1
|
Li Q, Zheng Y, Wu H, Hu Z, Wang J, Wu Y, Yu H. Reticular chemistry-aided effective design of new second-order nonlinear optical selenites. MATERIALS HORIZONS 2024. [PMID: 39381851 DOI: 10.1039/d4mh01043d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Noncentrosymmetric (NCS) compounds are particularly important for modern optoelectronic technology, yet their rational structural design remains a great challenge. Herein, assisted by the idea of bottom-up reticular chemistry, seven new NCS selenites, AM3[SeO3]2[Se2O5]3 (A = K+/Rb+/Cs+; M = Al3+/Ga3+/In3+), have been successfully designed and synthesized by assembling main-group metal octahedral units and SeO3 units, to construct honeycomb layers with regular channels to accommodate a variety of cations, and using planar hexagonal shapes to orientate the groups within the network. Based on this strategy, the overall symmetry of the solid-state compounds was effectively controlled, and by modifying locally connected atoms or groups, without disrupting the overall prototypical framework, a series of iso-reticular analogues have been obtained, which greatly increases the probability of NCS structures. Three of these compounds, CsM3[SeO3]2[Se2O5]3 were characterized experimentally and theoretically. The results show that they all have moderate second harmonic generation (SHG) responses, which are as large as that of commercial KH2PO4, and wide band gaps. Our study confirms the feasibility of reticular chemistry-assisted strategy in designing nonlinear optical materials with stable frameworks and good performance.
Collapse
Affiliation(s)
- Qian Li
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| | - Yi Zheng
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| | - Hongping Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| | - Jiyang Wang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| | - Hongwei Yu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
2
|
Han CQ, Wang L, Si J, Zhou K, Liu XY. Reticular Chemistry Directed "One-Pot" Strategy to in situ Construct Organic Linkers and Zirconium-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402263. [PMID: 38716785 DOI: 10.1002/smll.202402263] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/24/2024] [Indexed: 10/04/2024]
Abstract
Zirconium-based metal-organic frameworks (Zr-MOFs) have emerged as one of the most studied MOFs due to the unlimited numbers of organic linkers and the varying Zr-oxo clusters. However, the synthesis of carboxylic acids, especially multitopic carboxylic acids, is always a great challenge for the discovery of new Zr-MOFs. As an alternative approach, the in situ "one-pot" strategy can address this limitation, where the generation of organic linkers from the corresponding precursors and the sequential construction of MOFs are integrated into one solvothermal condition. Herein, inspired by benzimidazole-contained compounds synthesized via reaction of aldehyde and o-phenylenediamine, tri-, tetra-, penta- and hexa-topic carboxylic acids and a series of corresponding Zr-MOFs can be prepared via the in situ "one-pot" method under the same solvothermal conditions. This strategy can be utilized not only to prepare reported Zr-MOFs constructed using benzimidazole-contained linkers, but also to rationally design, construct and realize functionalities of zirconium-pentacarboxylate frameworks guided by reticular chemistry. More importantly, in situ "one-pot" method can facilitate the discovery of new Zr-MOFs, such as zirconium-hexacarboxylate frameworks. The present study demonstrates the promising potential of benzimidazole-inspired in situ "one-pot" approach in the crystal engineering of structure- and property-specific Zr-MOFs, especially with the guidance of reticular chemistry.
Collapse
Affiliation(s)
- Chao-Qin Han
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan, Shenzhen, 518055, P. R. China
| | - Lei Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan, Shenzhen, 518055, P. R. China
| | - Jincheng Si
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan, Shenzhen, 518055, P. R. China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan, Shenzhen, 518055, P. R. China
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan, Shenzhen, 518055, P. R. China
| |
Collapse
|
3
|
Fang PH, Xing K, Qu LL, Ma ZS, Zhou K, Liu XY. Reticular Chemistry and In Situ "One-Pot" Strategy: A Dream Combination to Construct Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405540. [PMID: 39205545 DOI: 10.1002/smll.202405540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/18/2024] [Indexed: 09/04/2024]
Abstract
The establishment of reticular chemistry has significantly facilitated the development of porous materials, especially for metal-organic frameworks (MOFs). On the other hand, as an alternative approach, in situ "one-pot" strategy has been explored as a promising approach to constructing MOFs, in which the synthesis of organic linkers and the sequential construction of MOFs are integrated into one solvothermal condition. This strategy can efficiently avoid the limitations faced in the traditional construction method, such as time-consuming organic synthesis and multiple separation and purification. Herein, inspired by the reaction of aldehydes and o-phenylenediamine and deep structural analysis of UiO-68, a series of tetra-, hexa-, and octa-topic carboxylic acids are synthesized using 2',3'-diamino-[1,1':4',1'"-terphenyl]-4,4'"-dicarboxylic acid and di-, tri-, and tetra-topic aldehydes as precursor. Then nine multicarboxylate-based zirconium MOFs (Zr-MOFs) are successfully constructed via the combination of reticular chemistry and in situ "one-pot" strategy. The resultant Zr-MOFs can be regarded as the partial face decoration of UiO-68. More importantly, the emission properties of resultant Zr-MOFs can be well controlled using aldehydes with tunable electronic structures. This work provides a new path to rational design and construction of porous materials with specific structures guided by reticular chemistry and conducted using in situ "one-pot" strategy.
Collapse
Affiliation(s)
- Pu-Hao Fang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan, Shenzhen, 518055, P. R. China
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Kai Xing
- Department of Chemistry, College of Basic Medicine, Third Military Medical Univesity (Army Medical University), Chongqing, 400038, P. R. China
| | - Lu-Lu Qu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Zhen-Sha Ma
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan, Shenzhen, 518055, P. R. China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan, Shenzhen, 518055, P. R. China
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan, Shenzhen, 518055, P. R. China
| |
Collapse
|
4
|
Lim J, Park KC, Thaggard GC, Liu Y, Maldeni Kankanamalage BKP, Toler DJ, Ta AT, Kittikhunnatham P, Smith MD, Phillpot SR, Shustova NB. Friends or Foes: Fundamental Principles of Th-Organic Scaffold Chemistry Using Zr-Analogs as a Guide. J Am Chem Soc 2024; 146:12155-12166. [PMID: 38648612 DOI: 10.1021/jacs.4c02327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The fundamental interest in actinide chemistry, particularly for the development of thorium-based materials, is experiencing a renaissance owing to the recent and rapidly growing attention to fuel cycle reactors, radiological daughters for nuclear medicine, and efficient nuclear stockpile development. Herein, we uncover fundamental principles of thorium chemistry on the example of Th-based extended structures such as metal-organic frameworks in comparison with the discrete systems and zirconium extended analogs, demonstrating remarkable over two-and-half-year chemical stability of Th-based frameworks as a function of metal node connectivity, amount of defects, and conformational linker rigidity through comprehensive spectroscopic and crystallographic analysis as well as theoretical modeling. Despite exceptional chemical stability, we report the first example of studies focusing on the reactivity of the most chemically stable Th-based frameworks in comparison with the discrete Th-based systems such as metal-organic complexes and a cage, contrasting multicycle recyclability and selectivity (>97%) of the extended structures in comparison with the molecular compounds. Overall, the presented work not only establishes the conceptual foundation for evaluating the capabilities of Th-based materials but also represents a milestone for their multifaceted future and foreshadows their potential to shape the next era of actinide chemistry.
Collapse
Affiliation(s)
- Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Yuan Liu
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Buddhima K P Maldeni Kankanamalage
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Donald J Toler
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - An T Ta
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | | | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Simon R Phillpot
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
5
|
Peng T, Han CQ, Xia HL, Zhou K, Zhang J, Si J, Wang L, Miao J, Guo FA, Wang H, Qu LL, Xu G, Li J, Liu XY. Reticular chemistry guided precise construction of zirconium-pentacarboxylate frameworks with 5-connected Zr 6 clusters. Chem Sci 2024; 15:3174-3181. [PMID: 38425507 PMCID: PMC10901486 DOI: 10.1039/d3sc05410a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024] Open
Abstract
Zirconium-based metal-organic frameworks (Zr-MOFs) have been extensively studied due to their very rich structural chemistry. The combination of nearly unlimited carboxylic acid-based linkers and Zr6 clusters with multiple connectivities has led to diverse structures and specific properties of resultant Zr-MOFs. Herein, we demonstrate the successful use of reticular chemistry to construct two novel Zr-MOFs, HIAM-4040 and HIAM-4040-OH, with zfu topology. Based on a thorough structural analysis of (4,4)-connected lvt-type Zr-tetracarboxylate frameworks and a judicious linker design, we have obtained the first example of a Zr-pentacarboxylate framework featuring unprecedented 5-connected organic linkers and 5-connected Zr6 clusters. Compared with HIAM-4040, a larger Stokes shift is achieved in HIAM-4040-OH via hydroxyl group induced excited-state intramolecular proton transfer (ESIPT). HIAM-4040-OH exhibits high chemical and thermal stability and is used for HClO detection in aqueous solution with excellent sensitivity and selectivity.
Collapse
Affiliation(s)
- Tianyou Peng
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
- College of Chemical Engineering, University of Science and Technology Liaoning Anshan 114051 P. R. China
| | - Chao-Qin Han
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Hai-Lun Xia
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Jian Zhang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Jincheng Si
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou 221116 P. R. China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Lei Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Jiafeng Miao
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Fu-An Guo
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Lu-Lu Qu
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Guozhong Xu
- College of Chemical Engineering, University of Science and Technology Liaoning Anshan 114051 P. R. China
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University 123 Bevier Road Piscataway New Jersey 08854 USA
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| |
Collapse
|
6
|
Ding Y, Liu C, Shi Y, Wang LX, Mao ZS, Sun H, Wan H, Chen F, Cao Y. Dual-Mode Separation and SERS Detection of Carbaryl with PA-6/AuNRs@ZIF-8 Films. Anal Chem 2024; 96:1941-1947. [PMID: 38279956 DOI: 10.1021/acs.analchem.3c04090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Appropriate separation and enrichment steps can enhance the performance of SERS assays. For rapid, in-situ detection of carbaryl, a novel PA-6/AuNRs@ZIF-8 film that can be applied to dual-mode separation and SERS detection, has been developed. In the film, PA-6 was used as a TLC substrate for the initial separation of the substance to be measured. ZIF-8 provides chemical enhancement in SERS as well as enrichment and secondary separation of the analytes. Utilizing this film, we have successfully implemented a TLC-SERS rapid detection scheme, resulting in a detection limit for carbaryl as low as 1 × 10-9 M in lake water in 15 min, which is significantly lower than existing standards. Additionally, the manufacturing cost of one PA-6/AuNRs@ZIF-8 film can be kept within the range of $0.20-$0.40 economically, presenting substantial financial advantages. The method is highly promising for pesticide detection as well as forensic in-situ testing.
Collapse
Affiliation(s)
- Yan Ding
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Cheng Liu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Yang Shi
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Li-Xiang Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Zheng-Sheng Mao
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Hao Sun
- Department of Emergency Medicine. The First Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China
| | - Hua Wan
- Department of Health Management, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Yue Cao
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, P.R. China
| |
Collapse
|
7
|
Xia J, Si J, Zhou K, Xia HL, Zhang J, Xu Y, Wang L, Liu XY. Carboxyl position-directed structure diversity in zirconium-tricarboxylate frameworks. Dalton Trans 2023; 52:17679-17683. [PMID: 37997636 DOI: 10.1039/d3dt03348a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Herein, three tritopic carboxylic acids were used to construct three Zr-MOFs, HIAM-4033, HIAM-4034, and HIAM-4035, to investigate the effect of carboxyl position on the MOF structures. The results showed that HIAM-4033 and HIAM-4034 possess (3,9)-c models with different underlying nets, whereas HIAM-4035 exhibits the same underlying net as UiO-68. Nanosized HIAM-4033 exhibits excellent sensitivity and selectivity for detecting aromatic acids, such as benzoic acid and 2-fluorobenzoic acid, compared with aliphatic acids and inorganic acids. This study offers new insights into achieving an organic linker directed structure evolution of Zr-MOFs, which might facilitate the discovery of unprecedented underlying nets.
Collapse
Affiliation(s)
- Jun Xia
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China.
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| | - Jincheng Si
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| | - Hai-Lun Xia
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| | - Jian Zhang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| | - Yingqian Xu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China.
| | - Lei Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| |
Collapse
|
8
|
Zhu L, Zhang Q, Meng F, Li M, Liang Q, Zhang F. Narrow-Pore Engineering of Vinylene-Linked Covalent Organic Frameworks with Weak Interaction-Triggered Multiple Responses. Angew Chem Int Ed Engl 2023; 62:e202309125. [PMID: 37646743 DOI: 10.1002/anie.202309125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Vinylene-linked covalent organic frameworks (COFs) are emerging as promising crystalline materials, but their narrow pore engineering is severely impeded by the weak reversibility of the carbon-carbon double bond formation reaction, which has led to less exploration of their ultramicroporous structures and properties. Herein, we developed a single aromatic ring-based tetratopic monomer, tetramethylpyrazine, which undergoes a smooth Knoevenegal condensation at its four arylmethly carbon atoms with linear aromatic dialdehyde monomers upon the self-catalyzed activation of pyridine nitrogen-containing monomers in the presence of an organic anhydride. This has resulted in the formation of two vinylene-linked COFs, which both crystallized in orthorhombic lattices, and layered in AA stacking fashions along the vertical directions. They exhibit high surface areas and well-tailored ultramicropore sizes up to 0.5 nm. The unique cross-linking mode at two pairs of para-positions of each pyrazine unit through carbon-carbon double bonds afford them with π-extended conjugation over the in-plane backbones and substantial semiconducting characters. The resultant COFs can be well-dispersed in water to form stable sub-microparticles with negative charges (zeta potentials: ca. -30 mV), and exhibiting tunable aggregation behaviors through protonation/deprotonation. As a consequence, they exhibit pore-size-dependent colorimetric responses to various anions with different pKa values in high selectivity.
Collapse
Affiliation(s)
- Lin Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Department of Physics, Shaoxing University, 508 Huanchengxi Road, Shaoxing, 312000, China
| | - Qian Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, China
| | - Fancheng Meng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Mengqi Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qifeng Liang
- Department of Physics, Shaoxing University, 508 Huanchengxi Road, Shaoxing, 312000, China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|