynamic anticounterfeiting and multilevel information encryption is thereby realized.
Collapse
Affiliation(s)
- Zhaozhi Zhang
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Qijing Wang
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xinyi Zhang
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Ju Mei
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Sun X, Liu R, Kandapal S, Xu B. Development and mechanisms of photo-induced molecule junction device. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1535-1560. [PMID: 39678175 PMCID: PMC11636484 DOI: 10.1515/nanoph-2023-0921] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 12/17/2024]
Abstract
The utilization of single molecule electronic devices represents a significant avenue toward advancing next-generation circuits. Recent investigations have notably augmented our understanding of the optoelectronic characteristics exhibited by diverse single molecule materials. This comprehensive review underscores the latest progressions in probing photo-induced electron transport behaviors within molecular junctions. Encompassing both single molecule and self-assembled monolayer configurations, this review primarily concentrates on unraveling the fundamental mechanisms and guiding principles underlying photo-switchable devices within single molecule junctions. Furthermore, it presents an outlook on the obstacles faced and future prospects within this dynamically evolving domain.
Collapse
Affiliation(s)
- Xin Sun
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA30602, USA
| | - Ran Liu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA30602, USA
| | - Sneha Kandapal
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA30602, USA
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA30602, USA
| |
Collapse
|
8
|
Chen Y, Bâldea I, Yu Y, Liang Z, Li MD, Koren E, Xie Z. CP-AFM Molecular Tunnel Junctions with Alkyl Backbones Anchored Using Alkynyl and Thiol Groups: Microscopically Different Despite Phenomenological Similarity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4410-4423. [PMID: 38348971 PMCID: PMC10906003 DOI: 10.1021/acs.langmuir.3c03759] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
In this paper, we report results on the electronic structure and transport properties of molecular junctions fabricated via conducting probe atomic force microscopy (CP-AFM) using self-assembled monolayers (SAMs) of n-alkyl chains anchored with acetylene groups (CnA; n = 8, 9, 10, and 12) on Ag, Au, and Pt electrodes. We found that the current-voltage (I-V) characteristics of CnA CP-AFM junctions can be very accurately reproduced by the same off-resonant single-level model (orSLM) successfully utilized previously for many other junctions. We demonstrate that important insight into the energy-level alignment can be gained from experimental data of transport (processed via the orSLM) and ultraviolet photoelectron spectroscopy combined with ab initio quantum chemical information based on the many-body outer valence Green's function method. Measured conductance GAg < GAu < GPt is found to follow the same ordering as the metal work function ΦAu < ΦAu < ΦPt, a fact that points toward a transport mediated by an occupied molecular orbital (MO). Still, careful data analysis surprisingly revealed that transport is not dominated by the ubiquitous HOMO but rather by the HOMO-1. This is an important difference from other molecular tunnel junctions with p-type HOMO-mediated conduction investigated in the past, including the alkyl thiols (CnT) to which we refer in view of some similarities. Furthermore, unlike in CnT and other junctions anchored with thiol groups investigated in the past, the AFM tip causes in CnA an additional MO shift, whose independence of size (n) rules out significant image charge effects. Along with the prevalence of the HOMO-1 over the HOMO, the impact of the "second" (tip) electrode on the energy level alignment is another important finding that makes the CnA and CnT junctions different. What ultimately makes CnA unique at the microscopic level is a salient difference never reported previously, namely, that CnA's alkyne functional group gives rise to two energetically close (HOMO and HOMO-1) orbitals. This distinguishes the present CnA from the CnT, whose HOMO stemming from its thiol group is well separated energetically from the other MOs.
Collapse
Affiliation(s)
- Yuhong Chen
- Department
of Materials Science and Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
- Department
of Materials Science and Engineering, Guangdong Provincial Key Laboratory
of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Ioan Bâldea
- Theoretical
Chemistry, Heidelberg University, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Yongxin Yu
- Department
of Materials Science and Engineering, Guangdong Provincial Key Laboratory
of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Zining Liang
- Department
of Materials Science and Engineering, Guangdong Provincial Key Laboratory
of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Ming-De Li
- Department
of Chemistry and Key Laboratory for Preparation and Application of
Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Elad Koren
- Department
of Materials Science and Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Zuoti Xie
- Department
of Materials Science and Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
- Department
of Materials Science and Engineering, Guangdong Provincial Key Laboratory
of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- Quantum
Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen-Hong Kong International Science and Technology
Park, No. 3 Binglang
Road, Futian District, Shenzhen, Guangdong 518048, China
| |
Collapse
|
9
|
Guo MM, Jiang Y, Wang JY, Chen ZN, Hou S, Zhang QC. Effectively Enhancing the Conductance of Asymmetric Molecular Wires by Aligning the Energy Level and Symmetrizing the Coupling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38332611 DOI: 10.1021/acs.langmuir.3c03530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
An asymmetric structure is an important strategy for designing highly conductive molecular wires for a gap-fixed molecular circuit. As the conductance enhancement in the current strategy is still limited to about 2 times, we inserted a methylene group as a spacer in a conjugated structure to modulate the structural symmetry. We found that the conductance drastically enhanced in the asymmetric molecular wire to 1.5 orders of magnitude as high as that in the symmetric molecular wire. First-principles quantum transport studies attributed the effective enhancement to the synchronization of improved energy alignment and nearly symmetric coupling between the frontier orbitals and the electrodes.
Collapse
Affiliation(s)
- Meng-Meng Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Yuxuan Jiang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, People's Republic of China
- Centre for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Jin-Yun Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Shimin Hou
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, People's Republic of China
- Centre for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Qian-Chong Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| |
Collapse
|
10
|
Jago D, Liu C, Daaoub AHS, Gaschk E, Walkey MC, Pulbrook T, Qiao X, Sobolev AN, Moggach SA, Costa‐Milan D, Higgins SJ, Piggott MJ, Sadeghi H, Nichols RJ, Sangtarash S, Vezzoli A, Koutsantonis GA. An Orthogonal Conductance Pathway in Spiropyrans for Well-Defined Electrosteric Switching Single-Molecule Junctions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306334. [PMID: 37817372 PMCID: PMC11475379 DOI: 10.1002/smll.202306334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Indexed: 10/12/2023]
Abstract
While a multitude of studies have appeared touting the use of molecules as electronic components, the design of molecular switches is crucial for the next steps in molecular electronics. In this work, single-molecule devices incorporating spiropyrans, made using break junction techniques, are described. Linear spiropyrans with electrode-contacting groups linked by alkynyl spacers to both the indoline and chromenone moieties have previously provided very low conductance values, and removing the alkynyl spacer has resulted in a total loss of conductance. An orthogonal T-shaped approach to single-molecule junctions incorporating spiropyran moieties in which the conducting pathway lies orthogonal to the molecule backbone is described and characterized. This approach has provided singlemolecule conductance features with good correlation to molecular length. Additional higher conducting states are accessible using switching induced by UV light or protonation. Theoretical modeling demonstrates that upon (photo)chemical isomerization to the merocyanine, two cooperating phenomena increase conductance: release of steric hindrance allows the conductance pathway to become more planar (raising the mid-bandgap transmission) and a bound state introduces sharp interference near the Fermi level of the electrodes similarly responding to the change in state. This design step paves the way for future use of spiropyrans in single-molecule devices and electrosteric switches.
Collapse
Affiliation(s)
- David Jago
- School of Molecular ScienceThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Chongguang Liu
- Department of ChemistryUniversity of LiverpoolCrown StLiverpoolL69 7ZDUK
| | | | - Emma Gaschk
- School of Molecular ScienceThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Mark C. Walkey
- School of Molecular ScienceThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Thea Pulbrook
- School of Molecular ScienceThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Xiaohang Qiao
- Department of ChemistryUniversity of LiverpoolCrown StLiverpoolL69 7ZDUK
| | - Alexandre N. Sobolev
- Centre for MicroscopyCharacterisation and AnalysisUniversity of Western AustraliaStirling HighwayCrawleyWestern Australia6009Australia
| | - Stephen A. Moggach
- School of Molecular ScienceThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - David Costa‐Milan
- Department of ChemistryUniversity of LiverpoolCrown StLiverpoolL69 7ZDUK
| | - Simon J. Higgins
- Department of ChemistryUniversity of LiverpoolCrown StLiverpoolL69 7ZDUK
| | - Matthew J. Piggott
- School of Molecular ScienceThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Hatef Sadeghi
- School of EngineeringUniversity of WarwickCoventryCV4 7ALUK
| | - Richard J. Nichols
- Department of ChemistryUniversity of LiverpoolCrown StLiverpoolL69 7ZDUK
| | | | - Andrea Vezzoli
- Department of ChemistryUniversity of LiverpoolCrown StLiverpoolL69 7ZDUK
| | - George A. Koutsantonis
- School of Molecular ScienceThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| |
Collapse
|
11
|
Deka R, Dey S, Upadhyay M, Chawla S, Ray D. Conformational Effect of Catechol-Terephthalonitrile Emitters Leading to Ambient Violet Phosphorescence. J Phys Chem A 2024; 128:581-589. [PMID: 38206828 DOI: 10.1021/acs.jpca.3c06877] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Organic ambient violet phosphorescent (AVP) materials are of great interest due to their involvement of high energy and longer-lived triplet excitons. Here, we show three fused ring functionalized donor-acceptor-donor (D-A-D/D-A-D') emitters (BPT1-BPT3), in which two catechol-based donors (3,4-dihydroxybenzophenone, catechol, or 3,5-ditert-butylcatechol) are covalently fused to the terephthalonitrile acceptor via four O-C single bonds. Spectroscopic analysis revealed that all the molecules show AVP (∼390-394 nm, τAVP = 73-101 μs) with phosphorescence quantum yields (ϕP) of 1.8-27.4% due to low singlet-triplet gaps (0.036-0.046 eV) and conformational effects. BPT3 with bulky tert-butyl groups increases AVP (ϕP = 27.4%). Quantum chemistry calculations reveal flat (F1) and twisted (F2) conformers (ground state) with a low energy difference (∼4-5 kcal/mol) for all molecules; the F1 conformer is responsible for efficient AVP, while weak blue thermally activated delayed fluorescence with longer-lived delayed components is realized from the F2 conformer. This approach may provide important clues for the design of high-energy organic phosphorescent materials.
Collapse
Affiliation(s)
- Raktim Deka
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi NCR, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Suvendu Dey
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi NCR, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Manoj Upadhyay
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi NCR, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Sakshi Chawla
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India
| | - Debdas Ray
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi NCR, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
12
|
Taherinia D, Frisbie CD. Deciphering I-V characteristics in molecular electronics with the benefit of an analytical model. Phys Chem Chem Phys 2023; 25:32305-32316. [PMID: 37991400 DOI: 10.1039/d3cp03877g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
We share our perspective that a simple analytical model for electron tunneling in molecular junctions can greatly aid quantitative analysis of experimental data in molecular electronics. In particular, the single-level model (SLM), derived from first principles, provides a precise prediction for the current-voltage (I-V) characteristics in terms of key electronic structure parameters, which in turn depend on the molecular and contact architecture. SLM analysis thus facilitates understanding of structure-property relationships and provides metrics that can be compared across different types of tunnel junctions, as we illustrate with several examples.
Collapse
Affiliation(s)
- Davood Taherinia
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
13
|
Chen X, Yuan S, Qiao M, Jin X, Chen J, Guo L, Su J, Qu DH, Zhang Z. Exploring the Depth-Dependent Microviscosity inside a Micelle Using Butterfly-Motion-Based Fluorescent Probes. J Am Chem Soc 2023; 145:26494-26503. [PMID: 38000910 DOI: 10.1021/jacs.3c11482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
The viscosity distribution of micellar interiors from the very center to the outer surface is dramatically varied, which has been distinguished in theoretical models, yet it remains highly challenging to quantify this issue experimentally. Herein, a series of fluorophore-substituted surfactants DPAC-Fn (n = 3, 5, 7, 9, 11, 13, and 15) are developed by functionalizing the different alkyl-trimethylammonium bromides with the butterfly motion-based viscosity sensor, N,N'-diphenyl-dihydrodibenzo[a,c]phenazine (DPAC). The immersion depth of DPAC units of DPAC-Fn in cetrimonium bromide (C16TAB) micelles depends on the alkyl chain lengths n. From deep (n = 15) to shallow (n = 3), DPAC-Fn in C16TAB micelles exhibits efficient viscosity-sensitive dynamic multicolor emissions. With external standards for quantification, the viscosity distribution inside a C16TAB micelle with the size of ∼4 nm is changed seriously from high viscosity (∼190 Pa s) in the core center to low viscosity (∼1 Pa s) near the outer surface. This work provides a tailored approach for powerful micelle tools to explore the depth-dependent microviscosity of micellar interiors.
Collapse
Affiliation(s)
- Xuanying Chen
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shideng Yuan
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan 250100, China
| | - Mengyuan Qiao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Jin
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiacheng Chen
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lifang Guo
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
14
|
Li Z, Wang R, Li Y, Li Y, Ma C, Yang J, Li H. Reversible electric switching of NDI molecular wires by orthogonal stimuli. Chem Commun (Camb) 2023; 59:12743-12746. [PMID: 37807872 DOI: 10.1039/d3cc03486k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The charge transport of 1,4,5,8-naphthalene diimide (NDI)-based molecules is explored. Experimental results show that the conductance of the TH-NDI molecular junction can be reversibly tuned by bias voltage and solvent, while the conductance of the PH-NDI junction is almost independent of the bias voltage and solvent. Based on these orthogonal stimuli, an AND logic gate of TH-NDI junction with an electric signal as the output is constructed. These results will advance the development of functional molecular devices.
Collapse
Affiliation(s)
- Zhi Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Rui Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Yunpeng Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Yingjie Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Chaoqi Ma
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Jiawei Yang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Hongxiang Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
15
|
Yang D, Li S, Wu X, Wang W, Cai Z, Ma C. Synthesis, Optical Properties, and Applications of Luminescent Benzothiazole: Base Promoted Intramolecular C-S Bond Formation. J Org Chem 2023; 88:11581-11589. [PMID: 37540629 DOI: 10.1021/acs.joc.3c00888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
A novel base-catalyzed method for the synthesis of luminescent benzothiazole derivatives had been developed under metal-free conditions via C-S bond formation, which provided an efficient, convenient, and mild alternative method for constructing substituted benzothiazoles. As-prepared benzothiazole derivatives thus produced emissions in solution with quantum yield up to 85%. In addition, they still exhibited fairly strong fluorescence in the solid state. Furthermore, the compounds were used as a facile "On-Off" fluorescence probe to create handy test strips for detecting NaClO by naked eyes.
Collapse
Affiliation(s)
- Di Yang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Shanshan Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaotian Wu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenzhi Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zepeng Cai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chen Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
16
|
Tang Y, Harutyunyan H. Optical properties of plasmonic tunneling junctions. J Chem Phys 2023; 158:060901. [PMID: 36792491 DOI: 10.1063/5.0128822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Over the last century, quantum theories have revolutionized our understanding of material properties. One of the most striking quantum phenomena occurring in heterogeneous media is the quantum tunneling effect, where carriers can tunnel through potential barriers even if the barrier height exceeds the carrier energy. Interestingly, the tunneling process can be accompanied by the absorption or emission of light. In most tunneling junctions made of noble metal electrodes, these optical phenomena are governed by plasmonic modes, i.e., light-driven collective oscillations of surface electrons. In the emission process, plasmon excitation via inelastic tunneling electrons can improve the efficiency of photon generation, resulting in bright nanoscale optical sources. On the other hand, the incident light can affect the tunneling behavior of plasmonic junctions as well, leading to phenomena such as optical rectification and induced photocurrent. Thus, plasmonic tunneling junctions provide a rich platform for investigating light-matter interactions, paving the way for various applications, including nanoscale light sources, sensors, and chemical reactors. In this paper, we will introduce recent research progress and promising applications based on plasmonic tunneling junctions.
Collapse
Affiliation(s)
- Yuankai Tang
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Hayk Harutyunyan
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
17
|
Zhang Z, Jin X, Sun X, Su J, Qu DH. Vibration-induced emission: Dynamic multiple intrinsic luminescence. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|