1
|
Cui Y, Han D, Bai X, Shi W. Development and applications of enzymatic peptide and protein ligation. J Pept Sci 2024:e3657. [PMID: 39433441 DOI: 10.1002/psc.3657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024]
Abstract
Chemical synthesis of complex peptides and proteins continues to play increasingly important roles in industry and academia, where strategies for covalent ligation of two or more peptide fragments to produce longer peptides and proteins in convergent manners have become critical. In recent decades, efficient and site-selective ligation strategies mediated by exploiting the biocatalytic capacity of nature's diverse toolkit (i.e., enzymes) have been widely recognized as a powerful extension of existing chemical strategies. In this review, we present a chronological overview of the development of proteases, transpeptidases, transglutaminases, and ubiquitin ligases. We survey the different properties between the ligation reactions of various enzymes, including the selectivity and efficiency of the reaction, the ligation "scar" left in the product, the type of amide bond formed (natural or isopeptide), the synthetic availability of the reactants, and whether the enzymes are orthogonal to another. This review also describes how the inherent specificity of these enzymes can be exploited for peptide and protein ligation.
Collapse
Affiliation(s)
- Yan Cui
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Dongyang Han
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Xuerong Bai
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Weiwei Shi
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Dasgupta A, Nandi S, Gupta S, Roy S, Das C. To Ub or not to Ub: The epic dilemma of histones that regulate gene expression and epigenetic cross-talk. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195033. [PMID: 38750882 DOI: 10.1016/j.bbagrm.2024.195033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/04/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
A dynamic array of histone post-translational modifications (PTMs) regulate diverse cellular processes in the eukaryotic chromatin. Among them, histone ubiquitination is particularly complex as it alters nucleosome surface area fostering intricate cross-talk with other chromatin modifications. Ubiquitin signaling profoundly impacts DNA replication, repair, and transcription. Histones can undergo varied extent of ubiquitination such as mono, multi-mono, and polyubiquitination, which brings about distinct cellular fates. Mechanistic studies of the ubiquitin landscape in chromatin have unveiled a fascinating tapestry of events that orchestrate gene regulation. In this review, we summarize the key contributors involved in mediating different histone ubiquitination and deubiquitination events, and discuss their mechanism which impacts cell transcriptional identity and DNA damage response. We also focus on the proteins bearing epigenetic reader modules critical in discerning site-specific histone ubiquitination, pivotal for establishing complex epigenetic crosstalk. Moreover, we highlight the role of histone ubiquitination in different human diseases including neurodevelopmental disorders and cancer. Overall the review elucidates the intricate orchestration of histone ubiquitination impacting diverse cellular functions and disease pathogenesis, and provides insights into the current challenges of targeting them for therapeutic interventions.
Collapse
Affiliation(s)
- Anirban Dasgupta
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Sayan Gupta
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
3
|
Ai H, Pan M, Liu L. Chemical Synthesis of Human Proteoforms and Application in Biomedicine. ACS CENTRAL SCIENCE 2024; 10:1442-1459. [PMID: 39220697 PMCID: PMC11363345 DOI: 10.1021/acscentsci.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Limited understanding of human proteoforms with complex posttranslational modifications and the underlying mechanisms poses a major obstacle to research on human health and disease. This Outlook discusses opportunities and challenges of de novo chemical protein synthesis in human proteoform studies. Our analysis suggests that to develop a comprehensive, robust, and cost-effective methodology for chemical synthesis of various human proteoforms, new chemistries of the following types need to be developed: (1) easy-to-use peptide ligation chemistries allowing more efficient de novo synthesis of protein structural domains, (2) robust temporary structural support strategies for ligation and folding of challenging targets, and (3) efficient transpeptidative protein domain-domain ligation methods for multidomain proteins. Our analysis also indicates that accurate chemical synthesis of human proteoforms can be applied to the following aspects of biomedical research: (1) dissection and reconstitution of the proteoform interaction networks, (2) structural mechanism elucidation and functional analysis of human proteoform complexes, and (3) development and evaluation of drugs targeting human proteoforms. Overall, we suggest that through integrating chemical protein synthesis with in vivo functional analysis, mechanistic biochemistry, and drug development, synthetic chemistry would play a pivotal role in human proteoform research and facilitate the development of precision diagnostics and therapeutics.
Collapse
Affiliation(s)
- Huasong Ai
- New
Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life
Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Center for Synthetic and Systems Biology, Department
of Chemistry, Tsinghua University, Beijing 100084, China
- Institute
of Translational Medicine, School of Pharmacy, School of Chemistry
and Chemical Engineering, National Center for Translational Medicine
(Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Man Pan
- Institute
of Translational Medicine, School of Pharmacy, School of Chemistry
and Chemical Engineering, National Center for Translational Medicine
(Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Liu
- New
Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life
Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Center for Synthetic and Systems Biology, Department
of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Peng S, Liu X, Lu C, Wang H, Liu X, Gong Q, Tao H, Xu H, Tian C, Xu G, Li JB. Efficient Chemical Synthesis of Multi-Monoubiquitylated and Diubiquitylated Histones by the α-Halogen Ketone-Mediated Strategy. Bioconjug Chem 2024; 35:944-953. [PMID: 38954775 DOI: 10.1021/acs.bioconjchem.4c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The chemical synthesis of homogeneously ubiquitylated histones is a powerful approach to decipher histone ubiquitylation-dependent epigenetic regulation. Among the various methods, α-halogen ketone-mediated conjugation chemistry has recently been an attractive strategy to generate single-monoubiquitylated histones for biochemical and structural studies. Herein, we report the use of this strategy to prepare not only dual- and even triple-monoubiquitylated histones but also diubiquitin-modified histones. We were surprised to find that the synthetic efficiencies of multi-monoubiquitylated histones were comparable to those of single-monoubiquitylated ones, suggesting that this strategy is highly tolerant to the number of ubiquitin monomers installed onto histones. The facile generation of a series of single-, dual-, and triple-monoubiquitylated H3 proteins enabled us to evaluate the influence of ubiquitylation patterns on the binding of DNA methyltransferase 1 (DNMT1) to nucleosomes. Our study highlights the potential of site-specific conjugation chemistry to generate chemically defined histones for epigenetic studies.
Collapse
Affiliation(s)
- Shuai Peng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou 215123, China
| | - Xin Liu
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Chengpiao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou 215123, China
| | - Haibo Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou 215123, China
| | - Xiaotong Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou 215123, China
| | - Qingyue Gong
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Huizhong Tao
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Hongrui Xu
- Suzhou Municipal Center for Disease Control and Prevention, Suzhou 215004, China
| | - Changlin Tian
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou 215123, China
| | - Jia-Bin Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Zhang YN, Wan XC, Tang Y, Chen Y, Zheng FH, Cui ZH, Zhang H, Zhou Z, Fang GM. Employing unnatural promiscuity of sortase to construct peptide macrocycle libraries for ligand discovery. Chem Sci 2024; 15:9649-9656. [PMID: 38939140 PMCID: PMC11206207 DOI: 10.1039/d4sc01992j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/11/2024] [Indexed: 06/29/2024] Open
Abstract
With the increasing attention paid to macrocyclic scaffolds in peptide drug development, genetically encoded peptide macrocycle libraries have become invaluable sources for the discovery of high-affinity peptide ligands targeting disease-associated proteins. The traditional phage display technique of constructing disulfide-tethered macrocycles by cysteine oxidation has the inherent drawback of reduction instability of the disulfide bond. Chemical macrocyclization solves the problem of disulfide bond instability, but the involved highly electrophilic reagents are usually toxic to phages and may bring undesirable side reactions. Here, we report a unique Sortase-mediated Peptide Ligation and One-pot Cyclization strategy (SPLOC) to generate peptide macrocycle libraries, avoiding the undesired reactions of electrophiles with phages. The key to this platform is to mine the unnatural promiscuity of sortase on the X residue of the pentapeptide recognition sequence (LPXTG). Low reactive electrophiles are incorporated into the X-residue side chain, enabling intramolecular cyclization with the cysteine residue of the phage-displayed peptide library. Utilizing the genetically encoded peptide macrocycle library constructed by the SPLOC platform, we found a high-affinity bicyclic peptide binding TEAD4 with a nanomolar KD value (63.9 nM). Importantly, the binding affinity of the bicyclic peptide ligand is 102-fold lower than that of the acyclic analogue. To our knowledge, this is the first time to mine the unnatural promiscuity of ligases to generate peptide macrocycles, providing a new avenue for the construction of genetically encoded cyclic peptide libraries.
Collapse
Affiliation(s)
- Yan-Ni Zhang
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Xiao-Cui Wan
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Yang Tang
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine Shanghai 200072 P. R. China
| | - Ying Chen
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Feng-Hao Zheng
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Zhi-Hui Cui
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Hua Zhang
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University Shanghai 200438 P. R. China
| | - Ge-Min Fang
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| |
Collapse
|
6
|
Ai H, He Z, Deng Z, Chu GC, Shi Q, Tong Z, Li JB, Pan M, Liu L. Structural and mechanistic basis for nucleosomal H2AK119 deubiquitination by single-subunit deubiquitinase USP16. Nat Struct Mol Biol 2024:10.1038/s41594-024-01342-2. [PMID: 38918638 DOI: 10.1038/s41594-024-01342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Epigenetic regulators have a crucial effect on gene expression based on their manipulation of histone modifications. Histone H2AK119 monoubiquitination (H2AK119Ub), a well-established hallmark in transcription repression, is dynamically regulated by the opposing activities of Polycomb repressive complex 1 (PRC1) and nucleosome deubiquitinases including the primary human USP16 and Polycomb repressive deubiquitinase (PR-DUB) complex. Recently, the catalytic mechanism for the multi-subunit PR-DUB complex has been described, but how the single-subunit USP16 recognizes the H2AK119Ub nucleosome and cleaves the ubiquitin (Ub) remains unknown. Here we report the cryo-EM structure of USP16-H2AK119Ub nucleosome complex, which unveils a fundamentally distinct mode of H2AK119Ub deubiquitination compared to PR-DUB, encompassing the nucleosome recognition pattern independent of the H2A-H2B acidic patch and the conformational heterogeneity in the Ub motif and the histone H2A C-terminal tail. Our work highlights the mechanism diversity of H2AK119Ub deubiquitination and provides a structural framework for understanding the disease-causing mutations of USP16.
Collapse
Affiliation(s)
- Huasong Ai
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
- Institute of Translational Medicine, School of Pharmacy, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China
| | - Zaozhen He
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhiheng Deng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Guo-Chao Chu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Qiang Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zebin Tong
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Man Pan
- Institute of Translational Medicine, School of Pharmacy, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China.
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Li W, Cao P, Xu P, Sun F, Wang C, Zhang J, Dong S, Wilson JR, Xu D, Fan H, Feng Z, Zhang X, Zhu Q, Fan Y, Brown N, Justin N, Gamblin SJ, Li H, Zhang Y, He J. Rapid reconstitution of ubiquitinated nucleosome using a non-denatured histone octamer ubiquitylation approach. Cell Biosci 2024; 14:81. [PMID: 38886783 PMCID: PMC11184750 DOI: 10.1186/s13578-024-01265-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Histone ubiquitination modification is emerging as a critical epigenetic mechanism involved in a range of biological processes. In vitro reconstitution of ubiquitinated nucleosomes is pivotal for elucidating the influence of histone ubiquitination on chromatin dynamics. RESULTS In this study, we introduce a Non-Denatured Histone Octamer Ubiquitylation (NDHOU) approach for generating ubiquitin or ubiquitin-like modified histone octamers. The method entails the co-expression and purification of histone octamers, followed by their chemical cross-linking to ubiquitin using 1,3-dibromoacetone. We demonstrate that nucleosomes reconstituted with these octamers display a high degree of homogeneity, rendering them highly compatible with in vitro biochemical assays. These ubiquitinated nucleosomes mimic physiological substrates in function and structure. Additionally, we have extended this method to cross-linking various histone octamers and three types of ubiquitin-like proteins. CONCLUSIONS Overall, our findings offer an efficient strategy for producing ubiquitinated nucleosomes, advancing biochemical and biophysical studies in the field of chromatin biology.
Collapse
Affiliation(s)
- Weijie Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Peirong Cao
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Pengqi Xu
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Fahui Sun
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chi Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Jiale Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuqi Dong
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jon R Wilson
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Difei Xu
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Hengxin Fan
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhenhuan Feng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, China
| | - Qingjun Zhu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yingzhi Fan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Nick Brown
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Neil Justin
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | | | - He Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, China
| | - Ying Zhang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Jun He
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, China.
| |
Collapse
|
8
|
Song M, Liu Q, Yao JF, Wang YT, Ma YN, Xu H, Yu QY, Li Z, Du SS, Qi YK. Synthesis and structural optimization of oncolytic peptide LTX-315. Bioorg Med Chem 2024; 107:117760. [PMID: 38762978 DOI: 10.1016/j.bmc.2024.117760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Oncolytic peptides represented potential novel candidates for anticancer treatments especially drug-resistant cancer cell lines. One of the most promising and extensively studied is LTX-315, which is considered as the first in class oncolytic peptide and has entered phase I/II clinical trials. Nevertheless, the shortcomings including poor proteolytic stability, moderate anticancer durability and high synthesis costs may hinder the widespread clinical applications of LTX-315. In order to reduce the synthesis costs, as well as develop derivatives possessing both high protease-stability and durable anticancer efficiency, twenty LTX-315-based derived-peptides were designed and efficiently synthesized. Especially, through solid-phase S-alkylation, as well as the optimized peptide cleavage condition, the derived peptides could be prepared with drastically reduced synthesis cost. The in vitro anticancer efficiency, serum stability, anticancer durability, anti-migration activity, and hemolysis effect were systematically investigated. It was found that derived peptide MS-13 exhibited comparable anticancer efficiency and durability to those of LTX-315. Strikingly, the D-type peptide MS-20, which is the enantiomer of MS-13, was demonstrated to possess significantly high proteolytic stability and sustained anticancer durability. In general, the cost-effective synthesis and stability-guided structural optimizations were conducted on LTX-315, affording the highly hydrolysis resistant MS-20 which possessed durable anticancer activity. Meanwhile, this study also provided a reliable reference for the future optimization of anticancer peptides through the solid-phase S-alkylation and L-type to D-type amino acid substitutions.
Collapse
Affiliation(s)
- Min Song
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qing Liu
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing-Fang Yao
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Yu-Tao Wang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yan-Nan Ma
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Huan Xu
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qian-Yao Yu
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Zhibo Li
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shan-Shan Du
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073, China.
| | - Yun-Kun Qi
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073, China.
| |
Collapse
|
9
|
Kawaf RR, Ramadan WS, El-Awady R. Deciphering the interplay of histone post-translational modifications in cancer: Co-targeting histone modulators for precision therapy. Life Sci 2024; 346:122639. [PMID: 38615747 DOI: 10.1016/j.lfs.2024.122639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Chromatin undergoes dynamic regulation through reversible histone post-translational modifications (PTMs), orchestrated by "writers," "erasers," and "readers" enzymes. Dysregulation of these histone modulators is well implicated in shaping the cancer epigenome and providing avenues for precision therapies. The approval of six drugs for cancer therapy targeting histone modulators, along with the ongoing clinical trials of numerous candidates, represents a significant advancement in the field of precision medicine. Recently, it became apparent that histone PTMs act together in a coordinated manner to control gene expression. The intricate crosstalk of histone PTMs has been reported to be dysregulated in cancer, thus emerging as a critical factor in the complex landscape of cancer development. This formed the foundation of the swift emergence of co-targeting different histone modulators as a new strategy in cancer therapy. This review dissects how histone PTMs, encompassing acetylation, phosphorylation, methylation, SUMOylation and ubiquitination, collaboratively influence the chromatin states and impact cellular processes. Furthermore, we explore the significance of histone modification crosstalk in cancer and discuss the potential of targeting histone modification crosstalk in cancer management. Moreover, we underscore the significant strides made in developing dual epigenetic inhibitors, which hold promise as emerging candidates for effective cancer therapy.
Collapse
Affiliation(s)
- Rawan R Kawaf
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Raafat El-Awady
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
10
|
Kelliher JL, Folkerts ML, Shen KV, Song W, Tengler K, Stiefel CM, Lee SO, Dray E, Zhao W, Koss B, Pannunzio NR, Leung JW. Evolved histone tail regulates 53BP1 recruitment at damaged chromatin. Nat Commun 2024; 15:4634. [PMID: 38821984 PMCID: PMC11143218 DOI: 10.1038/s41467-024-49071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
The master DNA damage repair histone protein, H2AX, is essential for orchestrating the recruitment of downstream mediator and effector proteins at damaged chromatin. The phosphorylation of H2AX at S139, γH2AX, is well-studied for its DNA repair function. However, the extended C-terminal tail is not characterized. Here, we define the minimal motif on H2AX for the canonical function in activating the MDC1-RNF8-RNF168 phosphorylation-ubiquitination pathway that is important for recruiting repair proteins, such as 53BP1 and BRCA1. Interestingly, H2AX recruits 53BP1 independently from the MDC1-RNF8-RNF168 pathway through its evolved C-terminal linker region with S139 phosphorylation. Mechanistically, 53BP1 recruitment to damaged chromatin is mediated by the interaction between the H2AX C-terminal tail and the 53BP1 Oligomerization-Tudor domains. Moreover, γH2AX-linker mediated 53BP1 recruitment leads to camptothecin resistance in H2AX knockout cells. Overall, our study uncovers an evolved mechanism within the H2AX C-terminal tail for regulating DNA repair proteins at damaged chromatin.
Collapse
Affiliation(s)
- Jessica L Kelliher
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Melissa L Folkerts
- Department of Medicine, Division of Hematology/Oncology, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92626, USA
| | - Kaiyuan V Shen
- Department of Medicine, Division of Hematology/Oncology, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92626, USA
| | - Wan Song
- Department of Radiation Oncology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| | - Kyle Tengler
- Department of Radiation Oncology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| | - Clara M Stiefel
- Department of Radiation Oncology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| | - Seong-Ok Lee
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Eloise Dray
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| | - Brian Koss
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Nicholas R Pannunzio
- Department of Medicine, Division of Hematology/Oncology, University of California, Irvine, Irvine, CA, 92697, USA.
| | - Justin W Leung
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
- Department of Radiation Oncology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA.
| |
Collapse
|
11
|
Li WJ, Chen JY, Zhu HX, Li YM, Xu Y. Synthesis of Asp-based lactam cyclic peptides using an amide-bonded diaminodiacid to prevent aspartimide formation. Org Biomol Chem 2024; 22:3584-3588. [PMID: 38623862 DOI: 10.1039/d4ob00472h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Asp-based lactam cyclic peptides are considered promising drug candidates. However, using Fmoc solid-phase peptide synthesis (Fmoc-SPPS) for these peptides also causes aspartimide formation, resulting in low yields or even failure to obtain the target peptides. Here, we developed a diaminodiacid containing an amide bond as a β-carboxyl-protecting group for Asp to avoid aspartimide formation. The practicality of this diaminodiacid has been illustrated by the synthesis of lactam cyclic peptide cyclo[Lys9,Asp13] KIIIA7-14 and 1Y.
Collapse
Affiliation(s)
- Wen-Jie Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Jun-You Chen
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Hui-Xia Zhu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Yi-Ming Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Yang Xu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
12
|
Xia Q, Meng X, Wang Y, Yuan R, Li P, Liu L, Li YM. A cell-permeable Ub-Dha probe for profiling E1-E2-E3 enzymes in live cells. Chem Commun (Camb) 2024; 60:4342-4345. [PMID: 38545842 DOI: 10.1039/d4cc00415a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Activity-based ubiquitin probes (Ub-ABPs) have recently been developed as effective tools for studying the capabilities of E1-E2-E3 enzymes, but most of them can only be used in cell lysates. Here, we report the first cell-penetrating Ub-Dha probes based on thiazolidine-protected cysteines, which enable successful delivery into cells confirmed by a fluorophore at the N-terminus of Ub and live-cell fluorescence microscopy. A total of 18 E1-E2-E3 enzymes in live cells were labelled and enriched in combination with label-free quantification (LFQ) mass spectrometry. This work provided a new cell-penetrating Ub tool for studying the activity and function of Ub-related enzymes.
Collapse
Affiliation(s)
- Qiong Xia
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Xianbin Meng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yu Wang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Rujing Yuan
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Pincheng Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Liwen Liu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Yi-Ming Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
13
|
Franz P, Fierz B. Decoding Chromatin Ubiquitylation: A Chemical Biology Perspective. J Mol Biol 2024; 436:168442. [PMID: 38211893 DOI: 10.1016/j.jmb.2024.168442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Since Strahl and Allis proposed the "language of covalent histone modifications", a host of experimental studies have shed light on the different facets of chromatin regulation by epigenetic mechanisms. Initially proposed as a concept for controlling gene transcription, the regulation of deposition and removal of histone post-translational modifications (PTMs), such as acetylation, methylation, and phosphorylation, have been implicated in many chromatin regulation pathways. However, large PTMs such as ubiquitylation challenge research on many levels due to their chemical complexity. In recent years, chemical tools have been developed to generate chromatin in defined ubiquitylation states in vitro. Chemical biology approaches are now used to link specific histone ubiquitylation marks with downstream chromatin regulation events on the molecular level. Here, we want to highlight how chemical biology approaches have empowered the mechanistic study of chromatin ubiquitylation in the context of gene regulation and DNA repair with attention to future challenges.
Collapse
Affiliation(s)
- Pauline Franz
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
14
|
Fu XY, Yin H, Chen XT, Yao JF, Ma YN, Song M, Xu H, Yu QY, Du SS, Qi YK, Wang KW. Three Rounds of Stability-Guided Optimization and Systematical Evaluation of Oncolytic Peptide LTX-315. J Med Chem 2024; 67:3885-3908. [PMID: 38278140 DOI: 10.1021/acs.jmedchem.3c02232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Oncolytic peptides represent promising novel candidates for anticancer treatments. In our efforts to develop oncolytic peptides possessing both high protease stability and durable anticancer efficiency, three rounds of optimization were conducted on the first-in-class oncolytic peptide LTX-315. The robust synthetic method, in vitro and in vivo anticancer activity, and anticancer mechanism were investigated. The D-type peptides represented by FXY-12 possessed significantly improved proteolytic stability and sustained anticancer efficiency. Strikingly, the novel hybrid peptide FXY-30, containing one FXY-12 and two camptothecin moieties, exhibited the most potent in vitro and in vivo anticancer activities. The mechanism explorations indicated that FXY-30 exhibited rapid membranolytic effects and induced severe DNA double-strand breaks to trigger cell apoptosis. Collectively, this study not only established robust strategies to improve the stability and anticancer potential of oncolytic peptides but also provided valuable references for the future development of D-type peptides-based hybrid anticancer chemotherapeutics.
Collapse
Affiliation(s)
- Xing-Yan Fu
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, #38 Dengzhou Road, Qingdao 266021, China
| | - Hao Yin
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, #38 Dengzhou Road, Qingdao 266021, China
| | - Xi-Tong Chen
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Jing-Fang Yao
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Yan-Nan Ma
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Min Song
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huan Xu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qian-Yao Yu
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Shan-Shan Du
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yun-Kun Qi
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, #38 Dengzhou Road, Qingdao 266021, China
| | - Ke-Wei Wang
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, #38 Dengzhou Road, Qingdao 266021, China
| |
Collapse
|
15
|
Wu X, Du Y, Liang LJ, Ding R, Zhang T, Cai H, Tian X, Pan M, Liu L. Structure-guided engineering enables E3 ligase-free and versatile protein ubiquitination via UBE2E1. Nat Commun 2024; 15:1266. [PMID: 38341401 PMCID: PMC10858943 DOI: 10.1038/s41467-024-45635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Ubiquitination, catalyzed usually by a three-enzyme cascade (E1, E2, E3), regulates various eukaryotic cellular processes. E3 ligases are the most critical components of this catalytic cascade, determining both substrate specificity and polyubiquitination linkage specificity. Here, we reveal the mechanism of a naturally occurring E3-independent ubiquitination reaction of a unique human E2 enzyme UBE2E1 by solving the structure of UBE2E1 in complex with substrate SETDB1-derived peptide. Guided by this peptide sequence-dependent ubiquitination mechanism, we developed an E3-free enzymatic strategy SUE1 (sequence-dependent ubiquitination using UBE2E1) to efficiently generate ubiquitinated proteins with customized ubiquitinated sites, ubiquitin chain linkages and lengths. Notably, this strategy can also be used to generate site-specific branched ubiquitin chains or even NEDD8-modified proteins. Our work not only deepens the understanding of how an E3-free substrate ubiquitination reaction occurs in human cells, but also provides a practical approach for obtaining ubiquitinated proteins to dissect the biochemical functions of ubiquitination.
Collapse
Affiliation(s)
- Xiangwei Wu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Institute of Translational Medicine, School of Chemistry and Chemical Engineering, School of Pharmacy, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yunxiang Du
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lu-Jun Liang
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China.
| | - Ruichao Ding
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tianyi Zhang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongyi Cai
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaolin Tian
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Man Pan
- Institute of Translational Medicine, School of Chemistry and Chemical Engineering, School of Pharmacy, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
16
|
Tong Z, Ai H, Xu Z, He K, Chu GC, Shi Q, Deng Z, Xue Q, Sun M, Du Y, Liang L, Li JB, Pan M, Liu L. Synovial sarcoma X breakpoint 1 protein uses a cryptic groove to selectively recognize H2AK119Ub nucleosomes. Nat Struct Mol Biol 2024; 31:300-310. [PMID: 38177667 DOI: 10.1038/s41594-023-01141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 09/27/2023] [Indexed: 01/06/2024]
Abstract
The cancer-specific fusion oncoprotein SS18-SSX1 disturbs chromatin accessibility by hijacking the BAF complex from the promoters and enhancers to the Polycomb-repressed chromatin regions. This process relies on the selective recognition of H2AK119Ub nucleosomes by synovial sarcoma X breakpoint 1 (SSX1). However, the mechanism underlying the selective recognition of H2AK119Ub nucleosomes by SSX1 in the absence of ubiquitin (Ub)-binding capacity remains unknown. Here we report the cryo-EM structure of SSX1 bound to H2AK119Ub nucleosomes at 3.1-Å resolution. Combined in vitro biochemical and cellular assays revealed that the Ub recognition by SSX1 is unique and depends on a cryptic basic groove formed by H3 and the Ub motif on the H2AK119 site. Moreover, this unorthodox binding mode of SSX1 induces DNA unwrapping at the entry/exit sites. Together, our results describe a unique mode of site-specific ubiquitinated nucleosome recognition that underlies the specific hijacking of the BAF complex to Polycomb regions by SS18-SSX1 in synovial sarcoma.
Collapse
Affiliation(s)
- Zebin Tong
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Huasong Ai
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China.
- Institute of Translational Medicine, School of Pharmacy, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China.
| | - Ziyu Xu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Kezhang He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Guo-Chao Chu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Qiang Shi
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhiheng Deng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Qiaomei Xue
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Maoshen Sun
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Yunxiang Du
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Lujun Liang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
- Institute of Translational Medicine, School of Pharmacy, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Man Pan
- Institute of Translational Medicine, School of Pharmacy, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China.
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
17
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
18
|
Liang LJ, Wang Y, Hua X, Yuan R, Xia Q, Wang R, Li C, Chu GC, Liu L, Li YM. Cell-Permeable Stimuli-Responsive Ubiquitin Probe for Time-Resolved Monitoring of Substrate Ubiquitination in Live Cells. JACS AU 2023; 3:2873-2882. [PMID: 37885572 PMCID: PMC10598832 DOI: 10.1021/jacsau.3c00421] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
Dynamic monitoring of intracellular ubiquitin (Ub) conjugates is instrumental to understanding the Ub regulatory machinery. Although many biochemical approaches have been developed to characterize protein ubiquitination, chemical tools capable of temporal resolution probing of ubiquitination events remain to be developed. Here, we report the development of the first cell-permeable and stimuli-responsive Ub probe and its application for the temporal resolution profiling of ubiquitinated substrates in live cells. The probe carrying the photolabile group N-(2-nitrobenzyl)-Gly (Nbg) on the amide bond between Ub Gly75 and Gly76 is readily prepared through chemical synthesis and can be delivered to live cells by conjugation via a disulfide bond with the cyclic cell-penetrating peptide cR10D (i.e., 4-((4-(dimethylamino)phenyl)-azo)-benzoic acid-modified cyclic deca-arginine). Both in vitro and in vivo experiments showed that Ub-modifying enzymes (E1, E2s, and E3s) could not install the Ub probe onto substrate proteins prior to removal of the nitrobenzyl group, which was easily accomplished via photoirradiation. The utility and practicality of this probe were exemplified by the time-resolved biochemical and proteomic investigation of ubiquitination events in live cells during a H2O2-mediated oxidative stress response. This work shows a conceptually new family of chemical Ub tools for the time-resolved studies on dynamic protein ubiquitination in different biological processes and highlights the utility of modern chemical protein synthesis in obtaining custom-designed tools for biological studies.
Collapse
Affiliation(s)
- Lu-Jun Liang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yu Wang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Xiao Hua
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Rujing Yuan
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Qiong Xia
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Rongtian Wang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Chuntong Li
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Chao Chu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
19
|
Kriegesmann J, Brik A. Synthesis of ubiquitinated proteins for biochemical and functional analysis. Chem Sci 2023; 14:10025-10040. [PMID: 37772107 PMCID: PMC10529715 DOI: 10.1039/d3sc03664b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/27/2023] [Indexed: 09/30/2023] Open
Abstract
Ubiquitination plays a crucial role in controlling various biological processes such as translation, DNA repair and immune response. Protein degradation for example, is one of the main processes which is controlled by the ubiquitin system and has significant implications on human health. In order to investigate these processes and the roles played by different ubiquitination patterns on biological systems, homogeneously ubiquitinated proteins are needed. Notably, these conjugates that are made enzymatically in cells cannot be easily obtained in large amounts and high homogeneity by employing such strategies. Therefore, chemical and semisynthetic approaches have emerged to prepare different ubiquitinated proteins. In this review, we will present the key synthetic strategies and their applications for the preparation of various ubiquitinated proteins. Furthermore, the use of these precious conjugates in different biochemical and functional studies will be highlighted.
Collapse
Affiliation(s)
- Julia Kriegesmann
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa Israel
| |
Collapse
|
20
|
Deng Z, Ai H, Sun M, Tong Z, Du Y, Qu Q, Zhang L, Xu Z, Tao S, Shi Q, Li JB, Pan M, Liu L. Mechanistic insights into nucleosomal H2B monoubiquitylation mediated by yeast Bre1-Rad6 and its human homolog RNF20/RNF40-hRAD6A. Mol Cell 2023; 83:3080-3094.e14. [PMID: 37633270 DOI: 10.1016/j.molcel.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/27/2023] [Accepted: 08/02/2023] [Indexed: 08/28/2023]
Abstract
Histone H2B monoubiquitylation plays essential roles in chromatin-based transcriptional processes. A RING-type E3 ligase (yeast Bre1 or human RNF20/RNF40) and an E2 ubiquitin-conjugating enzyme (yeast Rad6 or human hRAD6A), together, precisely deposit ubiquitin on H2B K123 in yeast or K120 in humans. Here, we developed a chemical trapping strategy and successfully captured the transient structures of Bre1- or RNF20/RNF40-mediated ubiquitin transfer from Rad6 or hRAD6A to nucleosomal H2B. Our structures show that Bre1 and RNF40 directly bind nucleosomal DNA, exhibiting a conserved E3/E2/nucleosome interaction pattern from yeast to humans for H2B monoubiquitylation. We also find an uncanonical non-hydrophobic contact in the Bre1 RING-Rad6 interface, which positions Rad6 directly above the target H2B lysine residue. Our study provides mechanistic insights into the site-specific monoubiquitylation of H2B, reveals a critical role of nucleosomal DNA in mediating E3 ligase recognition, and provides a framework for understanding the cancer-driving mutations of RNF20/RNF40.
Collapse
Affiliation(s)
- Zhiheng Deng
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huasong Ai
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Maoshen Sun
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zebin Tong
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yunxiang Du
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qian Qu
- Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liying Zhang
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ziyu Xu
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shixian Tao
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiang Shi
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Man Pan
- Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Liu
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
21
|
Yin H, Fu XY, Gao HY, Ma YN, Yao JF, Du SS, Qi YK, Wang KW. Design, synthesis and anticancer evaluation of novel oncolytic peptide-chlorambucil conjugates. Bioorg Chem 2023; 138:106674. [PMID: 37331169 DOI: 10.1016/j.bioorg.2023.106674] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/27/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023]
Abstract
Nitrogen mustards (NMs) are an important class of chemotherapeutic drugs and have been widely employed for the treatment of various cancers. However, due to the high reactivity of nitrogen mustard, most NMs react with proteins and phospholipids within the cell membrane. Therefore, only a very small fraction of NMs can reach the reach nucleus, alkylating and cross-linking DNA. To efficiently penetrate the cell membrane barrier, the hybridization of NMs with a membranolytic agent may be an effective strategy. Herein, the chlorambucil (CLB, a kind of NM) hybrids were first designed by conjugation with membranolytic peptide LTX-315. However, although LTX-315 could help large amounts of CLB penetrate the cytomembrane and enter the cytoplasm, CLB still did not readily reach the nucleus. Our previous work demonstrated that the hybrid peptide NTP-385 obtained by covalent conjugation of rhodamine B with LTX-315 could accumulate in the nucleus. Hence, the NTP-385-CLB conjugate, named FXY-3, was then designed and systematically evaluated both in vitro and in vivo. FXY-3 displayed prominent localization in the cancer cell nucleus and induced severe DNA double-strand breaks (DSBs) to trigger cell apoptosis. Especially, compared with CLB and LTX-315, FXY-3 exhibited significantly increased in vitro cytotoxicity against a panel of cancer cell lines. Moreover, FXY-3 showed superior in vivo anticancer efficiency in the mouse cancer model. Collectively, this study established an effective strategy to increase the anticancer activity and the nuclear accumulation of NMs, which will provide a valuable reference for future nucleus-targeting modification of nitrogen mustards.
Collapse
Affiliation(s)
- Hao Yin
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China; Institute of Innovative Drugs, Qingdao University, #38 Dengzhou Road, Qingdao 266021, China
| | - Xing-Yan Fu
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Han-Yu Gao
- School of Stomatology, Jining Medical University, #133 Hehua Road, Jining 272067, China
| | - Yan-Nan Ma
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Jing-Fang Yao
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Shan-Shan Du
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yun-Kun Qi
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China; Institute of Innovative Drugs, Qingdao University, #38 Dengzhou Road, Qingdao 266021, China.
| | - Ke-Wei Wang
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China; Institute of Innovative Drugs, Qingdao University, #38 Dengzhou Road, Qingdao 266021, China
| |
Collapse
|
22
|
Li Z, Tong Z, Gong Q, Ai H, Peng S, Chen C, Chu GC, Li JB. The expedient, CAET-assisted synthesis of dual-monoubiquitinated histone H3 enables evaluation of its interaction with DNMT1. Chem Sci 2023; 14:5681-5688. [PMID: 37265717 PMCID: PMC10231317 DOI: 10.1039/d3sc00332a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/30/2023] [Indexed: 06/03/2023] Open
Abstract
Site-selective conjugation chemistry has proven effective to synthesize homogenously ubiquitinated histones. Recently, a powerful strategy using 2-((2-chloroethyl) amino) ethane-1-thiol (CAET) as a bifunctional handle was developed to generate chemically stable ubiquitin chains without racemization and homodimerization. Herein, we extend this strategy to the expedient synthesis of ubiquitinated histones, exemplifying its utility to not only synthesize single-monoubiquitinated histones, but dual-monoubiquitinated histones as well. The synthetic histones enabled us to evaluate the binding of DNMT1 to ubiquitinated nucleosomes and map the hotspots of this interaction. Our work highlights the potential of modern chemical protein synthesis to synthesize ubiquitinated histones for epigenetic studies.
Collapse
Affiliation(s)
- Zichen Li
- Department of Chemistry, Tsinghua-Peking Center for Life Sciences, Tsinghua University Beijing 100084 China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University Suzhou, 215123 China
| | - Zebin Tong
- Department of Chemistry, Tsinghua-Peking Center for Life Sciences, Tsinghua University Beijing 100084 China
| | - Qingyue Gong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University Suzhou, 215123 China
- School of Life Sciences, University of Science and Technology of China Hefei 230026 China
| | - Huasong Ai
- Department of Chemistry, Tsinghua-Peking Center for Life Sciences, Tsinghua University Beijing 100084 China
| | - Shuai Peng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University Suzhou, 215123 China
| | - Cong Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University Suzhou, 215123 China
| | - Guo-Chao Chu
- Department of Chemistry, Tsinghua-Peking Center for Life Sciences, Tsinghua University Beijing 100084 China
| | - Jia-Bin Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University Suzhou, 215123 China
| |
Collapse
|
23
|
Xie XL, Qi JZ, Wan XC, Zhang SD, Zhang YN, Fang GM. Chemical Synthesis of Proteins Using an o-Nitrobenzyl Group as a Robust Temporary Protective Group for N-Terminal Cysteine Protection. Org Lett 2023; 25:3435-3439. [PMID: 37144961 DOI: 10.1021/acs.orglett.3c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We report here a robust and practical strategy for chemical protein synthesis using an o-nitrobenzyl group as a temporary protective group for an N-terminal cysteine residue of intermediate hydrazide fragments. By reinvestigating the photoremoval of an o-nitrobenzyl group, we establish a robust and reliable strategy for its quantitative photodeprotection. The o-nitrobenzyl group is completely stable to oxidative NaNO2 treatment and has been applied to the convergent chemical synthesis of programmed death ligand 1 fragment, providing a practical avenue for hydrazide-based native chemical ligation.
Collapse
Affiliation(s)
- Xiao-Lei Xie
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Jing-Ze Qi
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Xiao-Cui Wan
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Suo-De Zhang
- Hefei KS-V Peptide Biological Technology Co., Ltd., Hefei 230031, P.R. China
| | - Yan-Ni Zhang
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Ge-Min Fang
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| |
Collapse
|
24
|
Chi QN, Jia SX, Yin H, Wang LE, Fu XY, Ma YN, Sun MP, Qi YK, Li Z, Du SS. Efficient synthesis and anticancer evaluation of spider toxin peptide LVTX-8-based analogues with enhanced stability. Bioorg Chem 2023; 134:106451. [PMID: 36907048 DOI: 10.1016/j.bioorg.2023.106451] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/12/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Cytotoxic peptides derived from spider venoms have been considered as promising candidates for anticancer treatment. The novel cell penetrating peptide LVTX-8, which is a 25-residue amphipathic α-helical peptide isolated from spider Lycosa vittata, exhibited potent cytotoxicity and is a potential precursor for further anticancer drug development. Nevertheless, LVTX-8 may be easily degraded by multiple proteases, inducing the proteolytic stability problem and short half-life. In this study, ten LVTX-8-based analogs were rationally designed and the efficient manual synthetic method was established by the DIC/Oxyma based condensation system. The cytotoxicity of synthetic peptides was systematically evaluated against seven cancer cell lines. Seven of the derived peptides exhibited high cytotoxicity towards tested cancer in vitro, which was better than or comparable to that of natural LVTX-8. In particular, both N-acetyl and C-hydrazide modified LVTX-8 (825) and the conjugate methotrexate (MTX)-GFLG-LVTX-8 (827) possessed more durable anticancer efficiency, higher proteolytic stability, as well as lower hemolysis. Finally, we confirmed that LVTX-8 could disrupt the integrity of cell membrane, target the mitochondria and reduce the mitochondrial membrane potential to induce the cell death. Taken together, the structural modifications were conducted on LVTX-8 for the first time and the stability significantly improved derivatives 825 and 827 may provide useful references for the modifications of cytotoxic peptides.
Collapse
Affiliation(s)
- Qiao-Na Chi
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shi-Xi Jia
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hao Yin
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Li-E Wang
- Department of Assisted Reproduction, Reproductive Center, Qingdao Women and Children's Hospital, Qingdao 266004, China
| | - Xing-Yan Fu
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Yan-Nan Ma
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Ming-Pu Sun
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yun-Kun Qi
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Zhibo Li
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shan-Shan Du
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| |
Collapse
|