1
|
Guo J, Zhang Y, Li MM, Zhang A, Yang H, Min H, Ding W. Dehydrogenative α,γ-Diphosphinylation of Allylamines Enabled by Photoinduced Cobaloxime Catalysis. Org Lett 2024; 26:10176-10182. [PMID: 39556311 DOI: 10.1021/acs.orglett.4c03988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
A regioselective radical α,γ-diphosphinylation of allylamines with secondary phosphine oxides by photoinduced cobaloxime catalysis is described. The reaction tolerates a wide range of allylamines and phosphine oxides, affording α-amino diphosphine dioxides in moderate to good yields with hydrogen evolution. The synthesis of new diphosphine monoxide and diphosphine ligands and the promising antitumor activities of products demonstrate the great potential applications of this approach in catalysis and drug discovery. The detailed mechanism studies indicate that this reaction likely proceeds through a dehydrogenative allylic phosphinylation and nucleophilic addition process.
Collapse
Affiliation(s)
- Jiefei Guo
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yana Zhang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Miao-Miao Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Aijun Zhang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Huaixiang Yang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Huan Min
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wei Ding
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
2
|
Chakraborty A, Soltanzadeh B, Wills NR, Jaganathan A, Borhan B. Synthesis of N-Bromo and N-Iodo Imides: A Rapid Redox-Neutral and Bench Stable Process. Org Process Res Dev 2024; 28:3959-3962. [PMID: 39569051 PMCID: PMC11574840 DOI: 10.1021/acs.oprd.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 11/22/2024]
Abstract
This report presents a rapid, ecofriendly technique for the formation of commonly used N-bromo and N-iodinating reagents by reacting readily available N-chloro derivatives with inorganic bromide and iodide salts. All reagents were easily handled, commercially available, and bench stable. This strategy illustrates the expeditious formation of these halogenating reagents in multigram scale in high-yields and purity with an operationally straightforward recrystallization. The mechanistic details suggest an in situ generation of an interhalogen species.
Collapse
Affiliation(s)
- Ankush Chakraborty
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Bardia Soltanzadeh
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Nicholas R Wills
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Arvind Jaganathan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
3
|
He X, Fu Y, Xi R, Zhang C, Lan K, Su Z, Wang F, Feng X, Liu X. Asymmetric Carbene Insertion into Se-S Bonds by Synergistic Rh(II)/Guanidine Catalysis Involving Chalcogen-Bond Assistance. Angew Chem Int Ed Engl 2024:e202417636. [PMID: 39487093 DOI: 10.1002/anie.202417636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/04/2024]
Abstract
The efficient construction of chalcogen-atom-based chiral compounds remains a challenge, despite the importance of organoselenium and organosulfur compounds in life and materials science. Chalcogen atoms can form net attractive interactions called chalcogen bonds, but it is an undeveloped tool to assist asymmetric catalysis. Herein, we report an enantioselective insertion platform to install a stereogenic center bearing selenyl and thiocyano functional groups. Our method operates by synergistic catalysis by a chiral guanidine and an achiral dirhodium complex in a three-component or four-component reaction, through Se-S bond insertion into carbene species, competing successfully with the spontaneous racemic process and showing high regioselectivity. As elucidated by spectroscopic experiments and computational studies, a unique mechanism involving chalcogen as well as hydrogen bonding was established to account for the enantiocontrol. The high stereoselectivity holds for a broad array of selenylthiocyanatopropanoates, which showed excellent anti-inflammatory toward IL-1β and low cytotoxicity.
Collapse
Affiliation(s)
- Xin He
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yihua Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Ruiying Xi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610064, China
| | - Cefei Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Kexin Lan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
4
|
Lu QT, Du YB, Xu MM, Xie PP, Cai Q. Catalytic Asymmetric Aza-Electrophilic Additions of 1,1-Disubstituted Styrenes. J Am Chem Soc 2024; 146:21535-21545. [PMID: 39056748 DOI: 10.1021/jacs.4c04852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Electrophilic addition of alkenes is a textbook reaction that plays a pivotal role in organic chemistry. In the past decades, catalytic asymmetric variants of this important type of reaction have witnessed great achievements by the development of novel catalytic systems. However, enantioselective aza-electrophilic additions of unactivated alkenes, which could provide a transformative strategy for the preparation of synthetically significant nitrogen-containing compounds, still remain a formidable challenge. Herein, we have developed unprecedented Au(I)/NHC-catalyzed asymmetric aza-electrophilic additions of unactivated 1,1-disubstituted styrenes by the utilization of readily available dialkyl azodicarboxylates as electrophilic nitrogen sources. Based on this approach, a series of transformations, including [2 + 2] cycloaddition, intermolecular 1,2-oxyamination, and several types of intramolecular hydrazination-induced cyclizations, have been realized. These transformations provide a previously unattainable platform for the divergent synthesis of hydrazine derivatives, which could also be converted to other nitrogen-containing chiral synthons. Experimental and computational studies support the idea that carbocation intermediates are involved in reaction pathways.
Collapse
Affiliation(s)
- Qi-Tao Lu
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Yuan-Bo Du
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Meng-Meng Xu
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Pei-Pei Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Quan Cai
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Huang N, Luo J, Liao L, Zhao X. Catalytic Enantioselective Aminative Difunctionalization of Alkenes. J Am Chem Soc 2024; 146:7029-7038. [PMID: 38425285 DOI: 10.1021/jacs.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Enantioselective difunctionalization of alkenes offers a straightforward means for the rapid construction of enantioenriched complex molecules. Despite the tremendous efforts devoted to this field, enantioselective aminative difunctionalization remains a challenge, particularly through an electrophilic addition fashion. Herein, we report an unprecedented approach for the enantioselective aminative difunctionalization of alkenes via copper-catalyzed electrophilic addition with external azo compounds as nitrogen sources. A series of valuable cyclic hydrazine derivatives via either [3 + 2] cycloaddition or intramolecular cyclization have been achieved in high chemo-, regio-, enantio-, and diastereoselectivities. In this transformation, a wide range of functional groups, such as carboxylic acid, hydroxy, amide, sulfonamide, and aryl groups, could serve as nucleophiles. Importantly, a new cyano oxazoline chiral ligand was found to play a crucial role in the control of enantioselectivity.
Collapse
Affiliation(s)
- Nan Huang
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jie Luo
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lihao Liao
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaodan Zhao
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
6
|
Zhou Y, Jiang F, Yue X, Wang X, Guo W. Chromium(III)-Catalyzed Desymmetrization of meso-Epoxides via Remote Stereocontrol: Synthesis of Chiral Fluorenes Bearing All-Carbon Quaternary Stereocenters. Org Lett 2024; 26:877-882. [PMID: 38264979 DOI: 10.1021/acs.orglett.3c04144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
An asymmetric desymmetrization of fluorene-derived meso-epoxides is disclosed for the construction of chiral fluorenes bearing an all-carbon quaternary stereocenter at C9. This desymmetrization is catalyzed by a chiral (salen)CrIII complex via remote stereocontrol, producing diverse chiral fluorenes with excellent yields and stereoselectivity. The practicality of this protocol was demonstrated through the transformation of the obtained products to some intriguing enantioenriched polymerizable monomers.
Collapse
Affiliation(s)
- Ying Zhou
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Feng Jiang
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Xin Yue
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Xi Wang
- School of Materials Engineering, Changzhou Institute of Light Industry Technology, Changzhou, Jiangsu 213164, P. R. China
| | - Wengang Guo
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
7
|
Liang Y, Huang H, Huang N, Liao L, Zhao X. Catalytic Enantioselective Construction of Chiral γ-Azido Nitriles through Nitrile Group-Promoted Electrophilic Reaction of Alkenes. Org Lett 2023; 25:6757-6762. [PMID: 37656917 DOI: 10.1021/acs.orglett.3c02650] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
An efficient approach for the construction of enantioenriched γ-azido nitriles through the chiral sulfide-catalyzed asymmetric electrophilic thioazidation of allylic nitriles is disclosed. A wide range of electron-deficient and -rich aryl, heterocyclic aryl, and alkyl substituents are suitable on the substrates of allylic nitriles. The regio-, enantio-, and diastereoselectivities of the reactions are excellent. As versatile platform molecules, the obtained chiral γ-azido nitriles can be easily converted into high-value-added chiral molecules that are not easily accessed by other methods. Control experiments revealed that the allylic nitrile group is important for control of the reactivity and enantioselectivity of the reaction leading to a broad substrate scope.
Collapse
Affiliation(s)
- Yaoyu Liang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Hongtai Huang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Nan Huang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
8
|
Choudhary K, Biswas RG, Manna A, Singh VK. Kinetic Resolution of Electron-Deficient Bromohydrins via Copper(II)-Catalyzed C-C Bond Cleavage. J Org Chem 2023; 88:12041-12053. [PMID: 37533192 DOI: 10.1021/acs.joc.3c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Herein, we report a nonenzymatic kinetic resolution (KR) of α,β-unsaturated ketone-derived bromohydrins (up to s = 211) with N-bromosuccinimide (NBS) in the presence of a chiral Cu(II)-Box catalyst via the C-C bond cleavage of the fast reacting enantiomer. A one-pot synthesis-KR approach of the same has also been realized with excellent enantioselectivities (up to 99% ee). Both protocols are found to be effective for a variety of substrates, leading to enantioenriched bromohydrins. The synthetic utility of this process has been demonstrated by exploring a new strategy to convert the resolved enantiomer to an optically active epoxide.
Collapse
Affiliation(s)
- Kavita Choudhary
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Rayhan G Biswas
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Abhijit Manna
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
9
|
Kee CW. Molecular Understanding and Practical In Silico Catalyst Design in Computational Organocatalysis and Phase Transfer Catalysis-Challenges and Opportunities. Molecules 2023; 28:1715. [PMID: 36838703 PMCID: PMC9966076 DOI: 10.3390/molecules28041715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/25/2023] Open
Abstract
Through the lens of organocatalysis and phase transfer catalysis, we will examine the key components to calculate or predict catalysis-performance metrics, such as turnover frequency and measurement of stereoselectivity, via computational chemistry. The state-of-the-art tools available to calculate potential energy and, consequently, free energy, together with their caveats, will be discussed via examples from the literature. Through various examples from organocatalysis and phase transfer catalysis, we will highlight the challenges related to the mechanism, transition state theory, and solvation involved in translating calculated barriers to the turnover frequency or a metric of stereoselectivity. Examples in the literature that validated their theoretical models will be showcased. Lastly, the relevance and opportunity afforded by machine learning will be discussed.
Collapse
Affiliation(s)
- Choon Wee Kee
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| |
Collapse
|
10
|
Cao RF, Chen ZM. Organosulfide-Catalyzed Enantioselective Intermolecular Iodinative Difunctionalization of Allylic Sulfonamides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|