1
|
Cao Y, Yu T, Zhu Z, Zhang Y, Sun S, Li N, Gu C, Yang Y. Exploring the landscape of post-translational modification in drug discovery. Pharmacol Ther 2025; 265:108749. [PMID: 39557344 DOI: 10.1016/j.pharmthera.2024.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
Post-translational modifications (PTMs) play a crucial role in regulating protein function, and their dysregulation is frequently associated with various diseases. The emergence of epigenetic drugs targeting factors such as histone deacetylases (HDACs) and histone methyltransferase enhancers of zeste homolog 2 (EZH2) has led to a significant shift towards precision medicine, offering new possibilities to overcome the limitations of traditional therapeutics. In this review, we aim to systematically explore how small molecules modulate PTMs. We discuss the direct targeting of enzymes involved in PTM pathways, the modulation of substrate proteins, and the disruption of protein-enzyme interactions that govern PTM processes. Additionally, we delve into the emerging strategy of employing multifunctional molecules to precisely regulate the modification levels of proteins of interest (POIs). Furthermore, we examine the specific characteristics of these molecules, evaluating their therapeutic benefits and potential drawbacks. The goal of this review is to provide a comprehensive understanding of PTM-targeting strategies and their potential for personalized medicine, offering a forward-looking perspective on the evolution of precision therapeutics.
Collapse
Affiliation(s)
- Yuhao Cao
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianyi Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziang Zhu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanjiao Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ye Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Zhang Q, Yu J, You Q, Wang L. Modulating Phosphorylation by Proximity-Inducing Modalities for Cancer Therapy. J Med Chem 2024; 67:21695-21716. [PMID: 39648992 DOI: 10.1021/acs.jmedchem.4c02624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Abnormal phosphorylation of proteins can lead to various diseases, particularly cancer. Therefore, the development of small molecules for precise regulation of protein phosphorylation holds great potential for drug design. While the traditional kinase/phosphatase small-molecule modulators have shown some success, achieving precise phosphorylation regulation has proven to be challenging. The emergence of heterobifunctional molecules, such as phosphorylation-inducing chimeric small molecules (PHICSs) and phosphatase recruiting chimeras (PHORCs), with proximity-inducing modalities is expected to lead to a breakthrough by specifically recruiting kinase or phosphatase to the protein of interest. Herein, we summarize the drug targets with aberrant phosphorylation in cancer and underscore the potential of correcting phosphorylation in cancer therapy. Through reported cases of heterobifunctional molecules targeting phosphorylation regulation, we highlight the current design strategies and features of these molecules. We also provide a systematic elaboration of the link between aberrantly phosphorylated targets and cancer as well as the existing challenges and future research directions for developing heterobifunctional molecular drugs for phosphorylation regulation.
Collapse
Affiliation(s)
- Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024; 124:12918-13019. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
4
|
Wang Y, He Y, You Q, Wang L. Design of bifunctional molecules to accelerate post-translational modifications: achievements and challenges. Drug Discov Today 2024; 29:104194. [PMID: 39343161 DOI: 10.1016/j.drudis.2024.104194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Post-translational modifications (PTMs) of proteins are crucial for regulating biological processes and their dysregulation is linked to various diseases, highlighting PTM regulation as a significant target for drug development. Traditional drug targets often interact with multiple proteins, resulting in lower selectivity and inevitable adverse effects, which limits their clinical applicability. Recent advancements in bifunctional molecules, such as proteolysis-targeting chimeras (PROTACs), have shown promise in targeting PTMs precisely. However, regulatory mechanisms for many of the >600 known PTMs remain underexplored. This review examines current progress and challenges in designing bifunctional molecules for PTM regulation, focusing on effector selection and ligand design strategies, aiming to propel the utilization and advancement of bifunctional molecules to the forefront of PTM research.
Collapse
Affiliation(s)
- Yuxuan Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yanyi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
5
|
Serebrenik YV, Mani D, Maujean T, Burslem GM, Shalem O. Pooled endogenous protein tagging and recruitment for systematic profiling of protein function. CELL GENOMICS 2024; 4:100651. [PMID: 39255790 PMCID: PMC11602618 DOI: 10.1016/j.xgen.2024.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024]
Abstract
The emerging field of induced proximity therapeutics, which involves designing molecules to bring together an effector and target protein-typically to induce target degradation-is rapidly advancing. However, its progress is constrained by the lack of scalable and unbiased tools to explore effector-target protein interactions. We combine pooled endogenous gene tagging using a ligand-binding domain with generic small-molecule-based recruitment to screen for induction of protein proximity. We apply this methodology to identify effectors for degradation in two orthogonal screens: using fluorescence to monitor target levels and a cellular growth that depends on the degradation of an essential protein. Our screens revealed new effector proteins for degradation, including previously established examples, and converged on members of the C-terminal-to-LisH (CTLH) complex. We introduce a platform for pooled induction of endogenous protein-protein interactions to expand our toolset of effector proteins for protein degradation and other forms of induced proximity.
Collapse
Affiliation(s)
- Yevgeniy V Serebrenik
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Deepak Mani
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothé Maujean
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Ophir Shalem
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Zhang Q, Yan L, Zhang L, Yu J, Han Z, Liu H, Gu J, Wang K, Wang J, Chen F, Zhao R, Yan Y, Jiang C, You Q, Wang L. Allosteric Activation of Protein Phosphatase 5 with Small Molecules. J Med Chem 2024; 67:15080-15097. [PMID: 39145509 DOI: 10.1021/acs.jmedchem.4c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The activation of PP5 is essential for a variety of cellular processes, as it participates in a variety of biological pathways by dephosphorylating substrates. However, activation of PP5 by small molecules has been a challenge due to its native "self-inhibition" mechanism, which is controlled by the N-terminal TPR domain and the C-terminal αJ helix. Here, we reported the discovery of DDO-3733, a well-identified TPR-independent PP5 allosteric activator, which facilitates the dephosphorylation process of downstream substrates. Considering the negative regulatory effect of PP5 on heat shock transcription factor HSF1, pharmacologic activation of PP5 by DDO-3733 was found to reduce the HSP90 inhibitor-induced heat shock response. These results provide a chemical tool to advance the exploration of PP5 as a potential therapeutic target and highlight the value of pharmacological activation of PP5 to reduce heat shock toxicity of HSP90 inhibitors.
Collapse
Affiliation(s)
- Qiuyue Zhang
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Yan
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lixiao Zhang
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia Yu
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zeyu Han
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hua Liu
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinying Gu
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Keran Wang
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jiayi Wang
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Fangsu Chen
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Rongde Zhao
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Yan
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Jiang
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- Jiangsu State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
7
|
Li Z, Guo M, Gu M, Cai Z, Wu Q, Yu J, Tang M, He C, Wang Y, Sun P, You Q, Wang L. Design and Synthesis of 7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic Acid Derivatives as PP5 Inhibitors To Reverse Temozolomide Resistance in Glioblastoma Multiforme. J Med Chem 2024; 67:15691-15710. [PMID: 39136241 DOI: 10.1021/acs.jmedchem.4c01304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The serine/threonine phosphatase family is important in tumor progression and survival. Due to the high conserved catalytic domain, designing selective inhibitors is challenging. Herein, we obtained compound 28a with 38-fold enhanced PP5 selectivity (PP2A/5 IC50 = 33.8/0.9 μM) and improved drug-like properties (favorable stability and safety, F = 82.0%) by rational drug design based on a phase II PP2A/5 dual target inhibitor LB-100. Importantly, we found the spatial conformational restriction of the 28a indole fragment was responsible for the selectivity of PP5. Thus, 28a activated p53 and downregulated cyclin D1 and MGMT, which showed potency in cell cycle arrest and reverse temozolomide (TMZ) resistance in the U87 MG cell line. Furthermore, oral administration of 28a and TMZ was well tolerated to effectively inhibit tumor growth (TGI = 87.7%) in the xenograft model. Collectively, these results implicate 28a could be a drug candidate by reversing TMZ resistance with a selective PP5 inhibition manner.
Collapse
Affiliation(s)
- Zekun Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mochen Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mingxiao Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhongtian Cai
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiuyu Wu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Meilun Tang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chenxi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Piaoyang Sun
- Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
8
|
Tsai JM, Nowak RP, Ebert BL, Fischer ES. Targeted protein degradation: from mechanisms to clinic. Nat Rev Mol Cell Biol 2024; 25:740-757. [PMID: 38684868 DOI: 10.1038/s41580-024-00729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
Targeted protein degradation refers to the use of small molecules to induce the selective degradation of proteins. In its most common form, this degradation is achieved through ligand-mediated neo-interactions between ubiquitin E3 ligases - the principal waste disposal machines of a cell - and the protein targets of interest, resulting in ubiquitylation and subsequent proteasomal degradation. Notable advances have been made in biological and mechanistic understanding of serendipitously discovered degraders. This improved understanding and novel chemistry has not only provided clinical proof of concept for targeted protein degradation but has also led to rapid growth of the field, with dozens of investigational drugs in active clinical trials. Two distinct classes of protein degradation therapeutics are being widely explored: bifunctional PROTACs and molecular glue degraders, both of which have their unique advantages and challenges. Here, we review the current landscape of targeted protein degradation approaches and how they have parallels in biological processes. We also outline the ongoing clinical exploration of novel degraders and provide some perspectives on the directions the field might take.
Collapse
Affiliation(s)
- Jonathan M Tsai
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Radosław P Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Wang B, Ma Y, Zhang Y, Yin X. Therapeutic potential of ASK1 activators in cancer treatment: Current insights and future directions. Biomed Pharmacother 2024; 178:117214. [PMID: 39079264 DOI: 10.1016/j.biopha.2024.117214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024] Open
Abstract
Apoptosis signal-regulated kinase 1 (ASK1) is a member of the mitogen-activated protein kinase kinase (MAP3K) family, whose activation and regulation are intricately associated with apoptosis. ASK1 is activated in response to oxidative stress, among other stimuli, subsequently triggering downstream JNK, p38 MAPK, and mitochondria-dependent apoptotic signaling, which participate in the initiation of tumor cell apoptosis induced by various stimuli. Research has shown that ASK1 plays a crucial role in the apoptosis of lung cancer, breast cancer, and liver cancer cells. Currently, the investigation of effective ASK1 activators is a hot topic in research on tumor cell apoptosis. Synthetic compounds such as human β-defensin, triazolothiazide derivatives and heat shock protein 27 inhibitors; natural compounds such as quercetin, Laminarina japonica polysaccharide-1 peptide and theabrownin; and nanomedicines such as cerium oxide nanoparticles, magnetite FeO nanoparticles and silver nanoparticles can activate ASK1 and induce apoptosis in various tumor cells. This review extensively investigates the roles and activation mechanisms of ASK1, explores its impact on a variety of apoptotic signaling pathways, and discusses the potential therapeutic applications of various ASK1 activators in cancer treatment. In addition, this paper provides an in-depth discussion of the future development of this field and proposes a promising method for further research and clinical progress.
Collapse
Affiliation(s)
- Bo Wang
- Department of Integrated Chinese and Western Medicine, Jilin Cancer Hospital, Changchun 130103, China
| | - Ying Ma
- Department of Integrated Chinese and Western Medicine, Jilin Cancer Hospital, Changchun 130103, China
| | - Yue Zhang
- Department of Integrated Chinese and Western Medicine, Jilin Cancer Hospital, Changchun 130103, China.
| | - Xunzhe Yin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
10
|
Sun Y, Zhou R, Hu J, Feng S, Hu Q. Reversible control of kinase signaling through chemical-induced dephosphorylation. Commun Biol 2024; 7:1073. [PMID: 39217250 PMCID: PMC11366001 DOI: 10.1038/s42003-024-06771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The coordination between kinases and phosphatases is crucial for regulating the phosphorylation levels of essential signaling molecules. Methods enabling precise control of kinase activities are valuable for understanding the kinase functions and for developing targeted therapies. Here, we use the abscisic acid (ABA)-induced proximity system to reversibly control kinase signaling by recruiting phosphatases. Using this method, we found that the oncogenic tyrosine kinase BCR::ABL1 can be inhibited by recruiting various cytoplasmic phosphatases. We also discovered that the oncogenic serine/threonine kinase BRAF(V600E), which has been reported to bypass phosphorylation regulation, can be positively regulated by protein phosphatase 1 (PP1) and negatively regulated by PP5. Additionally, we observed that the dual-specificity kinase MEK1 can be inhibited by recruiting PP5. This suggests that bifunctional molecules capable of recruiting PP5 to MEK or RAF kinases could be promising anticancer drug candidates. Thus, the ABA-induced dephosphorylation method enables rapid screening of phosphatases to precisely control kinase signaling.
Collapse
Affiliation(s)
- Ying Sun
- Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Rihong Zhou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jin Hu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Qi Hu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Brewer A, Zhao JF, Fasimoye R, Shpiro N, Macartney TJ, Wood NT, Wightman M, Alessi DR, Sapkota GP. Targeted dephosphorylation of SMAD3 as an approach to impede TGF-β signaling. iScience 2024; 27:110423. [PMID: 39104417 PMCID: PMC11298613 DOI: 10.1016/j.isci.2024.110423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/09/2024] [Accepted: 06/27/2024] [Indexed: 08/07/2024] Open
Abstract
TGF-β (transforming growth factor-β) signaling is involved in a myriad of cellular processes and its dysregulation has been implicated in many human diseases, including fibrosis and cancer. TGF-β transcriptional responses are controlled by tail phosphorylation of transcription factors SMAD2 and SMAD3 (mothers against decapentaplegic homolog 2/3). Therefore, targeted dephosphorylation of phospho-SMAD3 could provide an innovative mechanism to block some TGF-β-induced transcriptional responses, such as the transcription of SERPINE-1, which encodes plasminogen activator inhibitor 1 (PAI-1). Here, by developing and employing a bifunctional molecule, BDPIC (bromoTAG-dTAG proximity-inducing chimera), we redirected multiple phosphatases, tagged with bromoTAG, to dephosphorylate phospho-SMAD3, tagged with dTAG. Using CRISPR-Cas9 technology, we generated homozygous double knock-in A549 bromoTAG/bromoTAG PPM1H/ dTAG/dTAG SMAD3 cells, in which the BDPIC-induced proximity between bromoTAG-PPM1H and dTAG-SMAD3 led to a robust dephosphorylation of dTAG-SMAD3 and a significant decrease in SERPINE-1 transcription. Our work demonstrates targeted dephosphorylation of phospho-proteins as an exciting modality for rewiring cell signaling.
Collapse
Affiliation(s)
- Abigail Brewer
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jin-Feng Zhao
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Rotimi Fasimoye
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Natalia Shpiro
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Thomas J. Macartney
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nicola T. Wood
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Melanie Wightman
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Dario R. Alessi
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gopal P. Sapkota
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
12
|
Zhao JF, Shpiro N, Sathe G, Brewer A, Macartney TJ, Wood NT, Negoita F, Sakamoto K, Sapkota GP. Targeted dephosphorylation of TFEB promotes its nuclear translocation. iScience 2024; 27:110432. [PMID: 39081292 PMCID: PMC11284556 DOI: 10.1016/j.isci.2024.110432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/07/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Reversible phosphorylation of the transcription factor EB (TFEB) coordinates cellular responses to metabolic and other stresses. During nutrient replete and stressor-free conditions, phosphorylated TFEB is primarily localized to the cytoplasm. Stressor-mediated reduction of TFEB phosphorylation promotes its nuclear translocation and context-dependent transcriptional activity. In this study, we explored targeted dephosphorylation of TFEB as an approach to activate TFEB in the absence of nutrient deprivation or other cellular stress. Through an induction of proximity between TFEB and several phosphatases using the AdPhosphatase system, we demonstrate targeted dephosphorylation of TFEB in cells. Furthermore, by developing a heterobifunctional molecule BDPIC (bromoTAG-dTAG proximity-inducing chimera), we demonstrate targeted dephosphorylation of TFEB-dTAG through induced proximity to bromoTAG-PPP2CA. Targeted dephosphorylation of TFEB-dTAG by bromoTAG-PPP2CA with BDPIC at the endogenous levels is sufficient to induce nuclear translocation and some transcriptional activity of TFEB.
Collapse
Affiliation(s)
- Jin-Feng Zhao
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Natalia Shpiro
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gajanan Sathe
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Abigail Brewer
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Thomas J. Macartney
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nicola T. Wood
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Florentina Negoita
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Gopal P. Sapkota
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
13
|
Huang X, Wu F, Ye J, Wang L, Wang X, Li X, He G. Expanding the horizons of targeted protein degradation: A non-small molecule perspective. Acta Pharm Sin B 2024; 14:2402-2427. [PMID: 38828146 PMCID: PMC11143490 DOI: 10.1016/j.apsb.2024.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 06/05/2024] Open
Abstract
Targeted protein degradation (TPD) represented by proteolysis targeting chimeras (PROTACs) marks a significant stride in drug discovery. A plethora of innovative technologies inspired by PROTAC have not only revolutionized the landscape of TPD but have the potential to unlock functionalities beyond degradation. Non-small-molecule-based approaches play an irreplaceable role in this field. A wide variety of agents spanning a broad chemical spectrum, including peptides, nucleic acids, antibodies, and even vaccines, which not only prove instrumental in overcoming the constraints of conventional small molecule entities but also provided rapidly renewing paradigms. Herein we summarize the burgeoning non-small molecule technological platforms inspired by PROTACs, including three major trajectories, to provide insights for the design strategies based on novel paradigms.
Collapse
Affiliation(s)
- Xiaowei Huang
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fengbo Wu
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Ye
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lian Wang
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyun Wang
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Li
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Hu Z, Chen PH, Li W, Krone M, Zheng S, Saarbach J, Velasco IU, Hines J, Liu Y, Crews CM. EGFR targeting PhosTACs as a dual inhibitory approach reveals differential downstream signaling. SCIENCE ADVANCES 2024; 10:eadj7251. [PMID: 38536914 PMCID: PMC10971414 DOI: 10.1126/sciadv.adj7251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/22/2024] [Indexed: 04/05/2024]
Abstract
We recently developed a heterobifunctional approach [phosphorylation targeting chimeras (PhosTACs)] to achieve the targeted protein dephosphorylation (TPDephos). Here, we envisioned combining the inhibitory effects of receptor tyrosine kinase inhibitors (RTKIs) and the active dephosphorylation by phosphatases to achieve dual inhibition of kinases. We report an example of tyrosine phosphatase-based TPDephos and the effective epidermal growth factor receptor (EGFR) tyrosine dephosphorylation. We also used phosphoproteomic approaches to study the signaling transductions affected by PhosTAC-related molecules at the proteome-wide level. This work demonstrated the differential signaling pathways inhibited by PhosTAC compared with the TKI, gefitinib. Moreover, a covalent PhosTAC selective for mutated EGFR was developed and showed its inhibitory potential for dysregulated EGFR. Last, EGFR PhosTACs, consistent with EGFR dephosphorylation profiles, induced apoptosis and inhibited cancer cell viability during prolonged PhosTAC treatment. PhosTACs showcased their potential of modulating RTKs activity, expanding the scope of bifunctional molecule utility.
Collapse
Affiliation(s)
- Zhenyi Hu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Po-Han Chen
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Mackenzie Krone
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Sijin Zheng
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Jacques Saarbach
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Ines Urquizo Velasco
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - John Hines
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Craig M Crews
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
- Department of Pharmacology, Yale University, New Haven, CT 06511, USA
- Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
15
|
Lawer A, Schulz L, Sawyer R, Liu X. Harmony of Protein Tags and Chimeric Molecules Empowers Targeted Protein Ubiquitination and Beyond. Cells 2024; 13:426. [PMID: 38474390 DOI: 10.3390/cells13050426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Post-translational modifications (PTMs) are crucial mechanisms that underlie the intricacies of biological systems and disease mechanisms. This review focuses on the latest advancements in the design of heterobifunctional small molecules that hijack PTM machineries for target-specific modifications in living systems. A key innovation in this field is the development of proteolysis-targeting chimeras (PROTACs), which promote the ubiquitination of target proteins for proteasomal degradation. The past decade has seen several adaptations of the PROTAC concept to facilitate targeted (de)phosphorylation and acetylation. Protein fusion tags have been particularly vital in these proof-of-concept studies, aiding in the investigation of the functional roles of post-translationally modified proteins linked to diseases. This overview delves into protein-tagging strategies that enable the targeted modulation of ubiquitination, phosphorylation, and acetylation, emphasizing the synergies and challenges of integrating heterobifunctional molecules with protein tags in PTM research. Despite significant progress, many PTMs remain to be explored, and protein tag-assisted PTM-inducing chimeras will continue to play an important role in understanding the fundamental roles of protein PTMs and in exploring the therapeutic potential of manipulating protein modifications, particularly for targets not yet addressed by existing drugs.
Collapse
Affiliation(s)
- Aggie Lawer
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW 2050, Australia
- Heart Research Institute, The University of Sydney, Newtown, NSW 2042, Australia
| | - Luke Schulz
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Renata Sawyer
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW 2050, Australia
- Heart Research Institute, The University of Sydney, Newtown, NSW 2042, Australia
| | - Xuyu Liu
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW 2050, Australia
- Heart Research Institute, The University of Sydney, Newtown, NSW 2042, Australia
| |
Collapse
|
16
|
Nalawansha DA, Mangano K, den Besten W, Potts PR. TAC-tics for Leveraging Proximity Biology in Drug Discovery. Chembiochem 2024; 25:e202300712. [PMID: 38015747 DOI: 10.1002/cbic.202300712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Chemically induced proximity (CIP) refers to co-opting naturally occurring biological pathways using synthetic molecules to recruit neosubstrates that are not normally encountered or to enhance the affinity of naturally occurring interactions. Leveraging proximity biology through CIPs has become a rapidly evolving field and has garnered considerable interest in basic research and drug discovery. PROteolysis TArgeting Chimera (PROTAC) is a well-established CIP modality that induces the proximity between a target protein and an E3 ubiquitin ligase, causing target protein degradation via the ubiquitin-proteasome system. Inspired by PROTACs, several other induced proximity modalities have emerged to modulate both proteins and RNA over recent years. In this review, we summarize the critical advances and opportunities in the field, focusing on protein degraders, RNA degraders and non-degrader modalities such as post-translational modification (PTM) and protein-protein interaction (PPI) modulators. We envision that these emerging proximity-based drug modalities will be valuable resources for both biological research and therapeutic discovery in the future.
Collapse
Affiliation(s)
| | - Kyle Mangano
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Willem den Besten
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Patrick Ryan Potts
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| |
Collapse
|
17
|
Koe JC, Parker SJ. The posttranslational regulation of amino acid transporters is critical for their function in the tumor microenvironment. Curr Opin Biotechnol 2024; 85:103022. [PMID: 38056204 DOI: 10.1016/j.copbio.2023.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
Amino acid transporters (AATs) facilitate nutrient uptake and nutrient exchange between cancer and stromal cells. The posttranslational modification (PTM) of transporters is an important mechanism that tumor-associated cells use to dynamically regulate their function and stability in response to microenvironmental cues. In this review, we summarize recent findings that demonstrate the significance of N-glycosylation, phosphorylation, and ubiquitylation for the function of AATs. We also highlight powerful approaches that hijack the PTM machinery that could be used as therapeutics or tools to modulate transporter activity.
Collapse
Affiliation(s)
- Jessica C Koe
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Seth J Parker
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada; British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
18
|
Wang Z, Qu S, Yuan J, Tian W, Xu J, Tao R, Sun S, Lu T, Tang W, Zhu Y. Review and prospects of targeted therapies for Spleen tyrosine kinase (SYK). Bioorg Med Chem 2023; 96:117514. [PMID: 37984216 DOI: 10.1016/j.bmc.2023.117514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase. The dysregulation of SYK is closely related to the occurrence and development of allergic diseases, autoimmune diseases and cancer. SYK has become an attractive target for drug discovery due to its important biological functions. This article reviews the biological function of SYK, the relationship between SYK and disease, and therapies targeting SYK. In addition, inspired by new technologies such as proteolysis targeting chimeras (PROTACs) and phosphatase recruiting chimeras (PHORCs), we propose the development of new therapeutic approaches for targeting SYK, such as SYK PROTACs and SYK PHORCs, which may overcome deficiencies of existing methods.
Collapse
Affiliation(s)
- Zhaozhao Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Shu Qu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Jiahao Yuan
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Wen Tian
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Jinglei Xu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Rui Tao
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Shilong Sun
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Weifang Tang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| | - Yong Zhu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| |
Collapse
|
19
|
Ahanin EF, Sager RA, Backe SJ, Dunn DM, Dushukyan N, Blanden AR, Mate NA, Suzuki T, Anderson T, Roy M, Oberoi J, Prodromou C, Nsouli I, Daneshvar M, Bratslavsky G, Woodford MR, Bourboulia D, Chisholm JD, Mollapour M. Catalytic inhibitor of Protein Phosphatase 5 activates the extrinsic apoptotic pathway by disrupting complex II in kidney cancer. Cell Chem Biol 2023; 30:1223-1234.e12. [PMID: 37527661 PMCID: PMC10592443 DOI: 10.1016/j.chembiol.2023.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/11/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023]
Abstract
Serine/threonine protein phosphatase-5 (PP5) is involved in tumor progression and survival, making it an attractive therapeutic target. Specific inhibition of protein phosphatases has remained challenging because of their conserved catalytic sites. PP5 contains its regulatory domains within a single polypeptide chain, making it a more desirable target. Here we used an in silico approach to screen and develop a selective inhibitor of PP5. Compound P053 is a competitive inhibitor of PP5 that binds to its catalytic domain and causes apoptosis in renal cancer. We further demonstrated that PP5 interacts with FADD, RIPK1, and caspase 8, components of the extrinsic apoptotic pathway complex II. Specifically, PP5 dephosphorylates and inactivates the death effector protein FADD, preserving complex II integrity and regulating extrinsic apoptosis. Our data suggests that PP5 promotes renal cancer survival by suppressing the extrinsic apoptotic pathway. Pharmacologic inhibition of PP5 activates this pathway, presenting a viable therapeutic strategy for renal cancer.
Collapse
Affiliation(s)
- Elham F Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Diana M Dunn
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Natela Dushukyan
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Adam R Blanden
- Department of Neurology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Nilamber A Mate
- Department of Chemistry, Syracuse University, Syracuse, NY 13210, USA
| | - Tamie Suzuki
- Department of Chemistry, Syracuse University, Syracuse, NY 13210, USA
| | - Tyler Anderson
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Health Professions, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Merin Roy
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jasmeen Oberoi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Chrisostomos Prodromou
- School of Life Sciences, Biochemistry and Biomedicine, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Imad Nsouli
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael Daneshvar
- Department of Urology, University of California, California, Irvine, CA 92868, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | - John D Chisholm
- Department of Chemistry, Syracuse University, Syracuse, NY 13210, USA.
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
20
|
Li D, Yu W, Lai M. Targeting serine- and arginine-rich splicing factors to rectify aberrant alternative splicing. Drug Discov Today 2023; 28:103691. [PMID: 37385370 DOI: 10.1016/j.drudis.2023.103691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/30/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Serine- and arginine-rich splicing factors are pivotal modulators of constitutive splicing and alternative splicing that bind to the cis-acting elements in precursor mRNAs and facilitate the recruitment and assembly of the spliceosome. Meanwhile, SR proteins shuttle between the nucleus and cytoplasm with a broad implication in multiple RNA-metabolizing events. Recent studies have demonstrated the positive correlation of overexpression and/or hyperactivation of SR proteins and development of the tumorous phenotype, indicating the therapeutic potentials of targeting SR proteins. In this review, we highlight key findings concerning the physiological and pathological roles of SR proteins. We have also investigated small molecules and oligonucleotides that effectively modulate the functions of SR proteins, which could benefit future studies of SR proteins.
Collapse
Affiliation(s)
- Dianyang Li
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| | - Wenying Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Maode Lai
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China; Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Science (2019RU042), Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
21
|
Shi Y, Zhao Z, He X, Luo J, Chen T, Xi Q, Zhang Y, Sun J. The Characteristic Function of Blood-Derived Exosomes and Exosomal circRNAs Isolated from Dairy Cattle during the Dry Period and Mid-Lactation. Int J Mol Sci 2023; 24:12166. [PMID: 37569544 PMCID: PMC10419012 DOI: 10.3390/ijms241512166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Exosomes are key mediators of intercellular communication. They are secreted by most cells and contain a cargo of protein-coding genes, long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), which modulate recipient cell behavior. Herein, we collected blood samples from Holstein cows at days 30 (mid-lactation) and 250 (dry period) of pregnancy. Prolactin, follicle-stimulating hormone, luteinizing hormone, estrogen, and progesterone levels showed an obvious increase during D250. We then extracted exosomes from bovine blood samples and found that their sizes generally ranged from 100 to 200 nm. Further, Western blotting validated that they contained CD9, CD63, and TSG101, but not calnexin. Blood-derived exosomes significantly promoted the proliferation of mammary epithelial cells, particularly from D250. This change was accompanied by increased expression levels of proliferation marker proteins PCNA, cyclin D, and cyclin E, as detected by EdU assay, cell counting kit-8 assay, and flow cytometric cell cycle analysis. Moreover, we treated mammary epithelial cells with blood-derived exosomes that were isolated from the D30 and D250 periods. And RNA-seq of two groups of cells led to the identification of 839 differentially expressed genes that were significantly enriched in KEGG signaling pathways associated with apoptosis, cell cycle and proliferation. In bovine blood-derived exosomes, we found 12,747 protein-coding genes, 31,181 lncRNAs, 9374 transcripts of uncertain coding potential (TUCP) candidates, and 460 circRNAs, and 32 protein-coding genes, 806 lncRNAs, 515 TUCP candidates, and 45 circRNAs that were differentially expressed between the D30 and D250 groups. We selected six highly expressed and four differentially expressed circRNAs to verify their head-to-tail splicing using PCR and Sanger sequencing. To summarize, our findings improve our understanding of the key roles of blood-derived exosomes and the characterization of exosomal circRNAs in mammary gland development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (Z.Z.); (X.H.); (J.L.); (T.C.); (Q.X.)
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (Z.Z.); (X.H.); (J.L.); (T.C.); (Q.X.)
| |
Collapse
|
22
|
Liu X, Ciulli A. Proximity-Based Modalities for Biology and Medicine. ACS CENTRAL SCIENCE 2023; 9:1269-1284. [PMID: 37521793 PMCID: PMC10375889 DOI: 10.1021/acscentsci.3c00395] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Indexed: 08/01/2023]
Abstract
Molecular proximity orchestrates biological function, and blocking existing proximities is an established therapeutic strategy. By contrast, strengthening or creating neoproximity with chemistry enables modulation of biological processes with high selectivity and has the potential to substantially expand the target space. A plethora of proximity-based modalities to target proteins via diverse approaches have recently emerged, opening opportunities for biopharmaceutical innovation. This Outlook outlines the diverse mechanisms and molecules based on induced proximity, including protein degraders, blockers, and stabilizers, inducers of protein post-translational modifications, and agents for cell therapy, and discusses opportunities and challenges that the field must address to mature and unlock translation in biology and medicine.
Collapse
Affiliation(s)
- Xingui Liu
- Centre for Targeted Protein
Degradation, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, United Kingdom
| | - Alessio Ciulli
- Centre for Targeted Protein
Degradation, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, United Kingdom
| |
Collapse
|
23
|
Serebrenik YV, Mani D, Maujean T, Burslem GM, Shalem O. Pooled endogenous protein tagging and recruitment for scalable discovery of effectors for induced proximity therapeutics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548759. [PMID: 37503056 PMCID: PMC10369964 DOI: 10.1101/2023.07.13.548759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The field of induced proximity therapeutics is in its ascendancy but is limited by a lack of scalable tools to systematically explore effector-target protein pairs in an unbiased manner. Here, we combined Scalable POoled Targeting with a LIgandable Tag at Endogenous Sites (SPOTLITES) for the high-throughput tagging of endogenous proteins, with generic small molecule-based protein recruitment to screen for novel proximity-based effectors. We apply this methodology in two orthogonal screens for targeted protein degradation: the first using fluorescence to monitor target protein levels directly, and the second using a cellular growth phenotype that depends on the degradation of an essential protein. Our screens revealed a multitude of potential new effector proteins for degradation and converged on members of the CTLH complex which we demonstrate potently induce degradation. Altogether, we introduce a platform for pooled induction of endogenous protein-protein interactions that can be used to expand our toolset of effector proteins for targeted protein degradation and other forms of induced proximity.
Collapse
|
24
|
Zhang H, Zhang Q, Tu J, You Q, Wang L. Dual function of protein phosphatase 5 (PPP5C): An emerging therapeutic target for drug discovery. Eur J Med Chem 2023; 254:115350. [PMID: 37054560 DOI: 10.1016/j.ejmech.2023.115350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Phosphorylation of proteins is reversibly controlled by the kinases and phosphatases in many posttranslational regulation patterns. Protein phosphatase 5 (PPP5C) is a serine/threonine protein phosphatase showing dual function by simultaneously exerting dephosphorylation and co-chaperone functions. Due to this special role, PPP5C was found to participate in many signal transductions related to various diseases. Abnormal expression of PPP5C results in cancers, obesity, and Alzheimer's disease, making it a potential drug target. However, the design of small molecules targeting PPP5C is struggling due to its special monomeric enzyme form and low basal activity by a self-inhibition mechanism. Through realizing the PPP5C's dual function as phosphatase and co-chaperone, more and more small molecules were found to regulate PPP5C with a different mechanism. This review aims to provide insights into PPP5C's dual function from structure to function, which could provide efficient design strategies for small molecules targeting PPP5C as therapeutic candidates.
Collapse
Affiliation(s)
- Hengheng Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiaqi Tu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|