1
|
Kang WJ, Li Z, Feng Y, Shi ZZ, Hu XZ, Dong CK, Yang J, Liu H, Yin PF, Zhang R, Du XW. Coupled Stacking Faults in Silver Nanorods for CO 2 Electroreduction. NANO LETTERS 2024. [PMID: 39718461 DOI: 10.1021/acs.nanolett.4c04204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The interaction of defects has been proven effective in regulating the mechanical properties of structural materials, while its influence on the physicochemical performance of functional materials has been rarely reported. Herein, we synthesized Ag nanorods with dense stacking faults and investigated how the defect interaction affects the catalytic properties. We found that the stacking faults can couple with each other to form a unique structure of opposite atoms with extortionately high tensile strain. Experimental and theoretical analyses reveal that the opposite-atom structure facilitates the adsorption and activation of CO2 molecules, thus improving the catalytic performance of the carbon dioxide electroreduction reaction (CO2RR). As a result, Ag nanorods achieve high CO partial current density (-11.87 mA cm-2 at -0.8 V vs RHE) and high Faraday efficiency (>95%), superior to most Ag-based catalysts. Our work indicates that the defect interaction is an effective means to boost the performance of functional materials.
Collapse
Affiliation(s)
- Wen-Jing Kang
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhe Li
- Institute of Molecular Plus, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yi Feng
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zi-Zheng Shi
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xin-Zhuo Hu
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Cun-Ku Dong
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jing Yang
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hui Liu
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Peng-Fei Yin
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Rui Zhang
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xi-Wen Du
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Pan HR, Shi ZQ, Liu XZ, Jin S, Fu J, Ding L, Wang SQ, Li J, Zhang L, Su D, Ling C, Huang Y, Xu C, Tang T, Hu JS. Unconventional hcp/fcc Nickel Heteronanocrystal with Asymmetric Convex Sites Boosts Hydrogen Oxidation. Angew Chem Int Ed Engl 2024; 63:e202409763. [PMID: 38954763 DOI: 10.1002/anie.202409763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Developing non-platinum group metal catalysts for the sluggish hydrogen oxidation reaction (HOR) is critical for alkaline fuel cells. To date, Ni-based materials are the most promising candidates but still suffer from insufficient performance. Herein, we report an unconventional hcp/fcc Ni (u-hcp/fcc Ni) heteronanocrystal with multiple epitaxial hcp/fcc heterointerfaces and coherent twin boundaries, generating rugged surfaces with plenty of asymmetric convex sites. Systematic analyses discover that such convex sites enable the adsorption of *H in unusual bridge positions with weakened binding energy, circumventing the over-strong *H adsorption on traditional hollow positions, and simultaneously stabilizing interfacial *H2O. It thus synergistically optimizes the HOR thermodynamic process as well as reduces the kinetic barrier of the rate-determining Volmer step. Consequently, the developed u-hcp/fcc Ni exhibits the top-rank alkaline HOR activity with a mass activity of 40.6 mA mgNi -1 (6.3 times higher than fcc Ni control) together with superior stability and high CO-tolerance. These results provide a paradigm for designing high-performance catalysts by shifting the adsorption state of intermediates through configuring surface sites.
Collapse
Affiliation(s)
- Hai-Rui Pan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Zhuo-Qi Shi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Zhi Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shifeng Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiaju Fu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Liang Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu-Qi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Jian Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Linjuan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chongyi Ling
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Yucheng Huang
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000, China
| | - Cailing Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Tang Tang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Wang Y, Wang T, Arandiyan H, Song G, Sun H, Sabri Y, Zhao C, Shao Z, Kawi S. Advancing Catalysts by Stacking Fault Defects for Enhanced Hydrogen Production: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313378. [PMID: 38340031 DOI: 10.1002/adma.202313378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Green hydrogen, derived from water splitting powered by renewable energy such as solar and wind energy, provides a zero-emission solution crucial for revolutionizing hydrogen production and decarbonizing industries. Catalysts, particularly those utilizing defect engineering involving the strategical introduction of atomic-level imperfections, play a vital role in reducing energy requirements and enabling a more sustainable transition toward a hydrogen-based economy. Stacking fault (SF) defects play an important role in enhancing the electrocatalytic processes by reshaping surface reactivity, increasing active sites, improving reactants/product diffusion, and regulating electronic structure due to their dense generation ability and profound impact on catalyst properties. This review explores SF in metal-based materials, covering synthetic methods for the intentional introduction of SF and their applications in hydrogen production, including oxygen evolution reaction, photo- and electrocatalytic hydrogen evolution reaction, overall water splitting, and various other electrocatalytic processes such as oxygen reduction reaction, nitrate reduction reaction, and carbon dioxide reduction reaction. Finally, this review addresses the challenges associated with SF-based catalysts, emphasizing the importance of a detailed understanding of the properties of SF-based catalysts to optimize their electrocatalytic performance. It provides a comprehensive overview of their various applications in electrocatalytic processes, providing valuable insights for advancing sustainable energy technologies.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Tian Wang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Guoqiang Song
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Hongyu Sun
- DENSsolutions B.V., Informaticalaan 12, 2628 ZD, Delft, Netherlands
| | - Ylias Sabri
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6845, Australia
| | - Sibudjing Kawi
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
4
|
Ratwani CR, Karunarathne S, Kamali AR, Abdelkader AM. Transforming Nature's Bath Sponge into Stacking Faults-Enhanced Ag Nanorings-Decorated Catalyst for Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5847-5856. [PMID: 38284621 DOI: 10.1021/acsami.3c16115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The rational design of cost-effective and efficient electrocatalysts for electrochemical water splitting is essential for green hydrogen production. Utilizing nanocatalysts with abundant active sites, high surface area, and deliberate stacking faults is a promising approach for enhancing catalytic efficiency. In this study, we report a simple strategy to synthesize a highly efficient electrocatalyst for the hydrogen evolution reaction (HER) using carbonized luffa cylindrica as a conductive N-doped carbon skeleton decorated with Ag nanorings that are activated by introducing stacking faults. The introduction of stacking faults and the resulting tensile strain into the Ag nanorings results in a significant decrease in the HER overpotential, enabling the use of Ag as an efficient HER electrocatalyst. Our findings demonstrate that manipulating the crystal properties of electrocatalysts, even for materials with intrinsically poor catalytic activity such as Ag, can result in highly efficient catalysts. Further, applying a conductive carbon backbone can lower the quantities of metal needed without compromising the HER activity. This approach opens up new avenues for designing high-performance electrocatalysts with very low metallic content, which could significantly impact the development of sustainable and cost-effective electrochemical water-splitting systems.
Collapse
Affiliation(s)
- Chirag R Ratwani
- Department of Design and Engineering, Faculty of Science & Technology, Bournemouth University, Poole, Dorset BH12 5BB, U.K
| | - Shadeepa Karunarathne
- Department of Design and Engineering, Faculty of Science & Technology, Bournemouth University, Poole, Dorset BH12 5BB, U.K
| | - Ali Reza Kamali
- Energy and Environmental Materials Research Centre (E2MC), School of Metallurgy, Northeastern University, Shenyang 110819, China
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K
| | - Amr M Abdelkader
- Department of Design and Engineering, Faculty of Science & Technology, Bournemouth University, Poole, Dorset BH12 5BB, U.K
| |
Collapse
|
5
|
Wang W, Chen J, Tse ECM. Synergy between Cu and Co in a Layered Double Hydroxide Enables Close to 100% Nitrate-to-Ammonia Selectivity. J Am Chem Soc 2023; 145:26678-26687. [PMID: 38051561 PMCID: PMC10723069 DOI: 10.1021/jacs.3c08084] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
Nitrate electroreduction (NO3RR) holds promise as an energy-efficient strategy for the removal of toxic nitrate to restore the natural nitrogen cycle and mitigate the adverse impacts caused by overfertilization from suboptimal agricultural practices. However, existing catalysts suffer from limited electrocatalytic activity, poor selectivity, inadequate durability, and low scalability. To address this quadrilemma, in this study, we developed a cost-effective layered double hydroxide (LDH) electrocatalyst with a lamellar structure that presents trimetallic CuCoAl active sites on the nanomaterial surface. This codoping design enabled electrochemical upcycling of nitrate into ammonia exclusively and efficiently with an onset potential at 0 V vs RHE, where the electrocatalytic process is less energy intensive and has a lower carbon footprint than conventional practices. The synergistic interaction among Cu, Co, and Al further afforded a 99.5% Faradic efficiency (FE) and a yield rate of 0.22 mol h-1 g-1 for nitrate-to-ammonia electroreduction, surpassing the performance of state-of-the-art nonprecious metal NO3RR electrocatalysts over an extended operation period. To gain insights into the origin of the catalytic performance observed on LDH, control materials were employed to elucidate the roles of Cu and Co. Cu was found to improve the NO3RR onset potential despite displaying limited FE for ammonia synthesis, while Co was discovered to suppress the formation of nitrite byproduct though requiring large overpotential. Simulated wastewater containing phosphate and sulfate, which are typically present in industrial effluents, was used to further investigate the effect of electrolytes on NO3RR. Intriguingly, the use of phosphate buffer resulted in a superior yield rate and FE for ammonia production while simultaneously inhibiting nitrite byproduct formation compared with the sulfate case. These experimental findings were supported by density functional theory (DFT) calculations, which explored the adsorption strength of nitrate adducts adjacent to coadsorbed electrolytes on the LDH surface. Additionally, the relative free energies of NO3RR species were also computed to examine the proton-coupled electron transfer (PCET) mechanism on CuCoAl LDH, shedding light on the potential-dependent step (PDS) and the exclusive selectivity for nitrate-to-ammonia conversion. The CuCoAl LDH developed here offers scalability by eliminating the need for precious metals, rendering this earth-abundant catalyst particularly appealing for sustainable nitrate electrovalorization technology.
Collapse
Affiliation(s)
- Wanying Wang
- Department
of Chemistry, HKU-CAS Joint Laboratory on
New Materials University of Hong Kong, Hong Kong SAR, 00000 China
| | - Jiu Chen
- Department
of Chemistry, HKU-CAS Joint Laboratory on
New Materials University of Hong Kong, Hong Kong SAR, 00000 China
| | - Edmund C. M. Tse
- Department
of Chemistry, HKU-CAS Joint Laboratory on
New Materials University of Hong Kong, Hong Kong SAR, 00000 China
| |
Collapse
|
6
|
Hu Q, Huo Q, Qi S, Deng X, Zhuang J, Yu J, Li X, Zhou W, Lv M, Chen X, Wang X, Feng C, Yang H, He C. Unconventional Synthesis of Hierarchically Twinned Copper as Efficient Electrocatalyst for Nitrate-Ammonia Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2311375. [PMID: 38085673 DOI: 10.1002/adma.202311375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Twin boundary (TB) engineering provides exciting opportunities to tune the performance levels of metal-based electrocatalysts. However, the controllable construction of TB greatly relies on surfactants, blocking active sites, and electron transfer by surfactants. Here, a surfactant-free and facile strategy is proposed for synthesizing copper (Cu) nanocatalysts with dense hierarchical TB networks (HTBs) by the rapid thermal reductions in metastable CuO nanosheets in H2 . As revealed by in situ transmission electron microscopy, the formation of HTBs is associated with the fragmentation of nanosheets in different directions to generate abundant crystal nuclei and subsequently unconventional crystal growth through the collision and coalescence of nuclei. Impressively, the HTBs endow Cu with excellent electrocatalytic performance for direct nitrate-ammonia conversion, superior to that of Cu with a single-oriented TB and without TB. It is discovered that the HTBs induce the formation of compressive strains, thereby creating a synergistic effect of TBs and strains to efficiently tune the binding energies of Cu with nitrogen intermediates (i.e., NO2 *) and thus promote the tandem reaction process of NO3 - -to-NO2 - and subsequent NO2 - -to-NH3 electrocatalysis. This work demonstrates the crucial role of HTBs for boosting electrocatalysis via the synergistic effect of TBs and strains.
Collapse
Affiliation(s)
- Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Qihua Huo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Shuai Qi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Xin Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jiapeng Zhuang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jiaying Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Xuan Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Weiliang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Miaoyuan Lv
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Xinbao Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Xiaodeng Wang
- School of Electronic Information and Electrical Engineering, Chongqing University of Arts and Sciences, Chongqing, 400030, P. R. China
| | - Chao Feng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| |
Collapse
|
7
|
Ritz AJ, Bertini IA, Nguyen ET, Strouse GF, Lazenby RA. Electrocatalytic activity and surface oxide reconstruction of bimetallic iron-cobalt nanocarbide electrocatalysts for the oxygen evolution reaction. RSC Adv 2023; 13:33413-33423. [PMID: 38025854 PMCID: PMC10644102 DOI: 10.1039/d3ra07003d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
For renewable energy technology to become ubiquitous, it is imperative to develop efficient oxygen evolution reaction (OER) electrocatalysts, which is challenging due to the kinetically and thermodynamically unfavorable OER mechanism. Transition metal carbides (TMCs) have recently been investigated as desirable OER pre-catalysts, but the ability to tune electrocatalytic performance of bimetallic catalysts and understand their transformation under electrochemical oxidation requires further study. In an effort to understand the tunable TMC material properties for enhancing electrocatalytic activity, we synthesized bimetallic FeCo nanocarbides with a complex mixture of FeCo carbide crystal phases. The synthesized FeCo nanocarbides were tuned by percent proportion Fe (i.e. % Fe), and analysis revealed a non-linear dependence of OER electrocatalytic activity on % Fe, with a minimum overpotential of 0.42 V (15-20% Fe) in alkaline conditions. In an effort to understand the effects of Fe composition on electrocatalytic performance of FeCo nanocarbides, we assessed the structural phase and electronic state of the carbides. Although we did not identify a single activity descriptor for tuning activity for FeCo nanocarbides, we found that surface reconstruction of the carbide surface to oxide during water oxidation plays a pivotal role in defining electrocatalytic activity over time. We observed that a rapid increase of the (FexCo1-x)2O4 phase on the carbide surface correlated with lower electrocatalytic activity (i.e. higher overpotential). We have demonstrated that the electrochemical performance of carbides under harsh alkaline conditions has the potential to be fine-tuned via Fe incorporation and with control, or suppression, of the growth of the oxide phase.
Collapse
Affiliation(s)
- Amanda J Ritz
- Department of Chemistry & Biochemistry, Florida State University Tallahassee Florida 32306 USA
| | - Isabella A Bertini
- Department of Chemistry & Biochemistry, Florida State University Tallahassee Florida 32306 USA
| | - Edward T Nguyen
- Department of Chemistry & Biochemistry, Florida State University Tallahassee Florida 32306 USA
| | - Geoffrey F Strouse
- Department of Chemistry & Biochemistry, Florida State University Tallahassee Florida 32306 USA
| | - Robert A Lazenby
- Department of Chemistry & Biochemistry, Florida State University Tallahassee Florida 32306 USA
| |
Collapse
|
8
|
Zhao M, Guo C, Liu C, Gao L, Ren X, Yang H, Kuang X, Sun X, Wei Q. An amorphous Ni-Fe catalyst for electrocatalytic dehydrogenation of alcohols to value-added chemicals. NANOSCALE 2023; 15:15600-15607. [PMID: 37740308 DOI: 10.1039/d3nr03511e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
As for the hydrogen production process via electrocatalytic water splitting, the green and sustainable electro-oxidation of organic molecules at the anode is thermodynamically more favourable than the oxygen evolution reaction (OER). Here, we proposed for the first time to replace the OER process by the oxidation of N-Boc-4-piperidine methanol (BPM), via a parallel reaction, which finally leads to the green production of N-Boc-4-piperidine carboxaldehyde (BPC). The amorphous NiFeO(OH) nanospheres with rich valence states were adopted as the anode catalyst, with creation of more active sites. The gas chromatography results showed that nearly all the BPM converted to BPC after 15 h reaction. The electrochemical tests showed that the Faraday efficiency (FE) approaches nearly 100% when the charge transfer is approximately equal to the theoretical charge. This work reports a new process for the alcohol oxidation, providing a valuable green organic synthesis process.
Collapse
Affiliation(s)
- Mingzhu Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering Institution; University of Jinan, Jinan, Shandong 250022, P. R. China.
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Chengying Guo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering Institution; University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Chengqing Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering Institution; University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Lingfeng Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering Institution; University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering Institution; University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Hua Yang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology; Liaocheng University, Liaocheng, 252059, P. R. China
| | - Xuan Kuang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering Institution; University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Xu Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering Institution; University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering Institution; University of Jinan, Jinan, Shandong 250022, P. R. China.
| |
Collapse
|
9
|
Zhang X, Hui L, Yan D, Li J, Chen X, Wu H, Li Y. Defect Rich Structure Activated 3D Palladium Catalyst for Methanol Oxidation Reaction. Angew Chem Int Ed Engl 2023; 62:e202308968. [PMID: 37581223 DOI: 10.1002/anie.202308968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Controlling the structure and properties of catalysts through atomic arrangement is the source of producing a new generation of advanced catalysts. A highly active and stable catalyst in catalytic reactions strongly depends on an ideal arrangement structure of metal atoms. We demonstrated that the introduction of the defect-rich structures, low coordination number (CN), and tensile strain in three-dimensional (3D) urchin-like palladium nanoparticles through chlorine bonded with sp-C in graphdiyne (Pd-UNs/Cl-GDY) can regulate the arrangement of metal atoms in the palladium nanoparticles to form a special structure. In situ Fourier infrared spectroscopy (FTIR) and theoretical calculation results show that Pd-UNs/Cl-GDY catalyst is beneficial to the oxidation and removal of CO intermediates. The Pd-UNs/Cl-GDY for methanol oxidation reaction (MOR) that display high current density (363.6 mA cm-2 ) and mass activity (3.6 A mgPd -1 ), 12.0 and 10.9 times higher than Pd nanoparticles, respectively. The Pd-UNs/Cl-GDY catalyst also exhibited robust stability with still retained 95 % activity after 2000 cycles. A defects libraries of the face-centered cubic and hexagonal close-packed crystal catalysts (FH-NPs) were synthesized by introducing chlorine in graphdiyne. Such defect-rich structures, low CN, and tensile strain tailoring methods have opened up a new way for the catalytic reaction of MOR.
Collapse
Affiliation(s)
- Xueting Zhang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lan Hui
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dengxin Yan
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052, Gent, Belgium
| | - Jinze Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xi Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Han Wu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Simons JM, de Heer TJ, van de Poll RCJ, Muravev V, Kosinov N, Hensen EJM. Structure Sensitivity of CO 2 Hydrogenation on Ni Revisited. J Am Chem Soc 2023; 145:20289-20301. [PMID: 37677099 PMCID: PMC10515628 DOI: 10.1021/jacs.3c04284] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Indexed: 09/09/2023]
Abstract
Despite the large number of studies on the catalytic hydrogenation of CO2 to CO and hydrocarbons by metal nanoparticles, the nature of the active sites and the reaction mechanism have remained unresolved. This hampers the development of effective catalysts relevant to energy storage. By investigating the structure sensitivity of CO2 hydrogenation on a set of silica-supported Ni nanoparticle catalysts (2-12 nm), we found that the active sites responsible for the conversion of CO2 to CO are different from those for the subsequent hydrogenation of CO to CH4. While the former reaction step is weakly dependent on the nanoparticle size, the latter is strongly structure sensitive with particles below 5 nm losing their methanation activity. Operando X-ray diffraction and X-ray absorption spectroscopy results showed that significant oxidation or restructuring, which could be responsible for the observed differences in CO2 hydrogenation rates, was absent. Instead, the decreased methanation activity and the related higher CO selectivity on small nanoparticles was linked to a lower availability of step edges that are active for CO dissociation. Operando infrared spectroscopy coupled with (isotopic) transient experiments revealed the dynamics of surface species on the Ni surface during CO2 hydrogenation and demonstrated that direct dissociation of CO2 to CO is followed by the conversion of strongly bonded carbonyls to CH4. These findings provide essential insights into the much debated structure sensitivity of CO2 hydrogenation reactions and are key for the knowledge-driven design of highly active and selective catalysts.
Collapse
Affiliation(s)
- Jérôme
F. M. Simons
- Laboratory of Inorganic Materials and
Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ton J. de Heer
- Laboratory of Inorganic Materials and
Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Rim C. J. van de Poll
- Laboratory of Inorganic Materials and
Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Valery Muravev
- Laboratory of Inorganic Materials and
Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Nikolay Kosinov
- Laboratory of Inorganic Materials and
Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials and
Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
11
|
A three-in-one hybrid nanozyme for sensitive colorimetric biosensing of pathogens. Food Chem 2023; 408:135212. [PMID: 36535179 DOI: 10.1016/j.foodchem.2022.135212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/03/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Pathogen screening is an important step in preventing foodborne diseases. In this study, a hybrid nanozyme, metal organic framework decorated with palladium (Pd) and platinum (Pt) (MIL-88@Pd/Pt), was innovatively synthesized and used with immune magnetic nanobeads (MNBs) for sensitive biosensing of Salmonella. First, immune MIL-88@Pd/Pt nanozymes and immune MNBs were mixed with target pathogens in a large-volume sample, resulting in effective isolation and specific label of target pathogens to form nanobead-Salmonella-nanozyme conjugates. Then, these conjugates were used to catalyze H2O2-TMB, and its color was changed from colorless to blue. Finally, catalysate absorption was measured to determine pathogen concentration. This colorimetric immunoassay could determine Salmonella typhimurium from 4 × 101 to 4 × 105 CFU/mL in 60 min with a detection limit of 32 CFU/mL.
Collapse
|
12
|
Jiao J, Wang X, Wei C, Zhao Y. Bioinspired Electrode for the Production and Timely Separation of Nitrile and Hydrogen. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208044. [PMID: 36938916 DOI: 10.1002/smll.202208044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Replacing electrocatalytic oxygen evolution reaction (OER) with amine oxidation reaction is adopted to boost clean and environment-friendly energy source hydrogen (H2 ) in water. However, the electrocatalytic reaction is severely restricted by the strong adsorption of product on the catalyst surface. Inspired by the cooperation of flavin adenine dinucleotide and mitochondria membrane in biological system, the catalysis-separation complex electrodes are introduced to promote the desorption of product and hinder its readsorption by applying polytetrafluoroethylene (PTFE)-separation membrane on the one side of electrode, which is benefit for the cleanness of active sites on the catalyst surface for the continuous production and timely separation of nitrile and hydrogen. With the intermolecular force between PTFE and nitrile, the nitrile droplets can be quickly desorbed and separated from catalyst surface of anode, and the size of nitrile droplets on the catalyst surface is only 0.23% to that without PTFE. As a result, the current at 1.49 VRHE from the catalyst with PTFE membrane is about 33 times to that of catalyst without PTFE after long-term operation. Moreover, the cathode with PTFE membrane also achieves the rapid desorption of H2 bubbles and stable cathodic current because of the strong absorption of PTFE to H2 .
Collapse
Affiliation(s)
- Junrong Jiao
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Xiaobing Wang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Chengyu Wei
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
13
|
Yi D, Marcelot C, Romana I, Tassé M, Fazzini PF, Peres L, Ratel-Ramond N, Decorse P, Warot-Fonrose B, Viau G, Serp P, Soulantica K. Etching suppression as a means to Pt dendritic ultrathin nanosheets by seeded growth. NANOSCALE 2023; 15:1739-1753. [PMID: 36598381 DOI: 10.1039/d2nr05105b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
2D ultrathin metal nanostructures are emerging materials displaying distinct physical and chemical properties compared to their analogues of different dimensionalities. Nanosheets of fcc metals are intriguing, as their crystal structure does not favour a 2D configuration. Thanks to their increased surface-to-volume ratios and the optimal exposure of low-coordinated sites, 2D metal nanostructures can be advantageously exploited in catalysis. Synthesis approaches to ultrathin nanosheets of pure platinum are scarce compared to other noble metals and to Pt-based alloys. Here, we present the selective synthesis of Pt ultrathin nansosheets by a simple seeded-growth method. The most crucial point in our approach is the selective synthesis of Pt seeds comprising planar defects, a main driving force for the 2D growth of metals with fcc structure. Defect engineering is employed here, not in order to disintegrate, but for conserving the defect comprising seeds. This is achieved by in situ elimination of the principal etching agent, chloride, which is present in the PtCl2 precursor. As a result of etching suppression, twinned nuclei, that are selectively formed during the early stage of nucleation, survive and grow to multipods comprising planar defects. Using the twinned multipods as seeds for the subsequent 2D overgrowth of Pt from Pt(acac)2 yields ultrathin dendritic nanosheets, in which the planar defects are conserved. Using phenylacetylene hydrogenation as a model reaction of selective hydrogenation, we compared the performance of Pt nanosheets to that of a commercial Pt/C catalyst. The Pt nanosheets show better stability and much higher selectivity to styrene than the commercial Pt/C catalyst for comparable activity.
Collapse
Affiliation(s)
- Deliang Yi
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS, Université de Toulouse, F-31077 Toulouse, France.
- LCC, CNRS-UPR 8241, ENSIACET, Université de Toulouse, 31030 Toulouse, France
| | - Cécile Marcelot
- CEMES-CNRS, Université de Toulouse, CNRS, 29 rue Jeanne Marvig, 31055 Toulouse, France
| | - Idaline Romana
- LCC, CNRS-UPR 8241, ENSIACET, Université de Toulouse, 31030 Toulouse, France
| | - Marine Tassé
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Pier-Francesco Fazzini
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS, Université de Toulouse, F-31077 Toulouse, France.
| | - Laurent Peres
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS, Université de Toulouse, F-31077 Toulouse, France.
| | - Nicolas Ratel-Ramond
- CEMES-CNRS, Université de Toulouse, CNRS, 29 rue Jeanne Marvig, 31055 Toulouse, France
| | - Philippe Decorse
- ITODYS, UMR 7086, CNRS, Université de Paris, F-75013 Paris, France
| | | | - Guillaume Viau
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS, Université de Toulouse, F-31077 Toulouse, France.
| | - Philippe Serp
- LCC, CNRS-UPR 8241, ENSIACET, Université de Toulouse, 31030 Toulouse, France
| | - Katerina Soulantica
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS, Université de Toulouse, F-31077 Toulouse, France.
| |
Collapse
|