1
|
Xu X, Xi Z, Zhao D, Liu Z, Wang L, Ban T, Wang J, Zhao S, Gao H, Wang G. Regulating electron transfer between valence-variable cuprum and cerium sites within bimetallic metal-organic framework towards enhanced catalytic hydrogenation performance. J Colloid Interface Sci 2025; 679:1159-1170. [PMID: 39423682 DOI: 10.1016/j.jcis.2024.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Modulating the electron distribution between active sites in metal-organic frameworks (MOFs) offers a promising strategy for optimizing their catalytic performance. In this study, we employed a novel heterovalent substitution strategy to synthesize bimetallic organic frameworks (CuxCey-BTC) that feature dual active sites with copper (Cu) and cerium (Ce), Our objective was to achieve efficient hydrogenation of dicyclopentadiene (DCPD) by regulating the electron transfer between the valence-variable Cu and Ce species. The designed CuxCey-BTC were characterized using various spectroscopic and microscopic techniques, along with density functional theory (DFT) calculations, confirming the successful incorporation of bimetallic nodes within the framework structure and the electron transfer between them. The transfer of electrons from the less electronegative Ce to the Cu sites promotes the chemisorption of hydrogen gas (H2) on the electron-rich Cu sites, thereby optimizing the activation of the CC bond in DCPD. The Cu4Ce-BTC catalyst demonstrated exceptional performance, achieving complete conversion of DCPD and significantly surpassing monometallic MOFs. Moreover, we proposed a plausible pathway for the hydrogenation of DCPD. This work highlights the synergistic effects between bimetallic centers and offers a novel strategy to improve the MOFs' catalytic activity by modulating electron distribution between dual active sites.
Collapse
Affiliation(s)
- Xinmeng Xu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Zuoshuai Xi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Danfeng Zhao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Zhiyuan Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Linmeng Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Tao Ban
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - JingJing Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Shunzheng Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Hongyi Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Shunde Innovation School, University of Science and Technology Beijing, Shunde 528399, PR China.
| | - Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
2
|
Zhang Q, Yang C, Chen Y, Yan Y, Kan M, Wang H, Lv X, Han Q, Zheng G. Efficient Photocatalytic CH 4-to-Ethanol Conversion by Limiting Interfacial Hydroxyl Radicals Using Gold Nanoparticles. Angew Chem Int Ed Engl 2024:e202419282. [PMID: 39660632 DOI: 10.1002/anie.202419282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/17/2024] [Accepted: 12/11/2024] [Indexed: 12/12/2024]
Abstract
Photocatalytic CH4 oxidation to ethanol with high selectivity is attractive but substantially challenging. The activation of inert C-H bonds at ambient conditions requires highly reactive oxygen species like hydroxyl radicals (⋅OH), while the presence of those oxidative species also facilitates fast formation of C1 products, instead of the kinetically sluggish C-C coupling to produce ethanol. Herein, we developed a BiVO4 photocatalyst with surface functionalization of Au nanoparticles (BiVO4@Au), which not only enables photogeneration of ⋅OH to activate CH4 into ⋅CH3, but also in situ consumes those ⋅OH species to retard their further attack on ⋅CH3, resulting in an enhanced ⋅CH3/⋅OH ratio and facilitating C-C coupling toward ethanol. The ⋅CH3/⋅OH ratio is further improved by transporting CH4 via a gas-diffusion layer to the photocatalytic interface, leading to even higher ethanol selectivity and production rates. At ambient conditions and without photosensitizers or sacrificial agents, the BiVO4@Au photocatalyst exhibited an outstanding CH4-to-ethanol conversion performance, including a peak ethanol yield of 680 μmol ⋅ g-1 ⋅ h-1, a high selectivity of 86 %, and a stable photoconversion of >100 h, substantially exceeding most of the previous reports. Our work suggests an attractive approach of in situ generation and modulation of the ⋅OH levels for photocatalytic CH4 conversion toward multi-carbon products.
Collapse
Affiliation(s)
- Quan Zhang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Chao Yang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Yangshen Chen
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Yaqin Yan
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Miao Kan
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Huining Wang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Ximeng Lv
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Qing Han
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
3
|
Hao Y, Liu X, Zhang Y, Zhang X, Li Z, Chen X. Fine-Tuning 2D Heterogeneous Channels for Charge-Lock Enhanced Lithium Separation from Brine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406535. [PMID: 39234947 PMCID: PMC11538673 DOI: 10.1002/advs.202406535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/12/2024] [Indexed: 09/06/2024]
Abstract
The extraction of lithium (Li) from complex brines presents significant challenges due to the interference of competing ions, particularly magnesium (Mg2⁺), which complicates the selective separation process. Herein, a strategy is introduced employing charge-lock enhanced 2D heterogeneous channels for the rapid and selective uptake of Li⁺. This approach integrates porous ZnFe2O4/ZnO nanosheets into Ag+-modulated sub-nanometer interlayer channels, forming channels optimized for Li⁺ extraction. The novelty lies in the charge-lock mechanism, which selectively captures Mg2⁺ ions, thereby facilitating the effective separation of Li from Mg. This mechanism is driven by a charge transfer during the formation of ZnFe2O4/ZnO, rendering O atoms in Fe-O bonds more negatively charged. These negative charges strongly interact with the high charge density of Mg2⁺ ions, enabling the charge-locking mechanism and the targeted capture of Mg2⁺. Optimization with Ag⁺ further improves interlayer spacing, increasing ion transport rates and addressing the swelling issue typical of 2D membranes. The resultant membrane showcases high water flux (44.37 L m⁻2 h⁻¹ bar⁻¹) and an impressive 99.8% rejection of Mg2⁺ in real brine conditions, achieving a Li⁺/Mg2⁺ selectivity of 59.3, surpassing existing brine separation membranes. Additionally, this membrane demonstrates superior cyclic stability, highlighting its high potential for industrial applications.
Collapse
Affiliation(s)
- Yaxin Hao
- MOE Frontiers Science Center for Rare IsotopesLanzhou UniversityLanzhou730000China
- School of Nuclear Science and TechnologyLanzhou UniversityLanzhou730000P. R. China
- Institute of National Nuclear IndustryLanzhou UniversityLanzhou730000P. R. China
| | - Xin Liu
- Key Laboratory of Green and High‐end Utilization of Salt Lake ResourcesQinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake ResourcesQinghai Institute of Salt LakesChinese Academy of SciencesXining810008P. R. China
| | - Yaoling Zhang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake ResourcesQinghai Institute of Salt LakesChinese Academy of SciencesXining810008P. R. China
| | - Xin Zhang
- MOE Frontiers Science Center for Rare IsotopesLanzhou UniversityLanzhou730000China
- School of Nuclear Science and TechnologyLanzhou UniversityLanzhou730000P. R. China
- Institute of National Nuclear IndustryLanzhou UniversityLanzhou730000P. R. China
| | - Zhan Li
- MOE Frontiers Science Center for Rare IsotopesLanzhou UniversityLanzhou730000China
- School of Nuclear Science and TechnologyLanzhou UniversityLanzhou730000P. R. China
- Institute of National Nuclear IndustryLanzhou UniversityLanzhou730000P. R. China
- School of Chemistry and Chemical EngineeringQinghai Minzu UniversityXining810007P. R. China
| | - Ximeng Chen
- MOE Frontiers Science Center for Rare IsotopesLanzhou UniversityLanzhou730000China
- School of Nuclear Science and TechnologyLanzhou UniversityLanzhou730000P. R. China
- Institute of National Nuclear IndustryLanzhou UniversityLanzhou730000P. R. China
| |
Collapse
|
4
|
Feng C, Zuo S, Hu M, Ren Y, Xia L, Luo J, Zou C, Wang S, Zhu Y, Rueping M, Han Y, Zhang H. Optimizing the reaction pathway of methane photo-oxidation over single copper sites. Nat Commun 2024; 15:9088. [PMID: 39433749 PMCID: PMC11494074 DOI: 10.1038/s41467-024-53483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
Direct photocatalytic conversion of methane to value-added C1 oxygenate with O2 is of great interest but presents a significant challenge in achieving highly selective product formation. Herein, a general strategy for the construction of copper single-atom catalysts with a well-defined coordination microenvironment is developed on the basis of metal-organic framework for selective photo-oxidation of CH4 to HCHO. We propose the directional activation of O2 on the mono-copper site breaks the original equilibrium and tilts the balance of radical formation almost completely toward •OOH. The synchronously generated •OOH and •CH3 radicals rapidly combine to form HCHO while inhibiting competing reactions, thus resulting in ultra-highly selective HCHO production (nearly 100%) with a time yield of 2.75 mmol gcat-1 h-1. This work highlights the potential of rationally designing reaction sites to manipulate reaction pathways and achieve selective CH4 photo-oxidation, and could guide the further design of high-performance single-atom catalysts to meet future demand.
Collapse
Affiliation(s)
- Chengyang Feng
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Shouwei Zuo
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Miao Hu
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yuanfu Ren
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Liwei Xia
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jun Luo
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Chen Zou
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yu Han
- Electron Microscopy Center, South China University of Technology, Guangzhou, China
| | - Huabin Zhang
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
5
|
Fang G, Yu W, Wang X, Lin J. Heterogeneous catalysis of methane hydroxylation with nearly total selectivity under mild conditions. Chem Commun (Camb) 2024; 60:11034-11051. [PMID: 39254608 DOI: 10.1039/d4cc02802c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The efficient utilization of methane, a vital component of natural gas, shale gas and methane hydrate, holds significant importance for global energy security and environmental sustainability. However, converting methane into value-added oxygenates presents a formidable challenge due to its inert nature. Direct selective oxidation of methane (DSOM) under mild conditions is essential for reducing energy consumption and carbon emissions compared with traditional indirect routes. Achieving total selectivity in methane hydroxylation remains elusive due to the competitive CO2 formation. This feature article highlights recent advancements in methane hydroxylation using thermo-, photo-, and electro-catalytic systems. Through strategically designing the structure of catalysts to control the reactive oxygen species and optimizing reaction parameters, significant progress has been made in enhancing oxygenate selectivity and minimizing overoxidation. A comprehensive understanding of the mechanisms underlying methane hydroxylation with total selectivity offers insights for improving catalyst design and reaction parameter optimization, promoting sustainable methane utilization.
Collapse
Affiliation(s)
- Geqian Fang
- CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Univ. Lille, Lille F-59000, France
| | - Wenjun Yu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
6
|
Li D, Lin M, Zhang J, Qiu C, Chen H, Xiao Z, Shen J, Zheng Y, Long J, Dai W, Wang X, Fu X, Zhang Z. Hydrophobic TaO x Species Overlayer Tuning Light-Driven Methane Chlorination with Inorganic Chlorine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402427. [PMID: 38751309 DOI: 10.1002/smll.202402427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/29/2024] [Indexed: 10/04/2024]
Abstract
Halogenated methane serves as a universal platform molecule for building high-value chemicals. Utilizing sodium chloride solution for photocatalytic methane chlorination presents an environmentally friendly method for methane conversion. However, competing reactions in gas-solid-liquid systems leads to low efficiency and selectivity in photocatalytic methane chlorination. Here, an in situ method is employed to fabricate a hydrophobic layer of TaOx species on the surface of NaTaO3. Through in-situ XPS and XANES spectra analysis, it is determined that TaOx is a coordination unsaturated species. The TaOx species transforms the surface properties from the inherent hydrophilicity of NaTaO3 to the hydrophobicity of TaOx/NaTaO3, which enhances the accessibility of CH4 for adsorption and activation, and thus promotes the methane chlorination reaction within the gas-liquid-solid three-phase system. The optimized TaOx/NaTaO3 photocatalyst has a good durability for multiple cycles of methane chlorination reactions, yielding CH3Cl at a rate of 233 µmol g-1 h-1 with a selectivity of 83%. In contrast, pure NaTaO3 exhibits almost no activity toward CH3Cl formation, instead catalyzing the over-oxidation of CH4 into CO2. Notably, the activity of the optimized TaOx/NaTaO3 photocatalyst surpasses that of reported noble metal photocatalysts. This research offers an effective strategy for enhancing the selectivity of photocatalytic methane chlorination using inorganic chlorine ions.
Collapse
Affiliation(s)
- Dongmiao Li
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Min Lin
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jiangjie Zhang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Chengwei Qiu
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hui Chen
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Zhen Xiao
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jinni Shen
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yuanhui Zheng
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jinlin Long
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Wenxin Dai
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xuxu Wang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xianzhi Fu
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Zizhong Zhang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
7
|
Nie S, Wu L, Zhang Q, Huang Y, Liu Q, Wang X. High-entropy-perovskite subnanowires for photoelectrocatalytic coupling of methane to acetic acid. Nat Commun 2024; 15:6669. [PMID: 39107324 PMCID: PMC11303686 DOI: 10.1038/s41467-024-50977-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
The incorporation of multiple immiscible metals in high-entropy oxides can create the unconventional coordination environment of catalytic active sites, while the high formation temperature of high-entropy oxides results in bulk materials with low specific surface areas. Here we develop the high-entropy LaMnO3-type perovskite-polyoxometalate subnanowire heterostructures with periodically aligned high-entropy LaMnO3 oxides and polyoxometalate under a significantly reduced temperature of 100 oC, which is much lower than the temperature required by state-of-the-art calcination methods for synthesizing high-entropy oxides. The high-entropy LaMnO3-polyoxometalate subnanowires exhibit excellent catalytic activity for the photoelectrochemical coupling of methane into acetic acid under mild conditions (1 bar, 25 oC), with a high productivity (up to 4.45 mmol g‒1cat h‒1) and selectivity ( > 99%). Due to the electron delocalization at the subnanometer scale, the contiguous active sites of high-entropy LaMnO3 and polyoxometalate in the heterostructure can efficiently activate C - H bonds and stabilize the resulted *COOH intermediates, which benefits the in situ coupling of *CH3 and *COOH into acetic acid.
Collapse
Affiliation(s)
- Siyang Nie
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yunwei Huang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Ren J, Wang B, Yin HQ, Zhang P, Wang XH, Quan Y, Yao S, Lu TB, Zhang ZM. Single Dispersion of Fe(H 2O) 2-Based Polyoxometalate on Polymeric Carbon Nitride for Biomimetic CH 4 Photooxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403101. [PMID: 38771974 DOI: 10.1002/adma.202403101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/24/2024] [Indexed: 05/23/2024]
Abstract
Direct methane conversion to value-added oxygenates under mild conditions with in-depth mechanism investigation has attracted wide interest. Inspired by methane monooxygenase, the K9Na2Fe(H2O)2{[γ-SiW9O34Fe(H2O)]}2·25H2O polyoxometalate (Fe-POM) with well-defined Fe(H2O)2 sites is synthesized to clarify the key role of Fe species and their microenvironment toward CH4 photooxidation. The Fe-POM can efficiently drive the conversion of CH4 to HCOOH with a yield of 1570.0 µmol gPOM -1 and 95.8% selectivity at ambient conditions, much superior to that of [Fe(H2O)SiW11O39]5- with Fe(H2O) active site, [Fe2SiW10O38(OH)]2 14- and [P8W48O184Fe16(OH)28(H2O)4]20- with multinuclear Fe-OH-Fe active sites. Single-dispersion of Fe-POM on polymeric carbon nitride (PCN) is facilely achieved to provide single-cluster functionalized PCN with well-defined Fe(H2O)2 site, the HCOOH yield can be improved to 5981.3 µmol gPOM -1. Systemic investigations demonstrate that the (WO)4-Fe(H2O)2 can supply Fe═O active center for C-H activation via forming (WO)4-Fea-Ot···CH4 intermediate, similar to that for CH4 oxidation in the monooxygenase. This work highlights a promising and facile strategy for single dispersion of ≈1-2 Å metal center with precise coordination microenvironment by uniformly anchoring nanoscale molecular clusters, which provides a well-defined model for in-depth mechanism research.
Collapse
Affiliation(s)
- Jing Ren
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Baifan Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Hua-Qing Yin
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Peng Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Xin-Hui Wang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Yangjian Quan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, China
| | - Shuang Yao
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| |
Collapse
|
9
|
Jiang Y, Li S, Fan Y, Tang Z. Best Practices for Experiments and Reports in Photocatalytic Methane Conversion. Angew Chem Int Ed Engl 2024; 63:e202404658. [PMID: 38573117 DOI: 10.1002/anie.202404658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
Efficiently converting methane into valuable chemicals via photocatalysis under mild condition represents a sustainable route to energy storage and value-added manufacture. Despite continued interest in this area, the achievements have been overshadowed by the absence of standardized protocols for conducting photocatalytic methane oxidation experiments as well as evaluating the corresponding performance. In this review, we present a structured solution aimed at addressing these challenges. Firstly, we introduce the norms underlying reactor design and outline various configurations in the gas-solid and gas-solid-liquid reaction systems. This discussion helps choosing the suitable reactors for methane conversion experiments. Subsequently, we offer a comprehensive step-by-step protocol applicable to diverse methane-conversion reactions. Emphasizing meticulous verification and accurate quantification of the products, this protocol highlights the significance of mitigating contamination sources and selecting appropriate detection methods. Lastly, we propose the standardized performance metrics crucial for evaluating photocatalytic methane conversion. By defining these metrics, the community could obtain the consensus of assessing the performance across different studies. Moving forward, the future of photocatalytic methane conversion necessitates further refinement of stringent experimental standards and evaluation criteria. Moreover, development of scalable reactor is essential to facilitate the transition from laboratory proof-of-concept to potentially industrial production.
Collapse
Affiliation(s)
- Yuheng Jiang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Siyang Li
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yingying Fan
- Guangdong Engineering Technology Research Center for Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P.R. China
| | - Zhiyong Tang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Hu Z, Zhu J, Chen R, Wu Y, Zheng K, Liu C, Pan Y, Chen J, Sun Y, Xie Y. High-Rate and Selective C 2H 6-to-C 2H 4 Photodehydrogenation Enabled by Partially Oxidized Pd δ+ Species Anchored on ZnO Nanosheets under Mild Conditions. J Am Chem Soc 2024. [PMID: 38842530 DOI: 10.1021/jacs.4c02827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Photocatalytic C2H6-to-C2H4 conversion is very promising, yet it remains a long-lasting challenge due to the high C-H bond dissociation energy of 420 kJ mol-1. Herein, partially oxidized Pdδ+ species anchored on ZnO nanosheets are designed to weaken the C-H bond by the electron interaction between Pdδ+ species and H atoms, with efforts to achieve high-rate and selective C2H6-to-C2H4 conversion. X-ray photoelectron spectra, Bader charge calculations, and electronic localization function demonstrate the presence of partially oxidized Pdδ+ sites, while quasi-in situ X-ray photoelectron spectra disclose the Pdδ+ sites initially adopt and then donate the photoexcited electrons for C2H6 dehydrogenation. In situ electron paramagnetic resonance spectra, in situ Fourier transform infrared spectra, and trapping agent experiments verify C2H6 initially converts to CH3CH2OH via ·OH radicals, then dehydroxylates to CH3CH2· and finally to C2H4, accompanied by H2 production. Density-functional theory calculations elucidate that loading Pd site can lengthen the C-H bond of C2H6 from 1.10 to 1.12 Å, which favors the C-H bond breakage, affirmed by a lowered energy barrier of 0.04 eV. As a result, the optimized 5.87% Pd-ZnO nanosheets achieve a high C2H4 yield of 16.32 mmol g-1 with a 94.83% selectivity as well as a H2 yield of 14.49 mmol g-1 from C2H6 dehydrogenation in 4 h, outperforming all the previously reported photocatalysts under similar conditions.
Collapse
Affiliation(s)
- Zexun Hu
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Juncheng Zhu
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Runhua Chen
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yang Wu
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Kai Zheng
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Chengyuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Jiafu Chen
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yongfu Sun
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yi Xie
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Zhang R, Shi J, Fu L, Liu YG, Jia Y, Han Z, Yuan K, Jiang HY. Direct Photocatalytic Methane Oxidation to Formaldehyde by N Doping Co-Decorated Mixed Crystal TiO 2. ACS NANO 2024; 18:12994-13005. [PMID: 38721844 DOI: 10.1021/acsnano.4c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In this paper, N-doped TiO2 mixed crystals are prepared via direct calcination of TiN for highly selective oxidation of CH4 to HCHO at room temperature. The structures of the prepared TiO2 samples are characterized to be N-doped TiO2 of anatase and rutile mixed crystals. The crystal structures of TiO2 samples are determined by XRD spectra and Raman spectra, while N doping is demonstrated by TEM mapping, ONH inorganic element analysis, and high-resolution XPS results. Significantly, the production rate of HCHO is as high as 23.5 mmol·g-1·h-1 with a selectivity over 90%. Mechanism studies reveal that H2O is the main oxygen source and acts through the formation of ·OH. DFT calculations indicate that the construction of a mixed crystal structure and N-doping modification mainly act by increasing the adsorption capacity of H2O. An efficient photocatalyst was prepared by us to convert CH4 to HCHO with high yield and selectivity, greatly promoting the development of the photocatalytic CH4 conversion study.
Collapse
Affiliation(s)
- Ruixue Zhang
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Jiale Shi
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Lei Fu
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Ya-Ge Liu
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Yibing Jia
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Zhenyu Han
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Kun Yuan
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001, P. R. China
| | - Hai-Ying Jiang
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China
| |
Collapse
|
12
|
He C, Shang L, Zhu H, Yu L, Wang L, Zhang J. Photocatalytic Conversion of Methane to Ethanol at a Three-Phase Interface with Concentration-Matched Hydroxyl and Methyl Radicals. J Am Chem Soc 2024; 146:11968-11977. [PMID: 38630990 DOI: 10.1021/jacs.4c01366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The direct oxidation of CH4 to C2H5OH is attractive but challenging owing to the intricate processes involving carbon-chain growth and hydroxylation simultaneously. The inherent difficulty arises from the strong tendency of CH4 to overoxidize in the commonly used pressurized powder suspension systems rich in reactive oxygen radicals (ROR), which are specifically designed for CH4 concentration and activation. Meanwhile, the strong tendency of nucleophilic attack of potent ROR on the C-C bond of the resulting product C2H5OH ultimately leads to a higher selectivity for C1 oxygenates. This study addresses this multifaceted issue by designing a three-phase interface based on a hydrophilic floating Fe(III)-cross-linked macroporous alginate hydrogel film encapsulated with C3N4 [Fe(III)@ACN] to simultaneously enhance the accessibility of H2O and CH4 molecules to the active sites and species within the macroporous channel. The hydrophilic properties of Fe(III)@ACN allow the in situ production of H2O2 from C3N4 through the water oxidation reaction under irradiation. The concurrent photoinduced Fe(II) triggers Fenton reaction with H2O2 to produce •OH. The enhanced mass transfer of CH4 at the three-phase interface ensures the efficient formation of •CH3 by reacting with •OH, ultimately facilitating carbon-chain growth in the conversion pathway from CH4 to CH3OH and finally to C2H5OH with •CH3 and •OH present in comparable concentrations. Thus, the Fe(III)@ACN catalyst exhibits a remarkable 96% selectivity for alcohol, achieving a 90% selectivity for C2H5OH in the alcohol products. The C2H5OH production rate reaches 171.7 μmol g-1 h-1 without the need for precious-metal additive.
Collapse
Affiliation(s)
- Chun He
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science & Technology, Shanghai 200237, China
| | - Lan Shang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science & Technology, Shanghai 200237, China
| | - Hongfu Zhu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science & Technology, Shanghai 200237, China
| | - Lianchao Yu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science & Technology, Shanghai 200237, China
| | - Lingzhi Wang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science & Technology, Shanghai 200237, China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
13
|
Cao Y, Huang Z, Han C, Zhou Y. Product Peroxidation Inhibition in Methane Photooxidation into Methanol. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306891. [PMID: 38234232 DOI: 10.1002/advs.202306891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Methane photooxidation into methanol offers a practical approach for the generation of high-value chemicals and the efficient storage of solar energy. However, the propensity for C─H bonds in the desired products to cleave more easily than those in methane molecules results in a continuous dehydrogenation process, inevitably leading to methanol peroxidation. Consequently, inhibiting methanol peroxidation is perceived as one of the most formidable challenges in the field of direct conversion of methane to methanol. This review offers a thorough overview of the typical mechanisms involved radical mechanism and active site mechanism and the regulatory methods employed to inhibit product peroxidation in methane photooxidation. Additionally, several perspectives on the future research direction of this crucial field are proposed.
Collapse
Affiliation(s)
- Yuehan Cao
- National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Zeai Huang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Chunqiu Han
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Ying Zhou
- National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| |
Collapse
|
14
|
Wang P, Shi R, Zhao J, Zhang T. Photodriven Methane Conversion on Transition Metal Oxide Catalyst: Recent Progress and Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305471. [PMID: 37882341 PMCID: PMC10885660 DOI: 10.1002/advs.202305471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/24/2023] [Indexed: 10/27/2023]
Abstract
Methane as the main component in natural gas is a promising chemical raw material for synthesizing value-added chemicals, but its harsh chemical conversion process often causes severe energy and environment concerns. Photocatalysis provides an attractive path to active and convert methane into various products under mild conditions with clean and sustainable solar energy, although many challenges remain at present. In this review, recent advances in photocatalytic methane conversion are systematically summarized. As the basis of methane conversion, the activation of methane is first elucidated from the structural basis and activation path of methane molecules. The study is committed to categorizing and elucidating the research progress and the laws of the intricate methane conversion reactions according to the target products, including photocatalytic methane partial oxidation, reforming, coupling, combustion, and functionalization. Advanced photocatalytic reactor designs are also designed to enrich the options and reliability of photocatalytic methane conversion performance evaluation. The challenges and prospects of photocatalytic methane conversion are also discussed, which in turn offers guidelines for methane-conversion-related photocatalyst exploration, reaction mechanism investigation, and advanced photoreactor design.
Collapse
Affiliation(s)
- Pu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiaqi Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
15
|
Zhang L, Li RH, Li XX, Wang S, Liu J, Hong XX, Dong LZ, Li SL, Lan YQ. Photocatalytic aerobic oxidation of C(sp 3)-H bonds. Nat Commun 2024; 15:537. [PMID: 38225374 PMCID: PMC10789790 DOI: 10.1038/s41467-024-44833-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024] Open
Abstract
In modern industries, the aerobic oxidation of C(sp3)-H bonds to achieve the value-added conversion of hydrocarbons requires high temperatures and pressures, which significantly increases energy consumption and capital investment. The development of a light-driven strategy, even under natural sunlight and ambient air, is therefore of great significance. Here we develop a series of hetero-motif molecular junction photocatalysts containing two bifunctional motifs. With these materials, the reduction of O2 and oxidation of C(sp3)-H bonds can be effectively accomplished, thus realizing efficient aerobic oxidation of C(sp3)-H bonds in e.g., toluene and ethylbenzene. Especially for ethylbenzene oxidation reactions, excellent catalytic capacity (861 mmol g cat-1) is observed. In addition to the direct oxidation of C(sp3)-H bonds, CeBTTD-A can also be applied to other types of aerobic oxidation reactions highlighting their potential for industrial applications.
Collapse
Affiliation(s)
- Lei Zhang
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Run-Han Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xiao-Xin Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
| | - Shengyao Wang
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Jiang Liu
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xiao-Xuan Hong
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Long-Zhang Dong
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
16
|
Fu H, Huang H, Chen Y, Jiang K, Lai F, Chen C, Zhang Z, Li H, Zhang N, Liu T. Lattice-Strained Metallic Aerogels as Efficient and Anti-Poisoning Electrocatalysts for Oxygen Reduction Reaction. CHEMSUSCHEM 2024; 17:e202301221. [PMID: 37665227 DOI: 10.1002/cssc.202301221] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/05/2023]
Abstract
Lattice strain engineering optimizes the interaction between the catalytic surface and adsorbed molecules. This is done by adjusting the electron and geometric structure of the metal site to achieve high electrochemical performance, but, to date, it has been rarely reported on anti-poisoned oxygen reduction reaction (ORR). Herein, lattice-strained Pd@PdBiCo quasi core-shell metallic aerogels (MAs) were designed by "one-pot and two-step" method for anti-poisoned ORR. Pd@PdBiCo MAs/C maintain their original activity (1.034 A mgPd -1 ) in electrolytes with CH3 OH and CO at 0.85 V vs. reversible hydrogen electrode (RHE), outperforming the commercial Pd/C (0.156 A mgPd -1 ), Pd MAs/C (0.351 A mgPd -1 ), and PdBiCo MAs/C (0.227 A mgPd -1 ). Moreover, Pd@PdBiCo MAs/C also show high stability and anti-poisoning with negligible activity decay after 8000 cycles in 0.1 m KOH+0.3 m CH3 OH. These results of X-ray photoelectron spectroscopy, CO stripping, and diffuses reflectance FTIR spectroscopy reveal that the tensile strain and strong interaction between different elements of Pd@PdBiCo MAs/C effectively optimize the electronic structure to promote O2 adsorption and activation, while suppressing CH3 OH oxidation and CO adsorption, leading to high ORR activity and anti-poisoning property. This work inspires the rational design of MAs in fuel cells and beyond.
Collapse
Affiliation(s)
- Hui Fu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, China
| | - Honggang Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, China
| | - Yao Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, China
| | - Kezhu Jiang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Cun Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, China
| | - Zhe Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, China
| | - Hanjun Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, China
| | - Nan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
17
|
Nie S, Wu L, Wang X. Electron-Delocalization-Stabilized Photoelectrocatalytic Coupling of Methane by NiO-Polyoxometalate Sub-1 nm Heterostructures. J Am Chem Soc 2023; 145:23681-23690. [PMID: 37861371 DOI: 10.1021/jacs.3c07984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The oxidative coupling of methane to C2 oxygenates merits great scientific and technological potential yet remains a challenge due to its inferior selectivity. Subnanomaterials (SNMs) with "p-n-p-n"-type heteroconstructions feature enhanced external field coupling properties and tunable electronic structures, serving as promising catalysts for the selective partial oxidation of methane. Here we develop NiO-polyoxometalate (POM) subnanocoils with a thickness of 1.8 nm, showing excellent catalytic activity toward photoelectrochemical coupling of methane into a C2 product under mild conditions (1 bar, 25 °C) with a notable productivity (up to 4.48 mmol gcat-1 h-1) and a high selectivity (>99%). Under photoelectrochemical coupling, C-H bonds can be activated by NiO, and the resulted *COOH intermediates are stabilized by the delocalized electrons in POM clusters. The contiguous active sites of NiO and POM at the molecular level allow the in situ coupling of *COOH into oxalate. This work points out an economic way for the oxidation of methane under mild conditions and may enlighten the design of functional SNMs from fundamental standpoints.
Collapse
Affiliation(s)
- Siyang Nie
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Liu Z, Xu B, Jiang YJ, Zhou Y, Sun X, Wang Y, Zhu W. Photocatalytic Conversion of Methane: Current State of the Art, Challenges, and Future Perspectives. ACS ENVIRONMENTAL AU 2023; 3:252-276. [PMID: 37743954 PMCID: PMC10515711 DOI: 10.1021/acsenvironau.3c00002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 09/26/2023]
Abstract
With 28-34 times the greenhouse effect of CO2 over a 100-year period, methane is regarded as the second largest contributor to global warming. Reducing methane emissions is a necessary measure to limit global warming to below 1.5 °C. Photocatalytic conversion of methane is a promising approach to alleviate the atmospheric methane concentrations due to its low energy consumption and environmentally friendly characteristics. Meanwhile, this conversion process can produce valuable chemicals and liquid fuels such as CH3OH, CH3CH2OH, C2H6, and C2H4, cutting down the dependence of chemical production on crude oil. However, the development of photocatalysts with a high methane conversion efficiency and product selectivity remains challenging. In this review, we overview recent advances in semiconductor-based photocatalysts for methane conversion and present catalyst design strategies, including morphology control, heteroatom doping, facet engineering, and cocatalysts modification. To gain a comprehensive understanding of photocatalytic methane conversion, the conversion pathways and mechanisms in these systems are analyzed in detail. Moreover, the role of electron scavengers in methane conversion performance is briefly discussed. Subsequently, we summarize the anthropogenic methane emission scenarios on earth and discuss the application potential of photocatalytic methane conversion. Finally, challenges and future directions for photocatalytic methane conversion are presented.
Collapse
Affiliation(s)
- Zhuo Liu
- State
Key Laboratory of Pollution Control and Resource Reuse, Frontiers
Science Center for Critical Earth Material Cycling, School of the
Environment and State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Biyang Xu
- State
Key Laboratory of Pollution Control and Resource Reuse, Frontiers
Science Center for Critical Earth Material Cycling, School of the
Environment and State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Yu-Jing Jiang
- State
Key Laboratory of Pollution Control and Resource Reuse, Frontiers
Science Center for Critical Earth Material Cycling, School of the
Environment and State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Yang Zhou
- Key
Laboratory for Organic Electronics & Information Displays (KLOEID),
Institute of Advanced Materials (IAM), Nanjing
University of Posts & Telecommunications (NJUPT), Nanjing 210046, China
| | - Xiaolian Sun
- State
Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality
Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Wang
- State
Key Laboratory of Pollution Control and Resource Reuse, Frontiers
Science Center for Critical Earth Material Cycling, School of the
Environment and State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Wenlei Zhu
- State
Key Laboratory of Pollution Control and Resource Reuse, Frontiers
Science Center for Critical Earth Material Cycling, School of the
Environment and State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| |
Collapse
|
19
|
Han JT, Su H, Tan L, Li CJ. A light-driven selective protocol for on-demand methanol and formic acid syntheses with a recyclable GaN catalyst. STAR Protoc 2023; 4:102530. [PMID: 37656629 PMCID: PMC10495642 DOI: 10.1016/j.xpro.2023.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/04/2023] [Accepted: 07/28/2023] [Indexed: 09/03/2023] Open
Abstract
Herein, we present a protocol for the on-demand preparation of methanol and formic acid via selective photo-oxidation of methane with H2O and O2 catalyzed by GaN. The detailed photosyntheses of methanol or formic acid from CH4/H2O or CH4/H2O/O2 are described, respectively. In addition, we provide experimental details for the accurate quantifications of the final gas/liquid products and photoexcited oxygenated radicals. Finally, we deliver the procedure for scaling up the transformation. For complete details on the use and execution of this protocol, please refer to Han et al. (2023).1.
Collapse
Affiliation(s)
- Jing-Tan Han
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W., Montreal, QC H3A 0B8, Canada
| | - Hui Su
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W., Montreal, QC H3A 0B8, Canada
| | - Lida Tan
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W., Montreal, QC H3A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W., Montreal, QC H3A 0B8, Canada.
| |
Collapse
|
20
|
Ren M, Li J, Huang M, Chen D, Li X, Yan X, An Q, Sun S. Solar-Driven Reforming of Methane and Nitrogen to Methanol and Ammonium on Iron-Modified Zeolite under Ambient Conditions in Water. Inorg Chem 2023; 62:14804-14814. [PMID: 37644618 DOI: 10.1021/acs.inorgchem.3c02393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Artificial photosynthesis from selective methane oxidation or nitrogen reduction to value-added chemicals provides a promising pathway for the sustainable chemical industry, while still remaining a great challenge due to the extreme difficulty in C-H and N≡N bond cleavage under ambient conditions. Catalysts that can cocatalyze these two reactions simultaneously are rarely reported. Here, Fe-ZSM-5 with highly dispersed extra-framework Fe-oxo species enables efficient and selective photocatalytic conversion of methane and nitrogen to coproduce methanol and ammonia using H2O as the redox reagent under ambient conditions. The optimized Fe-ZSM-5 photocatalyst achieves up to 0.88 mol/molFe·h of methanol products with 97% selectivity. Meanwhile, the productivity of ammonia is 0.61 mol/molFe·h. In situ EPR and DRIFT studies disclose that water serves as a redox reagent to provide hydroxyl radicals for methane oxidation and protons for nitrogen hydrogenation. Quantum chemical calculations revealed that Fe-oxo species play a significant role in the coactivation of methane and nitrogen molecules, which lowers the energy barriers of rate-determining steps for methanol and ammonia generation.
Collapse
Affiliation(s)
- Mei Ren
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jun Li
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Manhong Huang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Donghui Chen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoliang Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaoliang Yan
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China
| | - Qi An
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Songmei Sun
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
21
|
Latif S, Akram B, Saraj CS, Khan BA, Ali M, Akhtar J. A single step wet chemical approach to bifunctional ultrathin (ZnO) 62(Fe 2O 3) 38 dendritic nanosheets. RSC Adv 2023; 13:23038-23042. [PMID: 37529361 PMCID: PMC10388154 DOI: 10.1039/d3ra04795d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
At the ultrathin scale, nanomaterials exhibit interesting chemical and physical properties, like flexibility, and polymer-like rheology. However, to limit the dimensions of composite nanomaterials at the ultrathin level is still a challenging task. Herein, by adopting a new low temperature single step and single pot wet chemical approach, we have successfully fabricated two dimensional (2D) mixed oxide ZnO-Fe2O3 dendritic nanosheets (FZDNSs). Various control experimental outcomes demonstrate that precursor salts of both the metals are crucial for the formation of stable 2D FZDNSs. The obtained FZDNSs not only exhibit the best photoreduction performance but also much enhanced electrocatalytic performance. This work will provide a promising avenue for the synthesis of cost effective transition metal mixed oxide based 2D nanosheets having wide ranging applications.
Collapse
Affiliation(s)
- Saba Latif
- Department of Chemistry, University of Azad Jammu & Kashmir Muzaffarabad AJ&K Pakistan
| | - Bilal Akram
- Department of Chemistry, Women University of Azad Jammu & Kashmir Bagh AJ&K Pakistan
| | - Chaudry Sajed Saraj
- GPL, State Key Lab. of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun 130033 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Bilal Ahmad Khan
- Department of Chemistry, University of Azad Jammu & Kashmir Muzaffarabad AJ&K Pakistan
| | - Mudussar Ali
- Department of Chemistry, Tsinghua University Beijing China
| | - Javeed Akhtar
- Materials Lab, Department of Chemistry, Mirpur University of Science and Technology Mirpur AJ&K Pakistan
| |
Collapse
|
22
|
Yang Z, Zhang Q, Song H, Chen X, Cui J, Sun Y, Liu L, Ye J. Partial oxidation of methane by photocatalysis. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
23
|
Wang G, Wu Y, Li Z, Lou Z, Chen Q, Li Y, Wang D, Mao J. Engineering a Copper Single-Atom Electron Bridge to Achieve Efficient Photocatalytic CO 2 Conversion. Angew Chem Int Ed Engl 2023; 62:e202218460. [PMID: 36749548 DOI: 10.1002/anie.202218460] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
Developing highly efficient and stable photocatalysts for the CO2 reduction reaction (CO2 RR) remains a great challenge. We designed a Z-Scheme photocatalyst with N-Cu1 -S single-atom electron bridge (denoted as Cu-SAEB), which was used to mediate the CO2 RR. The production of CO and O2 over Cu-SAEB is as high as 236.0 and 120.1 μmol g-1 h-1 in the absence of sacrificial agents, respectively, outperforming most previously reported photocatalysts. Notably, the as-designed Cu-SAEB is highly stable throughout 30 reaction cycles, totaling 300 h, owing to the strengthened contact interface of Cu-SAEB, and mediated by the N-Cu1 -S atomic structure. Experimental and theoretical calculations indicated that the SAEB greatly promoted the Z-scheme interfacial charge-transport process, thus leading to great enhancement of the photocatalytic CO2 RR of Cu-SAEB. This work represents a promising platform for the development of highly efficient and stable photocatalysts that have potential in CO2 conversion applications.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Yan Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Zhujie Li
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, P. R. China
| | - Zaizhu Lou
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, P. R. China
| | - Qingqing Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Yifan Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| |
Collapse
|
24
|
Sustainable methane utilization technology via photocatalytic halogenation with alkali halides. Nat Commun 2023; 14:1410. [PMID: 36918590 PMCID: PMC10014990 DOI: 10.1038/s41467-023-36977-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/24/2023] [Indexed: 03/15/2023] Open
Abstract
Methyl halides are versatile platform molecules, which have been widely adopted as precursors for producing value-added chemicals and fuels. Despite their high importance, the green and economical synthesis of the methyl halides remains challenging. Here we demonstrate sustainable and efficient photocatalytic methane halogenation for methyl halide production over copper-doped titania using alkali halides as a widely available and noncorrosive halogenation agent. This approach affords a methyl halide production rate of up to 0.61 mmol h-1 m-2 for chloromethane or 1.08 mmol h-1 m-2 for bromomethane with a stability of 28 h, which are further proven transformable to methanol and pharmaceutical intermediates. Furthermore, we demonstrate that such a reaction can also operate solely using seawater and methane as resources, showing its high practicability as general technology for offshore methane exploitation. This work opens an avenue for the sustainable utilization of methane from various resources and toward designated applications.
Collapse
|
25
|
Metallocavitins as Advanced Enzyme Mimics and Promising Chemical Catalysts. Catalysts 2023. [DOI: 10.3390/catal13020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The supramolecular approach is becoming increasingly dominant in biomimetics and chemical catalysis due to the expansion of the enzyme active center idea, which now includes binding cavities (hydrophobic pockets), channels and canals for transporting substrates and products. For a long time, the mimetic strategy was mainly focused on the first coordination sphere of the metal ion. Understanding that a highly organized cavity-like enzymatic pocket plays a key role in the sophisticated functionality of enzymes and that the activity and selectivity of natural metalloenzymes are due to the effects of the second coordination sphere, created by the protein framework, opens up new perspectives in biomimetic chemistry and catalysis. There are two main goals of mimicking enzymatic catalysis: (1) scientific curiosity to gain insight into the mysterious nature of enzymes, and (2) practical tasks of mankind: to learn from nature and adopt from its many years of evolutionary experience. Understanding the chemistry within the enzyme nanocavity (confinement effect) requires the use of relatively simple model systems. The performance of the transition metal catalyst increases due to its retention in molecular nanocontainers (cavitins). Given the greater potential of chemical synthesis, it is hoped that these promising bioinspired catalysts will achieve catalytic efficiency and selectivity comparable to and even superior to the creations of nature. Now it is obvious that the cavity structure of molecular nanocontainers and the real possibility of modifying their cavities provide unlimited possibilities for simulating the active centers of metalloenzymes. This review will focus on how chemical reactivity is controlled in a well-defined cavitin nanospace. The author also intends to discuss advanced metal–cavitin catalysts related to the study of the main stages of artificial photosynthesis, including energy transfer and storage, water oxidation and proton reduction, as well as highlight the current challenges of activating small molecules, such as H2O, CO2, N2, O2, H2, and CH4.
Collapse
|
26
|
Jiang Y, Li S, Wang S, Zhang Y, Long C, Xie J, Fan X, Zhao W, Xu P, Fan Y, Cui C, Tang Z. Enabling Specific Photocatalytic Methane Oxidation by Controlling Free Radical Type. J Am Chem Soc 2023; 145:2698-2707. [PMID: 36649534 DOI: 10.1021/jacs.2c13313] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Selective CH4 oxidation to CH3OH or HCHO with O2 in H2O under mild conditions provides a desired sustainable pathway for synthesis of commodity chemicals. However, manipulating reaction selectivity while maintaining high productivity remains a huge challenge due to the difficulty in the kinetic control of the formation of a desired oxygenate against its overoxidation. Here, we propose a highly efficient strategy, based on the precise control of the type of as-formed radicals by rational design on photocatalysts, to achieve both high selectivity and high productivity of CH3OH and HCHO in CH4 photooxidation for the first time. Through tuning the band structure and the size of active sites (i.e., single atoms or nanoparticles) in our Au/In2O3 catalyst, we show alternative formation of two important radicals, •OOH and •OH, which leads to distinctly different reaction paths to the formation of CH3OH and HCHO, respectively. This approach gives rise to a remarkable HCHO selectivity and yield of 97.62% and 6.09 mmol g-1 on In2O3-supported Au single atoms (Au1/In2O3) and an exceptional CH3OH selectivity and yield of 89.42% and 5.95 mmol g-1 on In2O3-supported Au nanoparticles (AuNPs/In2O3), respectively, upon photocatalytic CH4 oxidation for 3 h at room temperature. This work opens a new avenue toward efficient and selective CH4 oxidation by delicate design of composite photocatalysts.
Collapse
Affiliation(s)
- Yuheng Jiang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China.,Center for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, P. R. China.,University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Siyang Li
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China.,University of Chinese Academy of Sciences, Beijing100049, P. R. China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Shikun Wang
- University of Chinese Academy of Sciences, Beijing100049, P. R. China.,State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Yin Zhang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China
| | - Chang Long
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China.,Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu610054, P. R. China
| | - Jun Xie
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China.,University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Xiaoyu Fan
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China
| | - Wenshi Zhao
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China
| | - Peng Xu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing100190, P. R. China
| | - Yingying Fan
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Analytical and Testing Center, Guangzhou University, Guangzhou510006, P. R. China
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu610054, P. R. China
| | - Zhiyong Tang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China.,University of Chinese Academy of Sciences, Beijing100049, P. R. China
| |
Collapse
|
27
|
Shao W, Zhang X, Xie Y. Engineering active sites and recognizing mechanisms for CO2 fixation to dimethyl carbonate. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
28
|
Song H, Huang H, Meng X, Wang Q, Hu H, Wang S, Zhang H, Jewasuwan W, Fukata N, Feng N, Ye J. Atomically Dispersed Nickel Anchored on a Nitrogen-Doped Carbon/TiO 2 Composite for Efficient and Selective Photocatalytic CH 4 Oxidation to Oxygenates. Angew Chem Int Ed Engl 2023; 62:e202215057. [PMID: 36446740 PMCID: PMC10107830 DOI: 10.1002/anie.202215057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Direct photocatalytic oxidation of methane to liquid oxygenated products is a sustainable strategy for methane valorization at room temperature. However, in this reaction, noble metals are generally needed to function as cocatalysts for obtaining adequate activity and selectivity. Here, we report atomically dispersed nickel anchored on a nitrogen-doped carbon/TiO2 composite (Ni-NC/TiO2 ) as a highly active and selective catalyst for photooxidation of CH4 to C1 oxygenates with O2 as the only oxidant. Ni-NC/TiO2 exhibits a yield of C1 oxygenates of 198 μmol for 4 h with a selectivity of 93 %, exceeding that of most reported high-performance photocatalysts. Experimental and theoretical investigations suggest that the single-atom Ni-NC sites not only enhance the transfer of photogenerated electrons from TiO2 to isolated Ni atoms but also dominantly facilitate the activation of O2 to form the key intermediate ⋅OOH radicals, which synergistically lead to a substantial enhancement in both activity and selectivity.
Collapse
Affiliation(s)
- Hui Song
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Hengming Huang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Xianguang Meng
- Hebei Provincial Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and Engineering, North China University of Science and Technology, Tangshan, 063210, P. R. China
| | - Qi Wang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814, Japan
| | - Huilin Hu
- TJU-NIMS International Collaboration Laboratory, School of Material Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Shengyao Wang
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Hongwei Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, P. R. China
| | - Wipakorn Jewasuwan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Naoki Fukata
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Ningdong Feng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, CAS Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Jinhua Ye
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814, Japan.,TJU-NIMS International Collaboration Laboratory, School of Material Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
29
|
Wang Q, Xiao Y, Yang S, Zhang Y, Wu L, Pan H, Rao D, Chen T, Sun Z, Wang G, Zhu J, Zeng J, Wei S, Zheng X. Monitoring Electron Flow in Nickel Single-Atom Catalysts during Nitrogen Photofixation. NANO LETTERS 2022; 22:10216-10223. [PMID: 36352348 DOI: 10.1021/acs.nanolett.2c03595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An efficient catalytic system for nitrogen (N2) photofixation generally consists of light-harvesting units, active sites, and an electron-transfer bridge. In order to track photogenerated electron flow between different functional units, it is highly desired to develop in situ characterization techniques with element-specific capability, surface sensitivity, and detection of unoccupied states. In this work, we developed in situ synchrotron radiation soft X-ray absorption spectroscopy (in situ sXAS) to probe the variation of electronic structure for a reaction system during N2 photoreduction. Nickel single-atom and ceria nanoparticle comodified reduced graphene oxide (CeO2/Ni-G) was designed as a model catalyst. In situ sXAS directly reveals the dynamic interfacial charge transfer of photogenerated electrons under illumination and the consequent charge accumulation at the catalytic active sites for N2 activation. This work provides a powerful tool to monitor the electronic structure evolution of active sites under reaction conditions for photocatalysis and beyond.
Collapse
Affiliation(s)
- Qingyu Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P.R. China
- College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yu Xiao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P.R. China
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, P. R. China
| | - Shaokang Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Yida Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P.R. China
- College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Lihui Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P.R. China
| | - Haibin Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P.R. China
| | - Dewei Rao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Tao Chen
- College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P.R. China
| | - Gongming Wang
- College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P.R. China
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P.R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P.R. China
| |
Collapse
|
30
|
Song H, Ye J. Direct photocatalytic conversion of methane to value-added chemicals. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
31
|
Jiang Y, Zhao W, Li S, Wang S, Fan Y, Wang F, Qiu X, Zhu Y, Zhang Y, Long C, Tang Z. Elevating Photooxidation of Methane to Formaldehyde via TiO 2 Crystal Phase Engineering. J Am Chem Soc 2022; 144:15977-15987. [PMID: 35969152 DOI: 10.1021/jacs.2c04884] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photocatalytic conversion of methane to value-added products under mild conditions, which represents a long sought-after goal for industrial sustainable production, remains extremely challenging to afford high production and selectivity using cheap catalysts. Herein, we present the crystal phase engineering of commercially available anatase TiO2 via simple thermal annealing to optimize the structure-property correlation. A biphase catalyst with anatase (90%) and rutile (10%) TiO2 with the optimal phase interface concentration exhibits exceptional performance in the oxidation of methane to formaldehyde under the reaction conditions of water solvent, oxygen atmosphere, and full-spectrum light irradiation. An unprecedented production of 24.27 mmol gcat-1 with an excellent selectivity of 97.4% toward formaldehyde is acquired at room temperature after a 3 h reaction. Both experimental results and theoretical calculations disclose that the crystal phase engineering of TiO2 lengthens the lifetime of photogenerated carriers and favors the formation of intermediate methanol species, thus maximizing the efficiency and selectivity in the aerobic oxidation of methane to formaldehyde. More importantly, the feasibility of the scale-up production of formaldehyde is demonstrated by inventing a "pause-flow" reactor. This work opens the avenue toward industrial methane transformation in a sustainable and economical way.
Collapse
Affiliation(s)
- Yuheng Jiang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,Center for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenshi Zhao
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Siyang Li
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shikun Wang
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yingying Fan
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Analytical and Testing Center, Guangzhou University, Guangzhou 510006, P. R. China
| | - Fei Wang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xueying Qiu
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Yanfei Zhu
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Yin Zhang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Chang Long
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Zhiyong Tang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|