1
|
Hou Z, Liu Y, Yao S, Wang S, Ji Y, Fu W, Xie J, Yan YM, Yang Z. Inducing weak and negative Jahn-Teller distortions to alleviate structural deformations for stable sodium storage. MATERIALS HORIZONS 2024. [PMID: 39224063 DOI: 10.1039/d4mh01006j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In the quest for efficient supercapacitor materials, manganese-based layered oxide cathodes stand out for their cost-effectiveness and high theoretical capacity. However, their progress is hindered by the Jahn-Teller (J-T) distortion due to the unavoidable Mn4+ to Mn3+ reduction during ion storage processes. Our study addresses this challenge by stabilizing the K0.5MnO2 cathode through strategic Mg2+ substitution. This substitution leads to an altered Mn3+ electronic configuration, effectively mitigating the strong J-T distortion during ion storage processes. We provide a comprehensive analysis combining experimental evidence and theoretical insights, highlighting the emergence of the weak and negative J-T effects with reduced structural deformation during electrochemical cycling. Our findings reveal that the K0.5Mn0.85Mg0.15O2 cathode exhibits remarkable durability, retaining 96.0% of initial capacitance after 8000 cycles. This improvement is attributed to the specific electronic configurations of Mn3+ ions, which play a crucial role in minimizing volumetric changes and counteracting structural deformation typically induced by the strong J-T distortion. Our study not only advances the understanding of managing J-T distortion in manganese-based cathodes but also opens new avenues for designing high-stability supercapacitors and other energy storage devices by tailoring electrode materials based on their electronic configurations.
Collapse
Affiliation(s)
- Zishan Hou
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Yuanming Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Shuyun Yao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Shiyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Yingjie Ji
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Weijie Fu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Jiangzhou Xie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yi-Ming Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Zhiyu Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
2
|
Jia Z, Chen Q, Wang W, Sun R, Li Z, Hübner R, Zhou S, Cai M, Lv W, Yu Z, Zhang F, Zhao M, Tian S, Liu L, Zeng Z, Jiang Y, Wang Z. Multi-Level Switching of Spin-Torque Ferromagnetic Resonance in 2D Magnetite. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401944. [PMID: 38704733 PMCID: PMC11234467 DOI: 10.1002/advs.202401944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/08/2024] [Indexed: 05/07/2024]
Abstract
2D magnetic materials hold substantial promise in information storage and neuromorphic device applications. However, achieving a 2D material with high Curie temperature (TC), environmental stability, and multi-level magnetic states remains a challenge. This is particularly relevant for spintronic devices, which require multi-level resistance states to enhance memory density and fulfil low power consumption and multi-functionality. Here, the synthesis of 2D non-layered triangular and hexagonal magnetite (Fe3O4) nanosheets are proposed with high TC and environmental stability, and demonstrate that the ultrathin triangular nanosheets show broad antiphase boundaries (bAPBs) and sharp antiphase boundaries (sAPBs), which induce multiple spin precession modes and multi-level resistance. Conversely, the hexagonal nanosheets display slip bands with sAPBs associated with pinning effects, resulting in magnetic-field-driven spin texture reversal reminiscent of "0" and "1" switching signals. In support of the micromagnetic simulation, direct explanation is offer to the variation in multi-level resistance under a microwave field, which is ascribed to the multi-spin texture magnetization structure and the randomly distributed APBs within the material. These novel 2D magnetite nanosheets with unique spin textures and spin dynamics provide an exciting platform for constructing real multi-level storage devices catering to emerging information storage and neuromorphic computing requirements.
Collapse
Affiliation(s)
- Zhiyan Jia
- Institute of Quantum Materials and DevicesSchool of Materials Science and EngineeringTiangong UniversityTianjin300387China
- International Iberian Nanotechnology Laboratory (INL)Braga4715‐330Portugal
| | - Qian Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of EducationSchool of PhysicsSoutheast UniversityNanjing211189China
- Key Laboratory of Nanodevices and Applications Suzhou Institute of Nano‐Tech and Nano‐Bionics CASSuzhou215123China
| | - Wenjie Wang
- International Iberian Nanotechnology Laboratory (INL)Braga4715‐330Portugal
- College of ScienceChina Agricultural UniversityBeijing100083China
| | - Rong Sun
- International Iberian Nanotechnology Laboratory (INL)Braga4715‐330Portugal
| | - Zichao Li
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐RossendorfBautzner Landstrasse 400D‐01328DresdenGermany
| | - René Hübner
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐RossendorfBautzner Landstrasse 400D‐01328DresdenGermany
| | - Shengqiang Zhou
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐RossendorfBautzner Landstrasse 400D‐01328DresdenGermany
| | - Miming Cai
- Department of PhysicsBeijing Normal UniversityBeijing100875China
| | - Weiming Lv
- Key Laboratory of Nanodevices and Applications Suzhou Institute of Nano‐Tech and Nano‐Bionics CASSuzhou215123China
| | - Zhipeng Yu
- Key Laboratory of Nanodevices and Applications Suzhou Institute of Nano‐Tech and Nano‐Bionics CASSuzhou215123China
| | - Fang Zhang
- Institute of Quantum Materials and DevicesSchool of Materials Science and EngineeringTiangong UniversityTianjin300387China
| | - Mengfan Zhao
- Institute of Quantum Materials and DevicesSchool of Materials Science and EngineeringTiangong UniversityTianjin300387China
| | - Sen Tian
- Institute of Quantum Materials and DevicesSchool of Materials Science and EngineeringTiangong UniversityTianjin300387China
| | - Lixuan Liu
- Institute of Quantum Materials and DevicesSchool of Materials Science and EngineeringTiangong UniversityTianjin300387China
| | - Zhongming Zeng
- Key Laboratory of Nanodevices and Applications Suzhou Institute of Nano‐Tech and Nano‐Bionics CASSuzhou215123China
| | - Yong Jiang
- Institute of Quantum Materials and DevicesSchool of Materials Science and EngineeringTiangong UniversityTianjin300387China
| | - Zhongchang Wang
- International Iberian Nanotechnology Laboratory (INL)Braga4715‐330Portugal
- School of ChemistryBeihang UniversityBeijing100191China
| |
Collapse
|
3
|
Feng Y, Khalid M, Xiao H, Hu P. Two-dimensional material assisted-growth strategy: new insights and opportunities. NANOTECHNOLOGY 2024; 35:322001. [PMID: 38688246 DOI: 10.1088/1361-6528/ad4553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
The exploration and synthesis of novel materials are integral to scientific and technological progress. Since the prediction and synthesis of two-dimensional (2D) materials, it is expected to play an important role in the application of industrialization and the information age, resulting from its excellent physical and chemical properties. Currently, researchers have effectively utilized a range of material synthesis techniques, including mechanical exfoliation, redox reactions, chemical vapor deposition, and chemical vapor transport, to fabricate two-dimensional materials. However, despite their rapid development, the widespread industrial application of 2D materials faces challenges due to demanding synthesis requirements and high costs. To address these challenges, assisted growth techniques such as salt-assisted, gas-assisted, organic-assisted, and template-assisted growth have emerged as promising approaches. Herein, this study gives a summary of important developments in recent years in the assisted growth synthesis of 2D materials. Additionally, it highlights the current difficulties and possible benefits of the assisted-growth approach for 2D materials. It also highlights novel avenues of development and presents opportunities for new lines of investigation.
Collapse
Affiliation(s)
- Yuming Feng
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Mansoor Khalid
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Haiying Xiao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - PingAn Hu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, People's Republic of China
- Key Lab of Microsystem and Microstructure of Ministry of Education, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| |
Collapse
|
4
|
He L, Nong H, Tan J, Wu Q, Zheng R, Zhao S, Yu Q, Wang J, Liu B. Growth of 2D Cr 2 O 3 -CrN Mosaic Heterostructures with Tunable Room-Temperature Ferromagnetism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304946. [PMID: 37482950 DOI: 10.1002/adma.202304946] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Indexed: 07/25/2023]
Abstract
2D magnets have generated much attention due to their potential for spintronic devices. Heterostructures of 2D magnets are interesting platforms for exploring physical phenomena and applications. However, the controlled growth of 2D room-temperature ferromagnetic heterostructures is challenging. Here, one-pot chemical vapor deposition growth of stable 2D Cr2 O3 -CrN mosaic heterostructures (MHs) is reported with a controlled ratio of components that possess robust room-temperature ferromagnetism. The 2D MHs consist of Cr2 O3 flakes with embedded CrN subdomains and the CrN:Cr2 O3 ratio can be tuned from 0% to 100% during growth. By changing the CrN:Cr2 O3 ratio, the ferromagnetism of the MHs (e.g., saturation magnetization, coercive field), which originates from the interfacial coupling between Cr2 O3 and CrN, can be controlled. Importantly, the obtained Cr2 O3 -CrN MHs are stable in air at elevated temperatures and have robust ferromagnetism with Curie temperature >400 K. This work presents a facile method for fabricating 2D MHs with tunable magnetism which will benefit high-temperature spintronics.
Collapse
Affiliation(s)
- Liqiong He
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Huiyu Nong
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Junyang Tan
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Qinke Wu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Rongxu Zheng
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Shilong Zhao
- School of Electronic Information Engineering, Foshan University, Foshan, 528000, P. R. China
| | - Qiangmin Yu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Jingwei Wang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|