1
|
Scanavachi G, Yoneda JS, Sebinelli HG, Barbosa LRS, Ciancaglini P, Itri R. Photobiomodulation of Na,K-ATPase in native membrane fraction and reconstituted in DPPC:DPPE-liposome. Photochem Photobiol 2024. [PMID: 38922888 DOI: 10.1111/php.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Studies focusing on how photobiomodulation (PBM) can affect the structure and function of proteins are scarce in the literature. Few previous studies have shown that the enzymatic activity of Na,K-ATPAse (NKA) can be photo-modulated. However, the variability of sample preparation and light irradiation wavelengths have not allowed for an unequivocal conclusion about the PBM of NKA. Here, we investigate minimal membrane models containing NKA, namely, native membrane fraction and DPPC:DPPE proteoliposome upon laser irradiation at wavelengths 532, 650, and 780 nm. Interestingly, we show that the PBM on the NKA enzymatic activity has a bell-shaped profile with a stimulation peak (~15% increase) at around 20 J.cm-2 and 6 J.cm-2 for the membrane-bound and the proteoliposome samples, respectively, and are practically wavelength independent. Further, by normalizing the enzymatic activity by the NKA enzyme concentration, we show that the PBM response is related to the protein amount with small influence due to protein's environment. The stimulation decays over time reaching the basal level around 6 h after the irradiation for the three lasers and both NKA samples. Our results demonstrate the potential of using low-level laser therapy to modulate NKA activity, which may have therapeutic implications and benefits.
Collapse
Affiliation(s)
- Gustavo Scanavachi
- Instituto de Física da Universidade de São Paulo (IF USP), São Paulo, Brazil
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Juliana S Yoneda
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy & Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Heitor G Sebinelli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, Sao Paulo, Brazil
| | - Leandro R S Barbosa
- Instituto de Física da Universidade de São Paulo (IF USP), São Paulo, Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy & Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, Sao Paulo, Brazil
| | - Rosangela Itri
- Instituto de Física da Universidade de São Paulo (IF USP), São Paulo, Brazil
| |
Collapse
|
2
|
Elizebath D, Vedhanarayanan B, Dhiman A, Mishra RK, Ramachandran CN, Lin TW, Praveen VK. Spontaneous Curvature Induction in an Artificial Bilayer Membrane. Angew Chem Int Ed Engl 2024; 63:e202403900. [PMID: 38459961 DOI: 10.1002/anie.202403900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/11/2024]
Abstract
Maintaining lipid asymmetry across membrane leaflets is critical for functions like vesicular traffic and organelle homeostasis. However, a lack of molecular-level understanding of the mechanisms underlying membrane fission and fusion processes in synthetic systems precludes their development as artificial analogs. Here, we report asymmetry induction of a bilayer membrane formed by an extended π-conjugated molecule with oxyalkylene side chains bearing terminal tertiary amine moieties (BA1) in water. Autogenous protonation of the tertiary amines in the periphery of the bilayer by water induces anisotropic curvature, resulting in membrane fission to form vesicles and can be monitored using time-dependent spectroscopy and microscopy. Interestingly, upon loss of the induced asymmetry by extensive protonation using an organic acid restored bilayer membrane. The mechanism leading to the compositional asymmetry in the leaflet and curvature induction in the membrane is validated by density functional theory (DFT) calculations. Studies extended to control molecules having changes in hydrophilic (BA2) and hydrophobic (BA3) segments provide insight into the delicate nature of molecular scale interactions in the dynamic transformation of supramolecular structures. The synergic effect of hydrophobic interaction and the hydrated state of BA1 aggregates provide dynamicity and unusual stability. Our study unveils mechanistic insight into the dynamic transformation of bilayer membranes into vesicles.
Collapse
Affiliation(s)
- Drishya Elizebath
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Balaraman Vedhanarayanan
- Department of Chemistry, Tunghai University, No. 1727, Section 4, Taiwan Boulevard, Xitun District, Taichung City, 40704, Taiwan
| | - Angat Dhiman
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Rakesh K Mishra
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Department of Chemistry, National Institute of Technology Uttarakhand (NITUK), Srinagar (Garhwal), Uttarakhand, 246174, India
| | - C N Ramachandran
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No. 1727, Section 4, Taiwan Boulevard, Xitun District, Taichung City, 40704, Taiwan
| | - Vakayil K Praveen
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Feng X, Li C, Song J, He Y, Qu W, Li W, Guo K, Liu L, Yang B, Wei H. Differential perovskite hemispherical photodetector for intelligent imaging and location tracking. Nat Commun 2024; 15:577. [PMID: 38233400 PMCID: PMC10794423 DOI: 10.1038/s41467-024-44857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Abstract
Advanced photodetectors with intelligent functions are expected to take an important role in future technology. However, completing complex detection tasks within a limited number of pixels is still challenging. Here, we report a differential perovskite hemispherical photodetector serving as a smart locator for intelligent imaging and location tracking. The high external quantum efficiency (~1000%) and low noise (10-13 A Hz-0.5) of perovskite hemispherical photodetector enable stable and large variations in signal response. Analysing the differential light response of only 8 pixels with the computer algorithm can realize the capability of colorful imaging and a computational spectral resolution of 4.7 nm in a low-cost and lensless device geometry. Through machine learning to mimic the differential current signal under different applied biases, one more dimensional detection information can be recorded, for dynamically tracking the running trajectory of an object in a three-dimensional space or two-dimensional plane with a color classification function.
Collapse
Affiliation(s)
- Xiaopeng Feng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Chenglong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Jinmei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Yuhong He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Wei Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Weijun Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Keke Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Lulu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
- Optical Functional Theragnostic Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130012, P.R. China
| | - Haotong Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China.
- Optical Functional Theragnostic Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130012, P.R. China.
| |
Collapse
|
4
|
Lee Y, Fracassi A, Devaraj NK. Light-Driven Membrane Assembly, Shape-Shifting, and Tissue Formation in Chemically Responsive Synthetic Cells. J Am Chem Soc 2023; 145:25815-25823. [PMID: 37963186 PMCID: PMC10690792 DOI: 10.1021/jacs.3c09894] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
Living systems create remarkable complexity from a limited repertoire of biological building blocks by controlling assembly dynamics at the molecular, cellular, and multicellular level. An open question is whether simplified synthetic cells can gain similar complex functionality by being driven away from equilibrium. Here, we describe a dynamic synthetic cell system assembled using artificial lipids that are responsive to both light and chemical stimuli. Irradiation of disordered aggregates of lipids leads to the spontaneous emergence of giant cell-like vesicles, which revert to aggregates when illumination is turned off. Under irradiation, the synthetic cell membranes can interact with chemical building blocks, remodeling their composition and forming new structures that prevent the membranes from undergoing retrograde aggregation processes. The remodeled light-responsive synthetic cells reversibly alter their shape under irradiation, transitioning from spheres to rodlike shapes, mimicking energy-dependent functions normally restricted to living materials. In the presence of noncovalently interacting multivalent polymers, light-driven shape changes can be used to trigger vesicle cross-linking, leading to the formation of functional synthetic tissues. By controlling light and chemical inputs, the stepwise, one-pot transformation of lipid aggregates to multivesicular synthetic tissues is feasible. Our results suggest a rationale for why even early protocells may have required and evolved simple mechanisms to harness environmental energy sources to coordinate hierarchical assembly processes.
Collapse
Affiliation(s)
- Youngjun Lee
- Department of Chemistry and
Biochemistry, University of California,
San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Alessandro Fracassi
- Department of Chemistry and
Biochemistry, University of California,
San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Neal K. Devaraj
- Department of Chemistry and
Biochemistry, University of California,
San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|