1
|
Yehorova D, Di Geronimo B, Robinson M, Kasson PM, Kamerlin SCL. Using residue interaction networks to understand protein function and evolution and to engineer new proteins. Curr Opin Struct Biol 2024; 89:102922. [PMID: 39332048 DOI: 10.1016/j.sbi.2024.102922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/29/2024]
Abstract
Residue interaction networks (RINs) provide graph-based representations of interaction networks within proteins, providing important insight into the factors driving protein structure, function, and stability relationships. There exists a wide range of tools with which to perform RIN analysis, taking into account different types of interactions, input (crystal structures, simulation trajectories, single proteins, or comparative analysis across proteins), as well as formats, including standalone software, web server, and a web application programming interface (API). In particular, the ability to perform comparative RIN analysis across protein families using "metaRINs" provides a valuable tool with which to dissect protein evolution. This, in turn, highlights hotspots to avoid (or target) for in vitro evolutionary studies, providing a powerful framework that can be exploited to engineer new proteins.
Collapse
Affiliation(s)
- Dariia Yehorova
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA-30332, USA
| | - Bruno Di Geronimo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA-30332, USA
| | - Michael Robinson
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Peter M Kasson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA-30332, USA; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Fersht Dr NW, Atlanta GA 30332, USA; Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden
| | - Shina C L Kamerlin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA-30332, USA; Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden.
| |
Collapse
|
2
|
Łazowski K, Woodgate R, Fijalkowska IJ. Escherichia coli DNA replication: the old model organism still holds many surprises. FEMS Microbiol Rev 2024; 48:fuae018. [PMID: 38982189 PMCID: PMC11253446 DOI: 10.1093/femsre/fuae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024] Open
Abstract
Research on Escherichia coli DNA replication paved the groundwork for many breakthrough discoveries with important implications for our understanding of human molecular biology, due to the high level of conservation of key molecular processes involved. To this day, it attracts a lot of attention, partially by virtue of being an important model organism, but also because the understanding of factors influencing replication fidelity might be important for studies on the emergence of antibiotic resistance. Importantly, the wide access to high-resolution single-molecule and live-cell imaging, whole genome sequencing, and cryo-electron microscopy techniques, which were greatly popularized in the last decade, allows us to revisit certain assumptions about the replisomes and offers very detailed insight into how they work. For many parts of the replisome, step-by-step mechanisms have been reconstituted, and some new players identified. This review summarizes the latest developments in the area, focusing on (a) the structure of the replisome and mechanisms of action of its components, (b) organization of replisome transactions and repair, (c) replisome dynamics, and (d) factors influencing the base and sugar fidelity of DNA synthesis.
Collapse
Affiliation(s)
- Krystian Łazowski
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, United States
| | - Iwona J Fijalkowska
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
3
|
Park J, Herrmann GK, Roy A, Shumate CK, Cisneros GA, Yin YW. An interaction network in the polymerase active site is a prerequisite for Watson-Crick base pairing in Pol γ. SCIENCE ADVANCES 2024; 10:eadl3214. [PMID: 38787958 PMCID: PMC11122685 DOI: 10.1126/sciadv.adl3214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/18/2024] [Indexed: 05/26/2024]
Abstract
The replication accuracy of DNA polymerase gamma (Pol γ) is essential for mitochondrial genome integrity. Mutation of human Pol γ arginine-853 has been linked to neurological diseases. Although not a catalytic residue, Pol γ arginine-853 mutants are void of polymerase activity. To identify the structural basis for the disease, we determined a crystal structure of the Pol γ mutant ternary complex with correct incoming nucleotide 2'-deoxycytidine 5'-triphosphate (dCTP). Opposite to the wild type that undergoes open-to-closed conformational changes when bound to a correct nucleotide that is essential for forming a catalytically competent active site, the mutant complex failed to undergo the conformational change, and the dCTP did not base pair with its Watson-Crick complementary templating residue. Our studies revealed that arginine-853 coordinates an interaction network that aligns the 3'-end of primer and dCTP with the catalytic residues. Disruption of the network precludes the formation of Watson-Crick base pairing and closing of the active site, resulting in an inactive polymerase.
Collapse
Affiliation(s)
- Joon Park
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Geoffrey K. Herrmann
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Arkanil Roy
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Christie K. Shumate
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - G. Andrés Cisneros
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Physics, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Y. Whitney Yin
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
4
|
Nam K, Shao Y, Major DT, Wolf-Watz M. Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development. ACS OMEGA 2024; 9:7393-7412. [PMID: 38405524 PMCID: PMC10883025 DOI: 10.1021/acsomega.3c09084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Understanding enzyme mechanisms is essential for unraveling the complex molecular machinery of life. In this review, we survey the field of computational enzymology, highlighting key principles governing enzyme mechanisms and discussing ongoing challenges and promising advances. Over the years, computer simulations have become indispensable in the study of enzyme mechanisms, with the integration of experimental and computational exploration now established as a holistic approach to gain deep insights into enzymatic catalysis. Numerous studies have demonstrated the power of computer simulations in characterizing reaction pathways, transition states, substrate selectivity, product distribution, and dynamic conformational changes for various enzymes. Nevertheless, significant challenges remain in investigating the mechanisms of complex multistep reactions, large-scale conformational changes, and allosteric regulation. Beyond mechanistic studies, computational enzyme modeling has emerged as an essential tool for computer-aided enzyme design and the rational discovery of covalent drugs for targeted therapies. Overall, enzyme design/engineering and covalent drug development can greatly benefit from our understanding of the detailed mechanisms of enzymes, such as protein dynamics, entropy contributions, and allostery, as revealed by computational studies. Such a convergence of different research approaches is expected to continue, creating synergies in enzyme research. This review, by outlining the ever-expanding field of enzyme research, aims to provide guidance for future research directions and facilitate new developments in this important and evolving field.
Collapse
Affiliation(s)
- Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yihan Shao
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Dan T. Major
- Department
of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | |
Collapse
|
5
|
Mack AH, Menzies G, Southgate A, Jones DD, Connor TR. A Proofreading Mutation with an Allosteric Effect Allows a Cluster of SARS-CoV-2 Viruses to Rapidly Evolve. Mol Biol Evol 2023; 40:msad209. [PMID: 37738143 PMCID: PMC10553922 DOI: 10.1093/molbev/msad209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023] Open
Abstract
The RNA-dependent RNA polymerase of the severe acute respiratory syndrome coronavirus 2 virus is error prone, with errors being corrected by the exonuclease (NSP14) proofreading mechanism. However, the mutagenesis and subsequent evolutionary trajectory of the virus is mediated by the delicate interplay of replicase fidelity and environmental pressures. Here, we have shown that a single, distal mutation (F60S) in NSP14 can have a profound impact upon proofreading with an increased accumulation of mutations and elevated evolutionary rate being observed. Understanding the implications of these changes is crucial, as these underlying mutational processes may have important implications for understanding the population-wide evolution of the virus. This study underscores the urgent need for continued research into the replicative mechanisms of this virus to combat its continued impact on global health, through the re-emergence of immuno-evasive variants.
Collapse
Affiliation(s)
- Andrew H Mack
- Molecular Biosciences Division, School of Biosciences, Cardiff University, UK
| | - Georgina Menzies
- Molecular Biosciences Division, School of Biosciences, Cardiff University, UK
| | - Alex Southgate
- Molecular Biosciences Division, School of Biosciences, Cardiff University, UK
| | - D Dafydd Jones
- Molecular Biosciences Division, School of Biosciences, Cardiff University, UK
| | - Thomas R Connor
- Molecular Biosciences Division, School of Biosciences, Cardiff University, UK
- Pathogen Genomics Unit, Public Health Wales NHS Trust, Cardiff, UK
| |
Collapse
|