1
|
Wang X, Wen S, Wu Z, Jiang JH. Orthogonal Control of Nucleic Acid Function via Chemical Caging-Decaging Strategies. Chembiochem 2024; 25:e202400516. [PMID: 39141545 DOI: 10.1002/cbic.202400516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
The ability to precisely control the function of nucleic acids plays an important role in biosensing and biomedicine. In recent years, novel strategies employing biological, physical, and chemical triggers have been developed to modulate the function of nucleic acids spatiotemporally. These approaches commonly involve the incorporation of stimuli-responsive groups onto nucleic acids to block their functions until triggers-induced decaging restore activity. These inventive strategies deepen our comprehension of nucleic acid molecules' dynamic behavior and provide new techniques for precise disease diagnosis and treatment. Focusing on the spatiotemporal regulation of nucleic acid molecules through the chemical caging-decaging strategy, we here present an overview of the innovative triggered control mechanisms and accentuate their implications across the fields of chemical biology, biomedicine, and biosensing.
Collapse
Affiliation(s)
- Xiangnan Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Biomedical Science, Hunan University, Changsha, Hunan, 410082, P. R. China
- School of Resource & Environment, Hunan University of Technology and Business, Changsha, Hunan, 410082, P. R. China
| | - Siyu Wen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Biomedical Science, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Zhenkun Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Biomedical Science, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Biomedical Science, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
2
|
Yin H, Wu M, Yang H, Feng Q. Combination of exciton-plasmon interaction and programmable DNA cyclic amplification for electrochemiluminescence/photoelectrochemical sensing of serotonin. Talanta 2024; 285:127352. [PMID: 39662222 DOI: 10.1016/j.talanta.2024.127352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
A novel dual-mode electrochemiluminescence (ECL)/photoelectrochemistry (PEC) biosensor was developed for sensitive serotonin detection. In this system, the PEC signal was produced by CdS quantum dots (QDs), while the ECL signal originated from L-Au NPs (luminol decorated Au nanoparticles), thereby avoiding the external interference and signal fluctuations that typically arose from using the same materials for both signals. The presence of target serotonin initiated the non-enzymatic toehold-mediated strand displacement reaction (TSDR) on magnetic bead (MB), which was followed by catalytic hairpin assembly (CHA) on the sensing interface, leading to the aggregation of many L-Au NPs. The strong exciton-plasmon interactions (EPI) induced the energy transfer between CdS QDs and Au NPs, causing the significant suppression of the photocurrent. In addition, this design assured that the ECL and PEC respond in opposing manners and that no background ECL signal was detected, thereby greatly improving the sensitivity of the biosensor. Ultimately, the biosensor demonstrated a broad linear range from 5 pM to 1 μM with a detection limit of 1.6 pM, and also could be used for the assay of serum and urine samples with satisfactory results. With the advantages of high sensitivity, selectivity, accuracy and signal stability, this sensing strategy was helpful for disease diagnosis and the fundamental research of neurotransmitters.
Collapse
Affiliation(s)
- Haitao Yin
- Department of Oncology, Xuzhou first People's Hospital, Jiangsu, China.
| | - Meisheng Wu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Huan Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Qiumei Feng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
3
|
Liu Y, Zhao Z, Zeng Y, He M, Lyu Y, Yuan Q. Thermodynamics and Kinetics-Directed Regulation of Nucleic Acid-Based Molecular Recognition. SMALL METHODS 2024:e2401102. [PMID: 39392199 DOI: 10.1002/smtd.202401102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/28/2024] [Indexed: 10/12/2024]
Abstract
Nucleic acid-based molecular recognition plays crucial roles in various fields like biosensing and disease diagnostics. To achieve optimal detection and analysis, it is essential to regulate the response performance of nucleic acid probes or switches to match specific application requirements by regulating thermodynamics and kinetics properties. However, the impacts of thermodynamics and kinetics theories on recognition performance are sometimes obscure and the relative conclusions are not intuitive. To promote the thorough understanding and rational utilization of thermodynamics and kinetics theories, this review focuses on the landmarks and recent advances of nucleic acid thermodynamics and kinetics and summarizes the nucleic acid thermodynamics and kinetics-based strategies for regulation of nucleic acid-based molecular recognition. This work hopes such a review can provide reference and guidance for the development and optimization of nucleic acid probes and switches in the future, as well as for advancements in other nucleic acid-related fields.
Collapse
Affiliation(s)
- Yihao Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Zihan Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yuqi Zeng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Minze He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Furong Laboratory, Changsha, 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Institute of Chemical Biology and Nanomedicine, College of Biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
4
|
Zhang X, Du R, Xu S, Wang X, Wang ZG. Enhancing DNA-based nanodevices activation through cationic peptide acceleration of strand displacement. NANOSCALE HORIZONS 2024; 9:1582-1586. [PMID: 39036841 DOI: 10.1039/d4nh00252k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Dynamic DNA-based nanodevices offer versatile molecular-level operations, but the majority of them suffer from sluggish kinetics, impeding the advancement of device complexity. In this work, we present the self-assembly of a cationic peptide with DNA to expedite toehold-mediated DNA strand displacement (TMSD) reactions, a fundamental mechanism enabling the dynamic control and actuation of DNA nanostructures. The target DNA is modified with a fluorophore and a quencher, so that the TMSD process can be monitored by recording the time-dependent fluorescence changes. The boosting effect of the peptides is found to be dependent on the peptide/DNA N/P ratio, the toehold/invader binding affinity, and the ionic strength with stronger effects observed at lower ionic strengths, suggesting that electrostatic interactions play a key role. Furthermore, we demonstrate that the cationic peptide enhances the responsiveness and robustness of DNA machinery tweezers or logic circuits (AND and OR) involving multiple strand displacement reactions in parallel and cascade, highlighting its broad utility across DNA-based systems of varying complexity. This work offers a versatile approach to enhance the efficiency of toehold-mediated DNA nanodevices, facilitating flexible design and broader applications.
Collapse
Affiliation(s)
- Xianxue Zhang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ruikai Du
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Shichao Xu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xinyue Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
5
|
Bigham NP, Novorolsky RJ, Davis KR, Zou H, MacMillan SN, Stevenson MJ, Robertson GS, Wilson JJ. Supramolecular delivery of dinuclear ruthenium and osmium MCU inhibitors. Inorg Chem Front 2024; 11:5064-5079. [PMID: 39113903 PMCID: PMC11301636 DOI: 10.1039/d4qi01102c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024]
Abstract
The transmembrane protein known as the mitochondrial calcium uniporter (MCU) mediates the influx of calcium ions (Ca2+) into the mitochondrial matrix. An overload of mitochondrial Ca2+ ( m Ca2+) is directly linked to damaging effects in pathological conditions. Therefore, inhibitors of the MCU are important chemical biology tools and therapeutic agents. Here, two new analogues of previously reported Ru- and Os-based MCU inhibitors Ru265 and Os245, of the general formula [(C10H15CO2)M(NH3)4(μ-N)M(NH3)4(O2CC10H15)](CF3SO3)3, where M = Ru (1) or Os (2), are reported. These analogues bear adamantane functional groups, which were installed to act as guests for the host molecule cucurbit-[7]-uril (CB[7]). These complexes were characterized and analyzed for their efficiency as guests for CB[7]. As shown through a variety of spectroscopic techniques, each adamantane ligand is encapsulated into one CB[7], affording a supramolecular complex of 1 : 2 stoichiometry. The biological effects of these compounds in the presence and absence of two equiv. CB[7] were assessed. Both complexes 1 and 2 exhibit enhanced cellular uptake compared to the parent compounds Ru265 and Os245, and their uptake is increased further in the presence of CB[7]. Compared to Ru265 and Os245, 1 and 2 are less potent as m Ca2+ uptake inhibitors in permeabilized cell models. However, in intact cell systems, 1 and 2 inhibit the MCU at concentrations as low as 1 μM, marking an advantage over Ru265 and Os245 which require an order of magnitude higher doses for similar biological effects. The presence of CB[7] did not affect the inhibitory properties of 1 and 2. Experiments in primary cortical neurons showed that 1 and 2 can elicit protective effects against oxygen-glucose deprivation at lower doses than those required for Ru265 or Os245. At low concentrations, the protective effects of 1 were modulated by CB[7], suggesting that supramolecular complex formation can play a role in these biological conditions. The in vivo biocompatibility of 1 was investigated in mice. The intraperitoneal administration of these compounds and their CB[7] complexes led to time-dependent induction of seizures with no protective effects elicited by CB[7]. This work demonstrates the potential for supramolecular interactions in the development of MCU inhibitors.
Collapse
Affiliation(s)
- Nicholas P Bigham
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14853 USA
| | - Robyn J Novorolsky
- Department of Pharmacology, Faculty of Medicine, Dalhousie University 6th Floor Sir Charles Tupper Medical Building Halifax B3H 4R2 Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Life Sciences Research Institute Halifax NS B3H 4R2 Canada
| | - Keana R Davis
- Department of Chemistry, University of San Francisco San Francisco CA 94117 USA
| | - Haipei Zou
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14853 USA
- Department of Chemistry & Biochemistry, University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14853 USA
| | - Michael J Stevenson
- Department of Chemistry, University of San Francisco San Francisco CA 94117 USA
| | - George S Robertson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University 6th Floor Sir Charles Tupper Medical Building Halifax B3H 4R2 Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Life Sciences Research Institute Halifax NS B3H 4R2 Canada
- Department of Psychiatry, Faculty of Medicine, Dalhousie University Halifax NS B3H 2E2 Canada
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14853 USA
- Department of Chemistry & Biochemistry, University of California Santa Barbara Santa Barbara CA 93106 USA
| |
Collapse
|
6
|
Halfin O, Avram L, Albeck S, Unger T, Motiei L, Margulies D. Unnatural enzyme activation by a metal-responsive regulatory protein. Chem Sci 2024:d4sc02635g. [PMID: 39149216 PMCID: PMC11322901 DOI: 10.1039/d4sc02635g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024] Open
Abstract
As a result of calcium ion binding, the calcium-dependent regulatory protein calmodulin (CaM) undergoes a conformational change, enabling it to bind to and activate a variety of enzymes. However, the detoxification enzyme glutathione S-transferase (GST) is notably not among the enzymes activated by CaM. In this study, we demonstrate the feasibility of establishing, in vitro, an artificial regulatory link between CaM and GST using bifunctional chemical transducer (CT) molecules possessing binders for CaM and GST. We show that the CTs convert the constitutively active GST into a triggerable enzyme whose activity is unnaturally regulated by the CaM conformational state and consequently, by the level of calcium ions. The ability to reconfigure the regulatory function of CaM demonstrates a novel mode by which CTs could be employed to mediate artificial protein crosstalk, as well as a new means to achieve artificial control of enzyme activity by modulating the coordination of metal ions. Within this study, we also investigated the impact of covalent interaction between the CTs and the enzyme target. This investigation offers further insights into the mechanisms governing the function of CTs and the possibility of rendering them isoform specific.
Collapse
Affiliation(s)
- Olga Halfin
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot Israel
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science Rehovot Israel
| | - Shira Albeck
- Department of Life Sciences Core Facilities, Weizmann Institute of Science Rehovot Israel
| | - Tamar Unger
- Department of Life Sciences Core Facilities, Weizmann Institute of Science Rehovot Israel
| | - Leila Motiei
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot Israel
| | - David Margulies
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
7
|
Saroha A, Bosco MS, Menon S, Kumari P, Maity T, Rana S, Kotak S, Mondal J, Agasti SS. Regulation of microtubule dynamics and function in living cells via cucurbit[7]uril host-guest assembly. Chem Sci 2024; 15:11981-11994. [PMID: 39092123 PMCID: PMC11290447 DOI: 10.1039/d4sc00204k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/07/2024] [Indexed: 08/04/2024] Open
Abstract
Living systems utilize sophisticated biochemical regulators and various signal transduction mechanisms to program bio-molecular assemblies and their associated functions. Creating synthetic assemblies that can replicate the functional and signal-responsive properties of these regulators, while also interfacing with biomolecules, holds significant interest within the realms of supramolecular chemistry and chemical biology. This pursuit not only aids in understanding the fundamental design principles of life but also introduces novel capabilities that contribute to the advancements in medical and therapeutic research. In this study, we present a cucurbit[7]uril (CB[7]) host-guest system designed to regulate the dynamics and functions of microtubules (MTs) in living cells. To establish communication between MTs and CB[7] and to reversibly control MT function through host-guest recognition, we synthesized a two-faced docetaxel-p-xylenediamine (Xyl-DTX) derivative. While Xyl-DTX effectively stabilized polymerized MTs, inducing MT bundling and reducing dynamics in GFP-α-tubulin expressing cells, we observed a significant reduction in its MT-targeted activity upon threading with CB[7]. Leveraging the reversible nature of the host-guest complexation, we strategically reactivated the MT stabilizing effect by programming the guest displacement reaction from the CB[7]·Xyl-DTX complex using a suitable chemical signal, namely a high-affinity guest. This host-guest switch was further integrated into various guest activation networks, enabling 'user-defined' regulatory control over MT function. For instance, we demonstrated programmable control over MT function through an optical signal by interfacing it with a photochemical guest activation network. Finally, we showcased the versatility of this supramolecular system in nanotechnology-based therapeutic approaches, where a self-assembled nanoparticle system was employed to trigger the MT-targeted therapeutic effect from the CB[7]·Xyl-DTX complex.
Collapse
Affiliation(s)
- Akshay Saroha
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore Karnataka 560064 India
| | - Monica Swetha Bosco
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore Karnataka 560064 India
| | - Sneha Menon
- Tata Institute of Fundamental Research 36/P, Gopanpally Village Hyderabad 500046 India
| | - Pratibha Kumari
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore Karnataka 560064 India
| | - Tanmoy Maity
- Materials Research Centre, Indian Institute of Science C. V. Raman Road Bangalore 560012 India
| | - Subinoy Rana
- Materials Research Centre, Indian Institute of Science C. V. Raman Road Bangalore 560012 India
| | - Sachin Kotak
- Department of Microbiology and Cell Biology, Indian Institute of Science 560012 Bangalore India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research 36/P, Gopanpally Village Hyderabad 500046 India
| | - Sarit S Agasti
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore Karnataka 560064 India
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore Karnataka 560064 India
- School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore Karnataka 560064 India
| |
Collapse
|
8
|
Okamura H, Yao T, Nagatsugi F. Reversible Control of Gene Expression by Guest-Modified Adenosines in a Cell-Free System via Host-Guest Interaction. J Am Chem Soc 2024; 146:18513-18523. [PMID: 38941287 PMCID: PMC11240562 DOI: 10.1021/jacs.4c04262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/30/2024]
Abstract
Gene expression technology has become an indispensable tool for elucidating biological processes and developing biotechnology. Cell-free gene expression (CFE) systems offer a fundamental platform for gene expression-based technology, in which the reversible and programmable control of transcription can expand its use in synthetic biology and medicine. This study shows that CFE can be controlled via the host-guest interaction of cucurbit[7]uril (CB[7]) with N6-guest-modified adenosines. These adenosine derivatives were conveniently incorporated into the DNA strand using a post-synthetic approach and formed a selective and stable base pair with complementary thymidine in DNA. Meanwhile, alternate addition of CB[7] and the exchanging guest molecule induced the reversible formation of a duplex structure through the formation and dissociation of a bulky complex on DNA. The kinetics of the reversibility was fine-tuned by changing the size of the modified guest moieties. When incorporated into a specific region of the T7 promoter sequence, the guest-modified adenosines enabled tight and reversible control of in vitro transcription and protein expression in the CFE system. This study marks the first utility of the host-guest interaction for gene expression control in the CFE system, opening new avenues for developing DNA-based technology, particularly for precise gene therapy and DNA nanotechnology.
Collapse
Affiliation(s)
- Hidenori Okamura
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Miyagi 980-8578, Japan
| | - Takeyuki Yao
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Miyagi 980-8578, Japan
| | - Fumi Nagatsugi
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Miyagi 980-8578, Japan
| |
Collapse
|
9
|
Pramod M, Alnajjar MA, Schöpper SN, Schwarzlose T, Nau WM, Hennig A. Adamantylglycine as a high-affinity peptide label for membrane transport monitoring and regulation. Chem Commun (Camb) 2024; 60:4810-4813. [PMID: 38602391 DOI: 10.1039/d4cc00602j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The non-canonical amino acid adamantylglycine (Ada) is introduced into peptides to allow high-affinity binding to cucurbit[7]uril (CB7). Introduction of Ada into a cell-penetrating peptide (CPP) sequence had minimal influence on the membrane transport, yet enabled up- and down-regulation of the membrane transport activity.
Collapse
Affiliation(s)
- Malavika Pramod
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, Osnabrück 49069, Germany.
| | - Mohammad A Alnajjar
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, Osnabrück 49069, Germany.
| | - Sandra N Schöpper
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, Osnabrück 49069, Germany.
| | - Thomas Schwarzlose
- School of Science, Constructor University, Campus Ring 1, Bremen 28759, Germany.
| | - Werner M Nau
- School of Science, Constructor University, Campus Ring 1, Bremen 28759, Germany.
| | - Andreas Hennig
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, Osnabrück 49069, Germany.
| |
Collapse
|
10
|
Liu J, Guo J, Li G, Zou L. Cascade signal amplification strategy for the electrochemical aptasensing of nucleic acid: Combination of dual-output toehold-mediated DNA strand displacement, DNA walker and Exo III. Anal Chim Acta 2024; 1297:342370. [PMID: 38438228 DOI: 10.1016/j.aca.2024.342370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/27/2024] [Accepted: 02/10/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Sensitive and selective analysis of low content nucleic acid sequences plays an important role in pathogen analysis, disease diagnosis and biomedicine. The electrochemical biosensor based on toehold-mediated strand displacement reaction (TMSD) is highly attractive in nucleic acid detection due to their improved sensitivity and rapid response. But the traditional TMSD carried out on the electrode always with low displacement efficiency and complicated electrode operation, resulting in compromised sensing performance. There is a great need to construct a novel TMSD based electrochemical detection strategy to overcome such challenges in nucleic acid detecting. RESULT Herein, a triple signal amplification electrochemical aptasensor was developed for ultrasensitive detection of CYFRA21-1 DNA. The dual-output toehold mediated strand displacement reaction (dTMSD) can convert one input to two strands output within one strand displacement cycle. So that it possesses a higher efficiency for improving the sensitivity in comparison with the single-output TMSD. And the fuel strand was configured with a tail to realize successive DNA circuits through self-propelling as a DNA walker. All the above processes were carried out on magnetic beads, which is conducive to achieving effective sample purification and minimizing the background signals. Besides, Exonuclease III was further amplified signal. As a result, through the cascade use of above three technologies, the proposed biosensing strategy realized sensitive detection of target DNA with a low detection limit of 0.35 fM (S/N = 3) and wide linear range (0.5 fM-500 pM). SIGNIFICANCE The proposed novel dTMSD combining multiple signal amplification strategies for electrochemical detection of CYFRA21-1 DNA with easy operation not only possesses excellent sensitivity and selectivity, but also has potential application value for monitoring DNA in serum. Meanwhile, the development of highly sensitive and specific CYFRA21-1 DNA detection methods is very important for the prevention and treatment of lung cancer.
Collapse
Affiliation(s)
- Jinzhi Liu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jiaxin Guo
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Gaiping Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lina Zou
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
11
|
Alešković M, Šekutor M. Overcoming barriers with non-covalent interactions: supramolecular recognition of adamantyl cucurbit[ n]uril assemblies for medical applications. RSC Med Chem 2024; 15:433-471. [PMID: 38389878 PMCID: PMC10880950 DOI: 10.1039/d3md00596h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 02/24/2024] Open
Abstract
Adamantane, a staple in medicinal chemistry, recently became a cornerstone of a supramolecular host-guest drug delivery system, ADA/CB[n]. Owing to a good fit between the adamantane cage and the host cavity of the cucurbit[n]uril macrocycle, formed strong inclusion complexes find applications in drug delivery and controlled drug release. Note that the cucurbit[n]uril host is not solely a delivery vehicle of the ADA/CB[n] system but rather influences the bioactivity and bioavailability of drug molecules and can tune drug properties. Namely, as host-guest interactions are capable of changing the intrinsic properties of the guest molecule, inclusion complexes can become more soluble, bioavailable and more resistant to metabolic conditions compared to individual non-complexed molecules. Such synergistic effects have implications for practical bioapplicability of this complex system and provide a new viewpoint to therapy, beyond the traditional single drug molecule approach. By achieving a balance between guest encapsulation and release, the ADA/CB[n] system has also found use beyond just drug delivery, in fields like bioanalytics, sensing assays, bioimaging, etc. Thus, chemosensing in physiological conditions, indicator displacement assays, in vivo diagnostics and hybrid nanostructures are just some recent examples of the ADA/CB[n] applicability, be it for displacements purposes or as cargo vehicles.
Collapse
Affiliation(s)
- Marija Alešković
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute Bijenička 54 10 000 Zagreb Croatia
| | - Marina Šekutor
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute Bijenička 54 10 000 Zagreb Croatia
| |
Collapse
|
12
|
Hu Y, Gao S, Lu H, Tan S, Chen F, Ke Y, Ying JY. A Self-Immolative DNA Nanogel Vaccine toward Cancer Immunotherapy. NANO LETTERS 2023; 23:9778-9787. [PMID: 37877690 DOI: 10.1021/acs.nanolett.3c02449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The development of precisely engineered vehicles for intracellular delivery and the controlled release of payloads remains a challenge. DNA-based nanomaterials offer a promising solution based on the A-T-G-C alphabet-dictated predictable assembly and high programmability. Herein, we present a self-immolative DNA nanogel vaccine, which can be tracelessly released in the intracellular compartments and activate the immune response. Three building blocks with cytosine-rich overhang domains are designed to self-assemble into a DNA nanogel framework with a controlled size. Two oligo agonists and one antigen peptide are conjugated to the building blocks via an acid-labile chemical linker. Upon internalization into acidic endosomes, the formation of i-motif configurations leads to dissociation of the DNA nanogel vaccine. The acid-labile chemical linker is cleaved, releasing the agonists and antigen in their traceless original form to activate antigen-presenting cells and an immune response. This study presents a novel strategy for constructing delivery platforms for intracellularly stimuli-triggered traceless release of therapeutics.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
| | - Shujun Gao
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
| | - Hongfang Lu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
| | - Susi Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
| | - Feng Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
| | - Yujie Ke
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jackie Y Ying
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
- A*STAR Infectious Diseases Laboratories, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
- Bioengineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
13
|
Zhao Q, Gao Z, Liu X, Song X, Wu D, Ma H, Ren X, Li Y, Wei Q. Dual-Signal Integrated Aptasensor for Microcystin-LR Detection via In Situ Generation of Silver Nanoclusters Induced by Circular DNA Strand Displacement Reactions. Anal Chem 2023; 95:14317-14323. [PMID: 37695886 DOI: 10.1021/acs.analchem.3c02568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Inspired by the signal accumulation of circular DNA strand displacement reactions (CD-SDRs) and the in situ generation of silver nanoclusters (AgNCs) from signature template sequences, a dual-signal integrated aptasensor was designed for microcystin-LR (MC-LR) detection. The aptamer was programmed to be included in an enzyme-free CD-SDR, which utilized MC-LR as the primer and outputted the H1/H2 dsDNA in a continuous manner according to the ideal state. Ingeniously, H1/H2 dsDNA was enriched with signature template sequences, allowing in situ generation of AgNCs signal probes. To enhance the signal amplification performance, co-reaction acceleration strategies and CRISPR-Cas12a nucleases were invoked. The H1/H2 dsDNA could trigger the incidental cleavage performance of CRISPR-Cas12a nucleases: cis-cleavage reduced signature template sequences for the synthetic AgNCs, while trans-cleavage enabled fluorescence (FL) analysis. Meanwhile, AuPtAg was selected as the substrate material to facilitate the S2O82- reduction reaction for enhancing the electrochemiluminescence (ECL) basal signals. ECL and FL detection do not interfere with each other and have improved accuracy and sensitivity, with limits of detection of 0.011 and 0.023 pmol/L, respectively. This widens the path for designing dual-mode sensing strategies for signal amplification.
Collapse
Affiliation(s)
- Qinqin Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Zhongfeng Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xuejing Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xianzhen Song
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yueyun Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
14
|
Yin H, Cheng Q, Bardelang D, Wang R. Challenges and Opportunities of Functionalized Cucurbiturils for Biomedical Applications. JACS AU 2023; 3:2356-2377. [PMID: 37772183 PMCID: PMC10523374 DOI: 10.1021/jacsau.3c00273] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 09/30/2023]
Abstract
Cucurbit[n]uril (CB[n]) macrocycles (especially CB[5] to CB[8]) have shown exceptional attributes since their discovery in 2000. Their stability, water solubility, responsiveness to several stimuli, and remarkable binding properties have enabled a growing number of biological applications. Yet, soon after their discovery, the challenge of their functionalization was set. Nevertheless, after more than two decades, a myriad of CB[n] derivatives has been described, many of them used in cells or in vivo for advanced applications. This perspective summarizes key advances of this burgeoning field and points to the next opportunities and remaining challenges to fully express the potential of these fascinating macrocycles in biology and biomedical sciences.
Collapse
Affiliation(s)
- Hang Yin
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Taipa, Macau 999078, China
| | - Qian Cheng
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Taipa, Macau 999078, China
| | | | - Ruibing Wang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Taipa, Macau 999078, China
| |
Collapse
|
15
|
Ou X, Wan Z, Xiong Y, Huang K, Wei Z, Nuermaimaiti Z, Chen Y, Yiliya D, Lin H, Dai Z, Li Y, Chen P. Homogeneous Dual Fluorescence Count of CD4 in Clinical HIV-Positive Samples via Parallel Catalytic Hairpin Assembly and Multiple Recognitions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38285-38293. [PMID: 37526600 DOI: 10.1021/acsami.3c06742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Regularly measuring the level of CD4+ cells is necessary for monitoring progression and predicting prognosis in patients suffering from an infection with the human immunodeficiency virus (HIV). However, the current flow cytometry standard detection method is expensive and complicated. A parallel catalytic hairpin assembly (CHA)-assisted fluorescent aptasensor is reported for homogeneous CD4 count by targeting the CD4 protein expressed on the membrane of CD4+ cells. Detection was achieved using CdTe quantum dots (QDs) and methylene blue (MB) as signal reporters. CdTe QDs distinguished CHA-assisted release of Ag+ and C-Ag+-C and MB that has differentiated cytosine (C)-rich single-stranded DNA (ssDNA) and C-Ag+-C, generating changes in fluorescence intensity. With the assistance of the CHA strategy and luminescent nanomaterials, this method reached limits of detection of 0.03 fg/mL for the CD4 protein and 0.3 cells/mL for CD4+ cells with linear ranges of 0.1 to 100 fg/mL and 1 to 1000 cells/mL, respectively. The method was validated in 50 clinical whole blood samples consisting of 30 HIV-positive patients, 10 healthy volunteers, and 10 patients with cancer or other chronic infections. The findings from this method were in good agreement with the data from clinical flow cytometry. Due to its sensitivity, affordability, and ease of operation, the current method has demonstrated great potential for routine CD4 counts for the management of HIV, especially in communities and remote areas.
Collapse
Affiliation(s)
- Xiaoqi Ou
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Urology, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhengli Wan
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Urology, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ying Xiong
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Urology, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Zeliang Wei
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Urology, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zulimire Nuermaimaiti
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Urology, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanting Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Urology, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Duerdanna Yiliya
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Urology, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyin Lin
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Urology, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenjie Dai
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Urology, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Li
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Urology, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Piaopiao Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Urology, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
16
|
Sim J, Lee A, Kim D, Kim KL, Park BJ, Park KM, Kim K. A Combination of Bio-Orthogonal Supramolecular Clicking and Proximity Chemical Tagging as a Supramolecular Tool for Discovery of Putative Proteins Associated with Laminopathic Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208088. [PMID: 36843266 DOI: 10.1002/smll.202208088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/08/2023] [Indexed: 05/25/2023]
Abstract
Protein mutations alter protein-protein interactions that can lead to a number of illnesses. Mutations in lamin A (LMNA) have been reported to cause laminopathies. However, the proteins associated with the LMNA mutation have mostly remained unexplored. Herein, a new chemical tool for proximal proteomics is reported, developed by a combination of proximity chemical tagging and a bio-orthogonal supramolecular latching based on cucurbit[7]uril (CB[7])-based host-guest interactions. As this host-guest interaction acts as a noncovalent clickable motif that can be unclicked on-demand, this new chemical tool is exploited for reliable detection of the proximal proteins of LMNA and its mutant that causes laminopathic dilated cardiomyopathy (DCM). Most importantly, a comparison study reveals, for the first time, mutant-dependent alteration in LMNA proteomic environments, which allows to identify putative laminopathic DCM-linked proteins including FOXJ3 and CELF2. This study demonstrates the feasibility of this chemical tool for reliable proximal proteomics, and its immense potential as a new research platform for discovering biomarkers associated with protein mutation-linked diseases.
Collapse
Affiliation(s)
- Jaehwan Sim
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Ara Lee
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dasom Kim
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kyung Lock Kim
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Bum-Joon Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Kyeng Min Park
- Department of Biochemistry, Daegu Catholic University School of Medicine, Daegu, 42471, Republic of Korea
| | - Kimoon Kim
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
17
|
Hu M, Chu Z, Wang H, Zhao W, Wu T. Transformation of remote toehold-mediated strand displacement for expanding the regulatory toolbox. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
18
|
Updated toolkits for nucleic acid-based biosensors. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|