1
|
Guo X, Miao M, Zhao P, Ma Y. Molecular-Oxygen-Mediated Multicomponent Oxidative Cyclization: Synthesis of Tertiary-Alcohol-Unit-Bearing N-Heterocycles via Transforming C-H to C-OH Bonds. Org Lett 2024; 26:10435-10440. [PMID: 39593213 DOI: 10.1021/acs.orglett.4c03464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
We developed a molecular-oxygen-mediated multicomponent oxidative cyclization strategy to synthesize N-heterocycles containing tertiary alcohol units via the formation of key C-OH bonds and quaternary carbon centers. This formal [3 + 2 + 1] annulation offers a green and sustainable alternative for the de novo C-OH bond formation, using O2 as both the oxidant and oxygen source under metal- and catalyst-free conditions. Notably, continuous [1,5]-hydrogen transfer together with excess alcohols promotes the formation of C-OH-bearing products. Additionally, the generation of quaternary carbon centers inhibits the conversion of C-OH bonds to C═O bonds, thus stabilizing the desired products.
Collapse
Affiliation(s)
- Xiaoshuang Guo
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, China
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Maozhong Miao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Peng Zhao
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, China
| |
Collapse
|
2
|
Yan JL, Liu ZL, Chen K, Xiang HY, Yang H. EDA-Enabled Three-Component Polarity-Crossover Cyclization: Modular Installation of Fully Substituted γ-Lactams. Org Lett 2024; 26:9598-9603. [PMID: 39465940 DOI: 10.1021/acs.orglett.4c03745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
A photoinduced three-component radical addition-aminalization cascade was accomplished, enabling rapid assembly of a wide range of densely functionalized γ-lactams. Key to this transformation is the electron-donor-acceptor (EDA) generation of enamine and in situ trapping of an iminium intermediate with bromodifluoroacetamide. This rationally designed protocol fully takes advantage of the polarity crossover (enamine-iminium) in the process, providing the modular assembly of previously inaccessible scaffolds. The reaction proceeds under mild reaction conditions with excellent regio- and diastereoselectivity, which is amenable to structurally varied substrates and pharmaceuticals.
Collapse
Affiliation(s)
- Jia-Le Yan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhi-Lin Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
3
|
Kumar R, Deepak, Jain N. 1O 2 and Base Assisted Oxidative Conversion of β-Enaminoesters to α-Acyloxy-β-ketoesters under Visible Light Irradiation. J Org Chem 2024; 89:14472-14482. [PMID: 39297950 DOI: 10.1021/acs.joc.4c01994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Singlet oxygen (1O2) and base assisted conversion of β-enaminoesters to α-acyloxy-β-ketoesters is demonstrated under visible light irradiation. The reaction involves formation of an imine intermediate via ene-type pathway initiated by 1O2 followed by base promoted dimerization and hydrolysis steps. The method is mild, environmentally friendly, requires air as the oxidant, and gives the products in moderate to high yields.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Deepak
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Nidhi Jain
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
4
|
Oyejobi AO, Huang J, Luo YX, Tang XY, Wang L. Photooxidative Reaction of β-Oxoamides with Amines for the Synthesis of Pyrrolin-4-ones under External Photocatalyst-Free Conditions. J Org Chem 2024; 89:9972-9978. [PMID: 38954774 DOI: 10.1021/acs.joc.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The incorporation of oxygen atoms from air under aerobic conditions plays an important role in organic synthesis. Herein, Brønsted acids are found to be a two-in-one strategic catalyst to transform enamines from β-oxoamides and amines to pyrrolin-4-ones without an external photocatalyst under visible-light conditions. The Brønsted acid can inhibit the C-C bond fragmentation of the [2 + 2] adduct from enamine and 1O2, but most importantly, it can form photosensitizers with enamine and pyrrolin-4-one product by acidochromism to promote the 1O2 generation.
Collapse
Affiliation(s)
- Aanuoluwapo O Oyejobi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Jie Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yun-Xuan Luo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xiang-Ying Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Long Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
5
|
Zhen J, Sun J, Xu X, Wu Z, Song W, Ying Y, Liang S, Miao L, Cao J, Lv W, Song C, Yao Y, Xing M. M-N 3 Configuration on Boron Nitride Boosts Singlet Oxygen Generation via Peroxymonosulfate Activation for Selective Oxidation. Angew Chem Int Ed Engl 2024; 63:e202402669. [PMID: 38637296 DOI: 10.1002/anie.202402669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
Singlet oxygen (1O2) is an essential reactive species responsible for selective oxidation of organic matter, especially in Fenton-like processes. However, due to the great limitations in synthesizing catalysts with well-defined active sites, the controllable production and practical application of 1O2 remain challenging. Herein, guided by theoretical simulations, a series of boron nitride-based single-atom catalysts (BvBN/M, M=Co, Fe, Cu, Ni and Mn) were synthesized to regulate 1O2 generation by activating peroxymonosulfate (PMS). All the fabricated BvBN/M catalysts with explicit M-N3 sites promoted the self-decomposition of the two PMS molecules to generate 1O2 with high selectivity, where BvBN/Co possessed moderate adsorption energy and d-band center exhibited superior catalytic activity. As an outcome, the BvBN/Co-PMS system coupled with membrane filtration technology could continuously transform aromatic alcohols to aldehydes with nearly 100 % selectivity and conversion rate under mild conditions, suggesting the potential of this novel catalytic system for green organic synthesis.
Collapse
Affiliation(s)
- Jianzheng Zhen
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiahao Sun
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiangwei Xu
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zenglong Wu
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenkai Song
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yunzhan Ying
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shikun Liang
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lingshan Miao
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiazhen Cao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weiyang Lv
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
| | - Changsheng Song
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuyuan Yao
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
| | - Mingyang Xing
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
6
|
Elavarasan S, Preety J, Kesavan M, Patel RB, Baskar B. Activation of enamine by photoexcited organocatalyst assisted singlet oxygen: synthesis of oxazoles and quinoxalines. Org Biomol Chem 2024; 22:4912-4921. [PMID: 38808593 DOI: 10.1039/d4ob00609g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Herein, a novel transition-metal-free thiol-based donor-acceptor organophotocatalyst-assisted, singlet-oxygen-mediated tandem oxidative cyclization for the synthesis of substituted oxazoles in moderate-to-good yields is described. The developed method demonstrates applicability for the synthesis of various substituted quinoxalines in good-to-excellent yields. The metal-free methodology shows a practical route for the synthesis of oxazole and quinoxaline derivatives, which are privileged moieties prevalent in various biologically active compounds and natural products. To the best of our knowledge, both the thiol photocatalyst and synthesis of oxazoles by visible-light irradiation are reported for the first time.
Collapse
Affiliation(s)
- Selvaraj Elavarasan
- Laboratory of Sustainable Synthesis, Department of Chemistry, SRM Institute of Science and Technology, Kattankulatur, 603 203, Chengalpet (Dt), Tamilnadu, India.
| | - Jeyaraj Preety
- Laboratory of Sustainable Synthesis, Department of Chemistry, SRM Institute of Science and Technology, Kattankulatur, 603 203, Chengalpet (Dt), Tamilnadu, India.
| | - M Kesavan
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulatur, 603 203, Chengalpet (Dt), Tamilnadu, India
| | - Ravi B Patel
- Graduate School of Pharmacy, Gujarat Technological University, Ghandhinagar Campus, Ghandhinagar - 382028, Gujarat, India
| | - Baburaj Baskar
- Laboratory of Sustainable Synthesis, Department of Chemistry, SRM Institute of Science and Technology, Kattankulatur, 603 203, Chengalpet (Dt), Tamilnadu, India.
| |
Collapse
|
7
|
Kumar R, Grover N, Jain N. 1O 2 Mediated Conversion of β-Enaminonitriles to α-Keto Amides Photosensitized by Recyclable H 2TPP in Visible Light. J Org Chem 2024; 89:4722-4732. [PMID: 38502937 DOI: 10.1021/acs.joc.3c02965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
We report a one-step approach for the conversion of β-enaminonitriles to synthetically versatile α-keto amides in moderate to high yields under visible light irradiation photosensitized by porphyrins. The method is mild, cost-effective, and sustainable and requires air as the sole reagent/oxidant. The reaction is believed to proceed via an ene-type pathway initiated by 1O2, followed by dehydration, imine hydrolysis, and subsequent nucleophilic substitution of the cyanide group by amine. The method offers a broad substrate scope and has also been extended for synthesis of α-keto esters with aliphatic alcohols as nucleophiles. The porphyrin recovered after the reaction can be reused multiple times.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Chemistry, Indian Institute of Technology, New Delhi-110016, India
| | - Nitika Grover
- Department of Chemistry, Indian Institute of Technology, New Delhi-110016, India
| | - Nidhi Jain
- Department of Chemistry, Indian Institute of Technology, New Delhi-110016, India
| |
Collapse
|
8
|
Wang E, Luo J, Zhang L, Zhang J, Jiang Y. Copper-Catalyzed Oxidative [3 + 2] Cycloaddition of Enamines and Pyridotriazoles toward Indolizines. Org Lett 2024; 26:1249-1254. [PMID: 38305700 DOI: 10.1021/acs.orglett.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
An efficient copper catalytic system has been established for the synthesis of highly functional indolizines through oxidative [3 + 2] cycloaddition of enamines and pyridotriazoles. This modular platform is compatible with a broad range of functional groups, including natural and complex skeletons, allowing for late-stage modifications. It features a step-economical, highly regioselective, and easy-handling procedure and has been applied in constructing small molecules of potent activity toward inhibiting the VEGF-NRP1 interaction through a one-pot reaction of pyridotriazoles, amines, and aldehydes.
Collapse
Affiliation(s)
- Enfu Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jiangbin Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Luoman Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yaojia Jiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
9
|
Wang J, Zuo L, Guo Z, Yang C, Jiang Y, Huang X, Wu L, Tang Z. Al 2 O 3 -coated BiVO 4 Photoanodes for Photoelectrocatalytic Regioselective C-H Activation of Aromatic Amines. Angew Chem Int Ed Engl 2023; 62:e202315478. [PMID: 37946688 DOI: 10.1002/anie.202315478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Photoelectrochemistry is becoming an innovative approach to organic synthesis. Generally, the current photoelectrocatalytic organic transformations suffer from limited reaction type, low conversion efficiency and poor stability. Herein, we develop efficient and stable photoelectrode materials using metal oxide protective layer, with a focus on achieving regioselective activation of amine compounds. Notably, our photoelectrochemistry process is implemented under mild reaction conditions and does not involve any directing groups, transition metals or oxidants. The results demonstrate that beyond photocatalysis and electrocatalysis, photoelectrocatalysis exhibits high efficiency, remarkable repeatability and good functional group tolerance, highlighting its great potential for applications.
Collapse
Affiliation(s)
- Jinghao Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lulu Zuo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyu Guo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Caoyu Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuheng Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuewei Huang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Lizhu Wu
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Lai Q, Chen S, Zou L, Lin C, Huang S, Fu L, Cai L, Cai S. Syntheses of functionalized benzocoumarins by photoredox catalysis. Org Biomol Chem 2023; 21:1181-1186. [PMID: 36632780 DOI: 10.1039/d2ob02225g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Direct functionalization of inert C(sp3)-H bonds is an attractive synthetic technology for the preparation of pharmaceutically significant compounds in modern synthetic organic chemistry. In this work, we report a new method for the synthesis of functionalized benzocoumarins through the strategy of activation of multiple C-H bonds on 2-aryl toluenes under visible-light-enabled photoredox conditions. This method has the advantages of high functional group compatibility, mild reaction conditions, and effectively avoiding the use of strong oxidants and precious metal catalysts. Detailed mechanistic investigations, including spectroscopic and electrochemical studies, support the reaction's mechanistic course.
Collapse
Affiliation(s)
- Qihong Lai
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.
| | - Shanyi Chen
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.
| | - Linnan Zou
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.
| | - Chengzhi Lin
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.
| | - Shuling Huang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.
| | - Lailing Fu
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.
| | - Lina Cai
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.
| | - Shunyou Cai
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China. .,Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|