1
|
Chu J, Wang H, Wang SR. Steric Hindrance Tuned [4 + 1] Annulation of α-Substituted Conjugated Enones with Ylides for Dihydrofuran Synthesis. Org Lett 2025; 27:86-90. [PMID: 39700120 DOI: 10.1021/acs.orglett.4c03930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
In sharp contrast to the intuitive modulation by the electronic effect, the [4 + 1] annulation reaction between α-substituted conjugated enones and ylides has been reliably controlled by the match of the α-substituent and the ylide in steric hindrance, providing a straightforward and efficient method for valuable 4-cyano, 4-alkynyl, 4-vinyl, and 4-aryl 2,3-dihydrofurans.
Collapse
|
2
|
Rana A, Halder S, Chakraborty R, Debnath U, Jana K, Misra AK. Novel aryl (dithioglycosyl)methane derivatives as anti-proliferative agents. Bioorg Chem 2025; 154:108030. [PMID: 39662341 DOI: 10.1016/j.bioorg.2024.108030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
In a quest of developing carbohydrate derived anti-cancer agents, novel carbohydrate dithioacetal derivatives have been synthesized and evaluated for their potential as anti-proliferative agents against breast cancer cell lines (MCF-7 and MDA-MB-231) as well as non-cancerous kidney epithelial cell line (NKE). Total 18 compounds have been screened and 3 compounds showed promising anti-proliferative activities against cancer cells with low cytotoxicity to the normal cells using MTT assay. The mode of action of the best active compound has been proposed based on several microscopic studies. A molecular docking study also confirmed the proposed mechanism for the anti-proliferative properties.
Collapse
Affiliation(s)
- Abhijit Rana
- Bose Institute, Department of Chemical Sciences, Block EN-80, Sector - V, Salt Lake, Kolkata 700091, India
| | - Satyajit Halder
- Bose Institute, Department of Chemical Sciences, Block EN-80, Sector - V, Salt Lake, Kolkata 700091, India; Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Rittika Chakraborty
- Bose Institute, Department of Chemical Sciences, Block EN-80, Sector - V, Salt Lake, Kolkata 700091, India
| | - Utsab Debnath
- School of Health Sciences and Technology, UPES, Dehradun 248007, India
| | - Kuladip Jana
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII-M, Kolkata 700054, India.
| | - Anup Kumar Misra
- Bose Institute, Department of Chemical Sciences, Block EN-80, Sector - V, Salt Lake, Kolkata 700091, India.
| |
Collapse
|
3
|
Maarouf Mesli N, Chaurand P, Lubell WD. Cholesterol-Supported Liquid-Phase Synthesis of Betaines and Organic Cations without Chromatography. Org Lett 2024; 26:9233-9236. [PMID: 39433281 DOI: 10.1021/acs.orglett.4c03336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Cholesterol was explored as a support for liquid-phase synthesis. Without the need for chromatography, the cholesterol-supported liquid-phase approach gave access to diverse betaines possessing chiral ammonium, phosphonium, and sulfonium ions. The cholesterol-supported method was further demonstrated by the synthesis of cationic amides and hydrazides.
Collapse
Affiliation(s)
- Nassim Maarouf Mesli
- Département de Chimie, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Pierre Chaurand
- Département de Chimie, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - William D Lubell
- Département de Chimie, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
4
|
Roper NJ, Campbell ADG, Waddell PG, Brown AK, Ermanis K, Armstrong RJ. A stereodivergent multicomponent approach for the synthesis of C-N atropisomeric peptide analogues. Chem Sci 2024:d4sc04700a. [PMID: 39323517 PMCID: PMC11418089 DOI: 10.1039/d4sc04700a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024] Open
Abstract
A four-component Ugi reaction is described for the stereoselective synthesis of novel C-N atropisomeric peptide analogues. Using this approach, a combination of simple, readily available starting materials (ortho-substituted anilines, aldehydes, carboxylic acids and isocyanides) could be combined to access complex products possessing both central and axial chirality in up to 92% yield and >95 : 5 d.r. Variation of the reaction temperature enabled the development of stereodivergent reactions capable of selectively targeting either diastereoisomer of a desired product from a single set of starting materials with high levels of stereocontrol. Detailed experimental and computational studies have been performed to probe the reaction mechanism and stereochemical outcome of these reactions. Preliminary studies show that novel atropisomeric scaffolds prepared using this method display inhibitory activity against M. tuberculosis with a significant difference in activity observed between different atropisomers.
Collapse
Affiliation(s)
- Natalie J Roper
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | - Aaron D G Campbell
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | - Paul G Waddell
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | - Alistair K Brown
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University Newcastle Upon Tyne NE2 4HH UK
| | - Kristaps Ermanis
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Roly J Armstrong
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| |
Collapse
|
5
|
Wang Y, Xu ZF, Chen J, Yu M, Guo SR, Li CY. Rhodium-catalyzed intramolecular cyclization for synthesizing thiodihydropyrans. Org Biomol Chem 2024; 22:6695-6698. [PMID: 39106103 DOI: 10.1039/d4ob01150c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Addressing the challenge of constructing multi-substituted dihydropyrans, we present an efficient synthesis method for oxygen-containing heterocycles. Using thiones and metal carbenes, we employed xanthate and triazole to intramolecularly synthesize dihydropyran or dihydrofuran compounds. 1,2-Hydride migration was inhibited, and thiodihydropyrans were obtained in excellent yields. A mechanism proceeding through a Rh-carbene intermediate is proposed for the multi-substituted dihydropyrans synthesis.
Collapse
Affiliation(s)
- Yunxiao Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou, 310018, China.
- Department of Chemistry, Lishui University, Lishui, 323000, P. R. China.
| | - Ze-Feng Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou, 310018, China.
| | - Jing Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou, 310018, China.
| | - Mingming Yu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou, 310018, China.
| | - Sheng-Rong Guo
- Department of Chemistry, Lishui University, Lishui, 323000, P. R. China.
| | - Chuan-Ying Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Li Y, Han D, Luo Z, Lv X, Liu B. The Chan-Lam-type synthesis of thioimidazolium salts for thiol-(hetero)arene conjugation. Chem Commun (Camb) 2024; 60:4675-4678. [PMID: 38591667 DOI: 10.1039/d4cc00704b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The design of stable and variable aryl linkers for conjugating drug moieties to the metabolism-related thiols is of importance in drug discovery. We disclosed that thioimidazolium groups are unique scaffolds for the thiol-(hetero)arene conjugation under mild conditions. The drug bound thioimidazolium salts, which are easily accessible via a copper-mediated Chan-Lam process in gram-scale, could be successfully applied to the late-stage coupling of bioactive thiols to construct a broad array of drug-like molecules.
Collapse
Affiliation(s)
- Yue Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Dongchang Han
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Zhibin Luo
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xiaomeng Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
7
|
Baumann JE, Chung CP, Lalic G. Stereoselective Copper-Catalyzed Olefination of Imines. Angew Chem Int Ed Engl 2024; 63:e202316521. [PMID: 38100274 PMCID: PMC10977923 DOI: 10.1002/anie.202316521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Alkenes are an important class of organic molecules found among synthetic intermediates and bioactive compounds. They are commonly synthesized through stoichiometric Wittig-type olefination of carbonyls and imines, using ylides or their equivalents. Despite the importance of Wittig-type olefination reactions, their catalytic variants remain underdeveloped. We explored the use of transition metal catalysis to form ylide equivalents from readily available starting materials. Our investigation led to a new copper-catalyzed olefination of imines with alkenyl boronate esters as coupling partners. We identified a heterobimetallic complex, obtained by hydrocupration of the alkenyl boronate esters, as the key catalytic intermediate that serves as an ylide equivalent. The high E-selectivity observed in the reaction is due to the stereoselective addition of this intermediate to an imine, followed by stereospecific anti-elimination.
Collapse
Affiliation(s)
- James E Baumann
- Department of Chemistry, University of Washington, 109 Bagley Hall, 98195, Seattle, WA, USA
| | - Crystal P Chung
- Department of Chemistry, University of Washington, 109 Bagley Hall, 98195, Seattle, WA, USA
| | - Gojko Lalic
- Department of Chemistry, University of Washington, 109 Bagley Hall, 98195, Seattle, WA, USA
| |
Collapse
|
8
|
Davas DS, Gopalakrishnan DK, Bar K, Kumar S, Karmakar T, Vaitla J. Divergent Approach to Highly Substituted Arenes via [3 + 3] Annulation of Vinyl Sulfoxonium Ylides with Ynones. Org Lett 2023; 25:8992-8996. [PMID: 38084931 DOI: 10.1021/acs.orglett.3c03570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Herein, we report the divergent benzannulation for highly substituted arenes using vinyl sulfoxonium ylides and ynones. The addition of ynone at the γ-position of vinyl sulfoxonium ylides leads to dienyl sulfoxonium ylide that can undergo selective annulation under different conditions to give m-terphenyls and parabens. Moreover, control experiments and quantum chemical calculations reveal two distinct reaction mechanisms for both annulations.
Collapse
Affiliation(s)
- Daksh Singh Davas
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | | | - Krishnendu Bar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sandeep Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Janakiram Vaitla
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
9
|
Gehringer M, Pape F, Méndez M, Barbie P, Unzue Lopez A, Lefranc J, Klingler FM, Hessler G, Langer T, Diamanti E, Schiedel M. Back in Person: Frontiers in Medicinal Chemistry 2023. ChemMedChem 2023; 18:e202300344. [PMID: 37485831 DOI: 10.1002/cmdc.202300344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/12/2023] [Indexed: 07/25/2023]
Abstract
The Frontiers in Medicinal Chemistry (FiMC) is the largest international Medicinal Chemistry conference in the German speaking area and took place from April 3rd to 5th 2023 in Vienna (Austria). Fortunately, after being cancelled in 2020 and two years (2021-2022) of entirely virtual meetings, due to the COVID-19 pandemic, the FiMC could be held in a face-to-face format again. Organized by the Division of Medicinal Chemistry of the German Chemical Society (GDCh), the Division of Pharmaceutical and Medicinal Chemistry of the German Pharmaceutical Society (DPhG), together with the Division of Medicinal Chemistry of the Austrian Chemical Society (GÖCH), the Austrian Pharmaceutical Society (ÖPhG), and a local organization committee from the University of Vienna headed by Thierry Langer, the meeting brought together 260 participants from 21 countries. The program included 38 lectures by leading scientists from industry and academia as well as early career investigators. Moreover, 102 posters were presented in two highly interactive poster sessions.
Collapse
Affiliation(s)
- Matthias Gehringer
- Institute of Pharmaceutical Sciences, Pharmaceutical/Medicinal Chemistry Department, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Felix Pape
- NUVISAN Innovation Campus Berlin, NUVISAN ICB GmbH, Muellerstraße 178, 13353, Berlin, Germany
| | - María Méndez
- Sanofi R&D, Integrated Drug Discovery, Industriepark Höchst, Bldg. G838, 65926, Frankfurt am Main, Germany
| | - Philipp Barbie
- Bayer AG, R&D, Pharmaceuticals, Laboratory IV, Bldg. S106, 231, 13342, Berlin, Germany
| | - Andrea Unzue Lopez
- Merck Healthcare KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | - Julien Lefranc
- Merck Healthcare KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | | | - Gerhard Hessler
- Sanofi R&D, Integrated Drug Discovery, Industriepark Höchst, Bldg. G877, 65926, Frankfurt am Main, Germany
| | - Thierry Langer
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Eleonora Diamanti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Matthias Schiedel
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany
| |
Collapse
|
10
|
Manna S, Paul S, Kong WY, Aich D, Sahoo R, Tantillo DJ, Panda S. Stereodivergent Zweifel Olefination and its Mechanistic Dichotomy. Angew Chem Int Ed Engl 2023; 62:e202309136. [PMID: 37495925 DOI: 10.1002/anie.202309136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
Stereoselective Zweifel olefination using boronate complexes carrying two different reactive π-systems was achieved to synthesize vinyl heteroarenes and conjugated 1,3-dienes in good yield and up to 100 % stereoselectivity, which remains unexplored until now. Most importantly, we report the unprecedented formation of E vs. Z-vinyl heteroarenes for different heteroarenes under identical conditions. Density functional theory (DFT) investigations unveil the mechanistic dichotomy between olefin and heteroarene activation followed by 1,2-migration, leading to E or Z-vinyl heteroarenes respectively. We also report a previously unknown reversal of stereoselectivity by using 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as an electrophile. The Zweifel olefination using a boronate complex that carries two different olefins was previously unexplored due to significant challenges associated with the site-selective activation of olefins. We have solved this problem and reported the site-selective activation of olefins for the stereoselective synthesis of 1,3-dienes.
Collapse
Affiliation(s)
- Samir Manna
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Swagata Paul
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Debasis Aich
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Rupam Sahoo
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Santanu Panda
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India
| |
Collapse
|
11
|
Bognar S, van Gemmeren M. A Modular Olefination of Aldehydes with Thiols as Coupling Partners. Chemistry 2023; 29:e202203512. [PMID: 36455150 DOI: 10.1002/chem.202203512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022]
Abstract
Olefins range amongst the most important motifs in organic chemistry. Hence, the development of novel olefin syntheses has remained a constant field of research in synthetic chemistry to date. Herein, we report the development of a modular olefination that converts aldehydes into olefins with thiols as reaction partners. The simple, transition metal-free protocol proceeds via an unsymmetrical bissulfone intermediate which is converted into the respective alkene in a Ramberg-Bäcklund-type process. Differently substituted olefins can be synthesized from readily available starting materials in typically good yields and stereoselectivities using basic laboratory chemicals exclusively. Complementary reaction conditions differing in the choice of solvent favor the E/Z-products respectively under kinetic control rendering this protocol an interesting economical addition to the family of olefin syntheses.
Collapse
Affiliation(s)
- Sabine Bognar
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Manuel van Gemmeren
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149, Münster, Germany.,Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| |
Collapse
|
12
|
Ding R, Cui H, Zhu Y, Zhou Y, Tao H, Mai S. Domino Sonogashira coupling/metal carbene-involved annulation enabled by Pd/Cu relay catalysis: rapid assembly of indazole-containing biheteroaryls. Org Chem Front 2023. [DOI: 10.1039/d3qo00367a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
An efficient and novel method has been developed for the synthesis of indazole-containing biheteroaryls via a domino Sonogashira coupling/azaenyne cycloisomerization/Barton–Kellogg reaction.
Collapse
|