1
|
Qu L, Tsutsumi T, Ono Y, Taketsugu T. Acceleration of Reaction Space Projector Analysis Using Combinatorial Optimization: Application to Organic Chemical Reactions. J Chem Theory Comput 2024; 20:10931-10941. [PMID: 39652513 DOI: 10.1021/acs.jctc.4c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
In recent years, automated reaction path search methods have established the concept of a reaction route network. The Reaction Space Projector (ReSPer) visualizes the potential energy hypersurface into a lower-dimensional subspace using principal coordinates. The main time-consuming process in ReSPer is calculating the structural distance matrix, making it impractical for complex organic reaction route networks. We implemented the Alternate Optimization (AO) algorithm, one of the combinatorial optimizations, in ReSPer to reduce computational costs. Evaluations using gold clusters and the Au5 several reaction route networks showed that ReSPer-AO accurately computes distances with lower computational costs. Applying ReSPer-AO to the C5H8O reaction route network clarified dynamic conformation changes in its potential energy landscape. The ReSPer-AO method enables analysis of chemical reactions and dynamic conformations in a low-dimensional reaction space that accurately represents hydrocarbon reaction route networks.
Collapse
Affiliation(s)
- Lihao Qu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Takuro Tsutsumi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuriko Ono
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
2
|
Harada S, Takenaka H, Ito T, Kanda H, Nemoto T. Valence-isomer selective cycloaddition reaction of cycloheptatrienes-norcaradienes. Nat Commun 2024; 15:2309. [PMID: 38485991 PMCID: PMC10940685 DOI: 10.1038/s41467-024-46523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
The rapid and precise creation of complex molecules while controlling multiple selectivities is the principal objective in synthetic chemistry. Combining data science and organic synthesis to achieve this goal is an emerging trend, but few examples of successful reaction designs are reported. We develop an artificial neural network regression model using bond orbital data to predict chemical reactivities. Actual experimental verification confirms cycloheptatriene-selective [6 + 2]-cycloaddition utilizing nitroso compounds and norcaradiene-selective [4 + 2]-cycloaddition reactions employing benzynes. Additionally, a one-pot asymmetric synthesis is achieved by telescoping the enantioselective dearomatization of non-activated benzenes and cycloadditions. Computational studies provide a rational explanation for the seemingly anomalous occurrence of thermally prohibited suprafacial [6 + 2]-cycloaddition without photoirradiation.
Collapse
Affiliation(s)
- Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan.
| | - Hiroki Takenaka
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Tsubasa Ito
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Haruki Kanda
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan.
| |
Collapse
|
3
|
Zhou Q, Kukier G, Gordiy I, Hoffmann R, Seeman JI, Houk KN. A 21st Century View of Allowed and Forbidden Electrocyclic Reactions. J Org Chem 2024; 89:1018-1034. [PMID: 38153322 PMCID: PMC10804416 DOI: 10.1021/acs.joc.3c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/29/2023]
Abstract
In 1965, Woodward and Hoffmann proposed a theory to predict the stereochemistry of electrocyclic reactions, which, after expansion and generalization, became known as the Woodward-Hoffmann Rules. Subsequently, Longuet-Higgins and Abrahamson used correlation diagrams to propose that the stereoselectivity of electrocyclizations could be explained by the correlation of reactant and product orbitals with the same symmetry. Immediately thereafter, Hoffmann and Woodward applied correlation diagrams to explain the mechanism of cycloadditions. We describe these discoveries and their evolution. We now report an investigation of various electrocyclic reactions using DFT and CASSCF. We track the frontier molecular orbitals along the intrinsic reaction coordinate and modeled trajectories and examine the correlation between HOMO and LUMO for thermally forbidden systems. We also investigate the electrocyclizations of several highly polarized systems for which the Houk group had predicted that donor-acceptor substitution can induce zwitterionic character, thereby providing low-energy pathways for formally forbidden reactions. We conclude with perspectives on the field of pericyclic reactions, including a refinement as the meaning of Woodward and Hoffmann's "Violations. There are none!" Lastly, we comment on the burgeoning influence of computations on all fields of chemistry.
Collapse
Affiliation(s)
- Qingyang Zhou
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California90095, United States
| | - Garrett Kukier
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California90095, United States
| | - Igor Gordiy
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California90095, United States
| | - Roald Hoffmann
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York14850, United States
| | - Jeffrey I. Seeman
- Department
of Chemistry, University of Richmond, Richmond, Virginia 23173United States
| | - K. N. Houk
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California90095-1569. United States
| |
Collapse
|
4
|
Hayashi H, Maeda S, Mita T. Quantum chemical calculations for reaction prediction in the development of synthetic methodologies. Chem Sci 2023; 14:11601-11616. [PMID: 37920348 PMCID: PMC10619630 DOI: 10.1039/d3sc03319h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023] Open
Abstract
Quantum chemical calculations have been used in the development of synthetic methodologies to analyze the reaction mechanisms of the developed reactions. Their ability to estimate chemical reaction pathways, including transition state energies and connected equilibria, has led researchers to embrace their use in predicting unknown reactions. This perspective highlights strategies that leverage quantum chemical calculations for the prediction of reactions in the discovery of new methodologies. Selected examples demonstrate how computation has driven the development of unknown reactions, catalyst design, and the exploration of synthetic routes to complex molecules prior to often laborious, costly, and time-consuming experimental investigations.
Collapse
Affiliation(s)
- Hiroki Hayashi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
- JST-ERATO, Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project Kita 10, Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
- JST-ERATO, Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project Kita 10, Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
- Department of Chemistry, Faculty of Science, Hokkaido University Kita 10, Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Tsuyoshi Mita
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
- JST-ERATO, Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project Kita 10, Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| |
Collapse
|
5
|
Toniato A, Unsleber JP, Vaucher AC, Weymuth T, Probst D, Laino T, Reiher M. Quantum chemical data generation as fill-in for reliability enhancement of machine-learning reaction and retrosynthesis planning. DIGITAL DISCOVERY 2023; 2:663-673. [PMID: 37312681 PMCID: PMC10259370 DOI: 10.1039/d3dd00006k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/09/2023] [Indexed: 06/15/2023]
Abstract
Data-driven synthesis planning has seen remarkable successes in recent years by virtue of modern approaches of artificial intelligence that efficiently exploit vast databases with experimental data on chemical reactions. However, this success story is intimately connected to the availability of existing experimental data. It may well occur in retrosynthetic and synthesis design tasks that predictions in individual steps of a reaction cascade are affected by large uncertainties. In such cases, it will, in general, not be easily possible to provide missing data from autonomously conducted experiments on demand. However, first-principles calculations can, in principle, provide missing data to enhance the confidence of an individual prediction or for model retraining. Here, we demonstrate the feasibility of such an ansatz and examine resource requirements for conducting autonomous first-principles calculations on demand.
Collapse
Affiliation(s)
- Alessandra Toniato
- Laboratory of Physical Chemistry, ETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
- National Center for Competence in Research-Catalysis (NCCR Catalysis), ETH Zurich Vladimir-Prelog-Weg 1-5/10 8093 Zurich Switzerland
- IBM Research Europe 8803 Rüschlikon Switzerland
- National Center for Competence in Research-Catalysis (NCCR Catalysis), IBM Research 8803 Rüschlikon Switzerland
| | - Jan P Unsleber
- Laboratory of Physical Chemistry, ETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
- National Center for Competence in Research-Catalysis (NCCR Catalysis), ETH Zurich Vladimir-Prelog-Weg 1-5/10 8093 Zurich Switzerland
| | - Alain C Vaucher
- IBM Research Europe 8803 Rüschlikon Switzerland
- National Center for Competence in Research-Catalysis (NCCR Catalysis), IBM Research 8803 Rüschlikon Switzerland
| | - Thomas Weymuth
- Laboratory of Physical Chemistry, ETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
- National Center for Competence in Research-Catalysis (NCCR Catalysis), ETH Zurich Vladimir-Prelog-Weg 1-5/10 8093 Zurich Switzerland
| | - Daniel Probst
- IBM Research Europe 8803 Rüschlikon Switzerland
- National Center for Competence in Research-Catalysis (NCCR Catalysis), IBM Research 8803 Rüschlikon Switzerland
| | - Teodoro Laino
- IBM Research Europe 8803 Rüschlikon Switzerland
- National Center for Competence in Research-Catalysis (NCCR Catalysis), IBM Research 8803 Rüschlikon Switzerland
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
- National Center for Competence in Research-Catalysis (NCCR Catalysis), ETH Zurich Vladimir-Prelog-Weg 1-5/10 8093 Zurich Switzerland
| |
Collapse
|