1
|
Reisenbauer JC, Sicinski KM, Arnold FH. Catalyzing the future: recent advances in chemical synthesis using enzymes. Curr Opin Chem Biol 2024; 83:102536. [PMID: 39369557 DOI: 10.1016/j.cbpa.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024]
Abstract
Biocatalysis has the potential to address the need for more sustainable organic synthesis routes. Protein engineering can tune enzymes to perform in cascade reactions and for efficient synthesis of enantiomerically enriched compounds, using both natural and new-to-nature reaction pathways. This review highlights recent achievements in biocatalysis, especially the development of novel enzymatic syntheses to access versatile small molecule intermediates and complex biomolecules. Biocatalytic strategies for the degradation of persistent pollutants and approaches for biomass valorization are also discussed. The transition of chemical synthesis to a greener future will be accelerated by implementing enzymes and engineering them for high performance and new activities.
Collapse
Affiliation(s)
- Julia C Reisenbauer
- Division of Chemistry and Chemical Engineering, 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, United States
| | - Kathleen M Sicinski
- Division of Chemistry and Chemical Engineering, 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, United States
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, United States.
| |
Collapse
|
2
|
Stout CN, Renata H. Total Synthesis Facilitates In Vitro Reconstitution of the C-S Bond-Forming P450 in Griseoviridin Biosynthesis. J Am Chem Soc 2024; 146:21815-21823. [PMID: 39042396 DOI: 10.1021/jacs.4c06080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Griseoviridin is a group A streptogramin natural product from Streptomyces with broad-spectrum antibacterial activity. A hybrid polyketide-nonribosomal peptide, it comprises a 23-membered macrocycle, an embedded oxazole motif, and a macrolactone with a unique ene-thiol linkage. Recent analysis of the griseoviridin biosynthetic gene cluster implicated SgvP, a cytochrome P450 monooxygenase, in late-stage installation of the critical C-S bond. While genetic and crystallographic experiments provided indirect evidence to support this hypothesis, the exact function of SgvP has never been confirmed biochemically. Herein, we report a convergent total synthesis of pre-griseoviridin, the putative substrate of P450 SgvP and precursor to griseoviridin. Our strategy features concise and rapid assembly of two fragments joined via sequential peptide coupling and Stille macrocyclization. Access to pre-griseoviridin then enabled in vitro validation of SgvP as the C-S bond-forming P450 during griseoviridin biosynthesis, culminating in a nine-step chemoenzymatic synthesis of griseoviridin.
Collapse
Affiliation(s)
- Carter N Stout
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas 77005, United States
- Skaggs Doctoral Program in the Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Li SH, Zhang X, Mei ZL, Liu Y, Ma JA, Zhang FG. Chemoenzymatic Synthesis of Fluorinated Mycocyclosin Enabled by the Engineered Cytochrome P450-Catalyzed Biaryl Coupling Reaction. J Am Chem Soc 2024; 146:19962-19973. [PMID: 38985576 DOI: 10.1021/jacs.4c03499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Installing fluorine atoms onto natural products holds great promise for the generation of fluorinated molecules with improved or novel pharmacological properties. The enzymatic oxidative carbon-carbon coupling reaction represents a straightforward strategy for synthesizing biaryl architectures, but the exploration of this method for producing fluorine-substituted derivatives of natural products remains elusive. Here, in this study, we report the protein engineering of cytochrome P450 from Mycobacterium tuberculosis (MtCYP121) for the construction of a series of new-to-nature fluorine-substituted Mycocyclosin derivatives. This protocol takes advantage of a "hybrid" chemoenzymatic procedure consisting of tyrosine phenol lyase-catalyzed fluorotyrosine preparation from commercially available fluorophenols, intermolecular chemical condensation to give cyclodityrosines, and an engineered MtCYP121-catalyzed intramolecular biphenol coupling reaction to complete the strained macrocyclic structure. Computational mechanistic studies reveal that MtCYP121 employs Cpd I to abstract a hydrogen atom from the proximal phenolic hydroxyl group of the substrate to trigger the reaction. Then, conformational change makes the two phenolic hydroxyl groups close enough to undergo intramolecular hydrogen atom transfer with the assistance of a pocket water molecule. The final diradical coupling process completes the intramolecular C-C bond formation. The efficiency of the biaryl coupling reaction was found to be influenced by various fluorine substitutions, primarily due to the presence of distinct binding conformations.
Collapse
Affiliation(s)
- Shuo-Han Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Xue Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Ze-Long Mei
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
Keyes ED, Mifflin MC, Austin MJ, Sandres J, Roberts AG. Chemical cyclization of tyrosine-containing peptides via in situ generated triazolinedione peptides. Methods Enzymol 2024; 698:89-109. [PMID: 38886041 DOI: 10.1016/bs.mie.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Tyr-derived cyclic peptide natural products are formed by enzymatic manifolds that oxidatively cross-link embedded phenolic side chains of tyrosine (Tyr) and 4-hydroxyphenylglycine residues during their controlled production. Bioactive Tyr-derived cyclic peptides, such as the arylomycins and vancomycins, continue to motivate the development of enzymatic and chemical strategies for their de novo assembly and modification. However, chemical access to these structurally diverse natural cycles can be challenging and step intensive. Therefore, we developed an oxidative procedure to selectively convert Tyr-containing N4-substituted 1,2,4-triazolidine-3,5-dione peptides (urazole peptides) into stable Tyr-linked cyclic peptides. We show that Tyr-containing urazole peptides are simple to prepare and convert into reactive N4-substituted 1,2,4-triazoline-3,5-dione peptides by oxidation, which then undergo spontaneous cyclization under mildly basic aqueous conditions to form a cross-linkage with the phenol side chain of embedded Tyr residues. Using this approach, we have demonstrated access to over 25 Tyr-linked cyclic peptides (3- to 11-residue cycles) with good tolerance of native residue side chain functionalities. Importantly, this method is simple to perform, and product formation can be quickly confirmed by mass spectrometric and 1H NMR spectroscopic analyses.
Collapse
Affiliation(s)
- E Dalles Keyes
- Department of Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Marcus C Mifflin
- Department of Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Maxwell J Austin
- Department of Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Jesus Sandres
- Department of Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Andrew G Roberts
- Department of Chemistry, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
5
|
Liu CL, Wang ZJ, Shi J, Yan ZY, Zhang GD, Jiao RH, Tan RX, Ge HM. P450-Modified Multicyclic Cyclophane-Containing Ribosomally Synthesized and Post-Translationally Modified Peptides. Angew Chem Int Ed Engl 2024; 63:e202314046. [PMID: 38072825 DOI: 10.1002/anie.202314046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 01/24/2024]
Abstract
Cyclic peptides with cyclophane linkers are an attractive compound type owing to the fine-tuned rigid three-dimensional structures and unusual biophysical features. Cytochrome P450 enzymes are capable of catalyzing not only the C-C and C-O oxidative coupling reactions found in vancomycin and other nonribosomal peptides (NRPs), but they also exhibit novel catalytic activities to generate cyclic ribosomally synthesized and post-translationally modified peptides (RiPPs) through cyclophane linkage. To discover more P450-modified multicyclic RiPPs, we set out to find cryptic and unknown P450-modified RiPP biosynthetic gene clusters (BGCs) through genome mining. Synergized bioinformatic analysis reveals that P450-modified RiPP BGCs are broadly distributed in bacteria and can be classified into 11 classes. Focusing on two classes of P450-modified RiPP BGCs where precursor peptides contain multiple conserved aromatic amino acid residues, we characterized 11 novel P450-modified multicyclic RiPPs with different cyclophane linkers through heterologous expression. Further mutation of the key ring-forming residues and combinatorial biosynthesis study revealed the order of bond formation and the specificity of P450s. This study reveals the functional diversity of P450 enzymes involved in the cyclophane-containing RiPPs and indicates that P450 enzymes are promising tools for rapidly obtaining structurally diverse cyclic peptide derivatives.
Collapse
Affiliation(s)
- Cheng Li Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Zi Jie Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Zhang Yuan Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Guo Dong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
6
|
Carson MC, Kozlowski MC. Recent advances in oxidative phenol coupling for the total synthesis of natural products. Nat Prod Rep 2024; 41:208-227. [PMID: 37294301 PMCID: PMC10709532 DOI: 10.1039/d3np00009e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Covering: 2008 to 2023This review will describe oxidative phenol coupling as applied in the total synthesis of natural products. This review covers catalytic and electrochemical methods with a brief comparison to stoichiometric and enzymatic systems assessing their practicality, atom economy, and other measures. Natural products forged by C-C and C-O oxidative phenol couplings as well as from alkenyl phenol couplings will be addressed. Additionally, exploration into catalytic oxidative coupling of phenols and other related species (carbazoles, indoles, aryl ethers, etc.) will be surveyed. Future directions of this particular area of research will also be assessed.
Collapse
Affiliation(s)
- Matthew C Carson
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
| | - Marisa C Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
| |
Collapse
|
7
|
Hu YL, Yin FZ, Shi J, Ma SY, Wang ZR, Tan RX, Jiao RH, Ge HM. P450-Modified Ribosomally Synthesized Peptides with Aromatic Cross-Links. J Am Chem Soc 2023; 145:27325-27335. [PMID: 38069901 DOI: 10.1021/jacs.3c07416] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Cyclization of linear peptides is an effective strategy to convert flexible molecules into rigid compounds, which is of great significance for enhancing the peptide stability and bioactivity. Despite significant advances in the past few decades, Nature and chemists' ability to macrocyclize linear peptides is still quite limited. P450 enzymes have been reported to catalyze macrocyclization of peptides through cross-linkers between aromatic amino acids with only three examples. Herein, we developed an efficient workflow for the identification of P450-modified RiPPs in bacterial genomes, resulting in the discovery of a large number of P450-modified RiPP gene clusters. Combined with subsequent expression and structural characterization of the products, we have identified 11 novel P450-modified RiPPs with different cross-linking patterns from four distinct classes. Our results greatly expand the structural diversity of P450-modified RiPPs and provide new insights and enzymatic tools for the production of cyclic peptides.
Collapse
Affiliation(s)
- Yi Ling Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Fang Zhou Yin
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Shi Ying Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Zi Ru Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Molinaro C, Kelly S, Tang A, Iding H, Stocker P, Linghu X, Gosselin F. Asymmetric Synthesis of N-Alkyl Amino Acids through a Biocatalytic Dynamic Kinetic Resolution of PEGylated N-Alkyl Amino Esters. Org Lett 2023; 25:8927-8931. [PMID: 38051775 DOI: 10.1021/acs.orglett.3c03784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The first examples of a practical procedure for a lipase-catalyzed dynamic kinetic resolution of PEGylated N-alkyl amino esters is reported. This method allows for the preparation of a broad range of aromatic and aliphatic enantiomerically enriched N-alkyl unnatural amino acids in up to 98% yield and 99% ee. We have found that PEGylated esters have a significant solubility advantage and improved reactivity over traditional hydrophobic lipase substrates, thereby allowing for efficient and scalable dynamic kinetic resolution (DKR) under aqueous conditions.
Collapse
Affiliation(s)
- Carmela Molinaro
- Department of Small Molecule Process Chemistry, Genentech USA, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Sean Kelly
- Department of Small Molecule Process Chemistry, Genentech USA, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Allison Tang
- Department of Small Molecule Process Chemistry, Genentech USA, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Hans Iding
- Department of Process Chemistry & Catalysis, Synthetic Molecules Technical Development, F. Hoffmann-La Roche AG Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Patrik Stocker
- Department of Process Chemistry & Catalysis, Synthetic Molecules Technical Development, F. Hoffmann-La Roche AG Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Xin Linghu
- Department of Small Molecule Process Chemistry, Genentech USA, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Francis Gosselin
- Department of Small Molecule Process Chemistry, Genentech USA, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
9
|
He BB, Liu J, Cheng Z, Liu R, Zhong Z, Gao Y, Liu H, Song ZM, Tian Y, Li YX. Bacterial Cytochrome P450 Catalyzed Post-translational Macrocyclization of Ribosomal Peptides. Angew Chem Int Ed Engl 2023; 62:e202311533. [PMID: 37767859 DOI: 10.1002/anie.202311533] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a fascinating group of natural products that exhibit diverse structural features and bioactivities. P450-catalyzed RiPPs stand out as a unique but underexplored family. Herein, we introduce a rule-based genome mining strategy that harnesses the intrinsic biosynthetic principles of RiPPs, including the co-occurrence and co-conservation of precursors and P450s and interactions between them, successfully facilitating the identification of diverse P450-catalyzed RiPPs. Intensive BGC characterization revealed four new P450s, KstB, ScnB, MciB, and SgrB, that can catalyze the formation of Trp-Trp-Tyr (one C-C and two C-N bonds), Tyr-Trp (C-C bond), Trp-Trp (C-N bond), and His-His (ether bond) crosslinks, respectively, within three or four residues. KstB, ScnB, and MciB could accept non-native precursors, suggesting they could be promising starting templates for bioengineering to construct macrocycles. Our study highlights the potential of P450s to expand the chemical diversity of strained macrocyclic peptides and the range of biocatalytic tools available for peptide macrocyclization.
Collapse
Affiliation(s)
- Bei-Bei He
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jing Liu
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhuo Cheng
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Runze Liu
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zheng Zhong
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ying Gao
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hongyan Liu
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhi-Man Song
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yongqi Tian
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yong-Xin Li
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
10
|
Libman A, Ben-Lulu M, Gaster E, Bera R, Shames AI, Shaashua O, Vershinin V, Torubaev Y, Pappo D. Multicopper Clusters Enable Oxidative Phenol Macrocyclization (OxPM) of Peptides. J Am Chem Soc 2023; 145:21002-21011. [PMID: 37721386 DOI: 10.1021/jacs.3c06978] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The biosynthesis of glycopeptide antibiotics such as vancomycin and other biologically active biaryl-bridged and diaryl ether-linked macrocyclic peptides includes key enzymatic oxidative phenol macrocyclization(s) of linear precursors. However, a simple and step-economical biomimetic version of this transformation remains underdeveloped. Here, we report highly efficient conditions for preparing biaryl-bridged and diaryl ether-linked macrocyclic peptides based on multicopper(II) clusters. The selective syntheses of ring models of vancomycin and the arylomycin cyclic core illustrate the potential of this technology to facilitate the assembly of complex antibiotic macrocyclic peptides, whose syntheses are considered highly challenging. The unprecedented ability of multicopper(II) clusters to chelate tethered diphenols and promote intramolecular over intermolecular coupling reactions demonstrates that copper clusters can catalyze redox transformations that cannot be accessed by smaller metal catalysts.
Collapse
Affiliation(s)
- Anna Libman
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Mor Ben-Lulu
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Eden Gaster
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ratnadeep Bera
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Alexander I Shames
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Omer Shaashua
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Vlada Vershinin
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yury Torubaev
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Doron Pappo
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
11
|
Abstract
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christian A Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
12
|
Keyes ED, Mifflin MC, Austin MJ, Alvey BJ, Lovely LH, Smith A, Rose TE, Buck-Koehntop BA, Motwani J, Roberts AG. Chemoselective, Oxidation-Induced Macrocyclization of Tyrosine-Containing Peptides. J Am Chem Soc 2023; 145:10071-10081. [PMID: 37119237 DOI: 10.1021/jacs.3c00210] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Inspired by nature's wide range of oxidation-induced modifications to install cross-links and cycles at tyrosine (Tyr) and other phenol-containing residue side chains, we report a Tyr-selective strategy for the preparation of Tyr-linked cyclic peptides. This approach leverages N4-substituted 1,2,4-triazoline-3,5-diones (TADs) as azo electrophiles that react chemoselectively with the phenolic side chain of Tyr residues to form stable C-N1-linked cyclic peptides. In the developed method, a precursor 1,2,4-triazolidine-3,5-dione moiety, also known as urazole, is readily constructed at any free amine revealed on a solid-supported peptide. Once prepared, the N4-substituted urazole peptide is selectively oxidized using mild, peptide-compatible conditions to generate an electrophilic N4-substituted TAD peptide intermediate that reacts selectively under aqueous conditions with internal and terminal Tyr residues to furnish Tyr-linked cyclic peptides. The approach demonstrates good tolerance of native residue side chains and enables access to cyclic peptides ranging from 3- to 11-residues in size (16- to 38-atom-containing cycles). The identity of the installed Tyr-linkage, a stable covalent C-N1 bond, was characterized using NMR spectroscopy. Finally, we applied the developed method to prepare biologically active Tyr-linked cyclic peptides bearing the integrin-binding RGDf epitope.
Collapse
Affiliation(s)
- E Dalles Keyes
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Marcus C Mifflin
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Maxwell J Austin
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Brighton J Alvey
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Lotfa H Lovely
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Andriea Smith
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Tristin E Rose
- 1200 Pharma LLC, 6100 Bristol Parkway, Culver City, California 90230, United States
| | - Bethany A Buck-Koehntop
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jyoti Motwani
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Andrew G Roberts
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
13
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2022. [DOI: 10.1039/d2np90034c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as hyjapone A from Hypericum japonicum.
Collapse
Affiliation(s)
- Robert A. Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK
| | | |
Collapse
|