1
|
Wang X, Bai Q, Yan M, Zhao Y, Ma S, Bo C, Ou J. Fabrication of monodisperse micron-sized and aldehyde-functionalized microspheres coating with covalent organic framework for efficient and rapid removal of copper ions from wastewater. RSC Adv 2024; 14:33764-33773. [PMID: 39450063 PMCID: PMC11499976 DOI: 10.1039/d4ra05820h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Covalent organic frameworks (COFs) possess an excellent ability for absorbing heavy metals, but their uneven particle size, difficult separation, and poor dispersion limit their wide application in the treatment of heavy metal pollution. In this paper, a monodisperse poly(4-allyloxybenzaldehyde-co-divinylbenzene) microsphere (denoted as PAD) was prepared with 4-allyloxybenzaldehyde as a functional monomer and divinylbenzene (DVB) as a crosslinker by one-step seed swelling polymerization. Subsequently, oxalyldihydrazide (ODH) and 2,4,6-trihydroxybenzene-1,3,5-tricarbaldehyde (Tp) were chosen as the precursors for coating the COF layer onto the surface of PAD through a one-pot method. The resulting monodisperse particles (diameter = 6.3 μm) with a core-shell structure were assigned as PAD@COF and possessed excellent dispersibility in water along with a high specific surface area of 163.8 m2 g-1. In isothermal and dynamic adsorption experiments, the maximum adsorption capacity of Cu2+ reached 270.9 mg g-1, with the adsorption amount reaching 93 mg g-1 after only 10 min. The Langmuir isothermal adsorption model and pseudo-second-order kinetic model were consistent with the adsorption process, indicating that the adsorption of Cu2+ on PAD@COF occurred as a monolayer and that the adsorption process was controlled by chemical processes.
Collapse
Affiliation(s)
- Xiaoqiong Wang
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University Yinchuan 750021 China +86-0951-2067917 +86-0951-2067917
| | - Qingyan Bai
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University Yinchuan 750021 China +86-0951-2067917 +86-0951-2067917
| | - Mingjia Yan
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University Yinchuan 750021 China +86-0951-2067917 +86-0951-2067917
| | - Yashuai Zhao
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University Yinchuan 750021 China +86-0951-2067917 +86-0951-2067917
| | - Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Chunmiao Bo
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University Yinchuan 750021 China +86-0951-2067917 +86-0951-2067917
| | - Junjie Ou
- College of Chemistry and Materials Science, Northwest University Xi'an 710127 China +86-29-81535026 +86-29-81535026
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
2
|
Zhang C, Wang Z, Qiao L, Yu L, Pang J, Feng Y, Chen W, Fan L, Wang R, Guo H, Kang Z, Sun D. In Situ Transformation of an Amorphous Supramolecular Coating to a Hydrogen-Bonded Organic Framework Membrane to Trigger Selective Gas Permeation. Angew Chem Int Ed Engl 2024; 63:e202407779. [PMID: 38789391 DOI: 10.1002/anie.202407779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
We introduce a "solution-processing-transformation" strategy, deploying solvent vapor as scaffolds, to fabricate high-quality hydrogen-bonded organic framework (HOF) membranes. This strategy can overcome the mismatch in processing conditions and crystal growth thermodynamics faced during the facile solution processing of the membrane. The procedure includes the vapor-trigged in situ transformation of dense amorphous supramolecules to crystalline HOF-16, with HOF-11 as the transient state. The mechanism involves a vapor-activated dissolution-precipitation equilibrium shifting and hydrogen bonding-guided molecule rearrangement, elucidated through combined experimental and theoretical analysis. Upon removal of the molecular scaffolds, the resulting HOF-16 membranes showcase significant improvement in hydrogen separation performance over their amorphous counterparts and previously reported HOF membranes. The method's broad applicability is evidenced by successfully extending it to other substrates and HOF structures. This study provides a fundamental understanding of guest-induced ordered supramolecular assembly and paves the way for the advanced manufacture of high-performance HOF membranes for gas separation processes.
Collapse
Affiliation(s)
- Caiyan Zhang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Zhikun Wang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Lu Qiao
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Liting Yu
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Jia Pang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Yang Feng
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Wenmiao Chen
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Lili Fan
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Rongming Wang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Hailing Guo
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Zixi Kang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Daofeng Sun
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| |
Collapse
|
3
|
Jia Z, Wang H, Yu P, He H, Huang Q, Hong W, Liu C, Shi Y, Wang J, Xin Y, Jia X, Ma J, Yu B. Soft-Rigid Construction of Mechanically Robust, Thermally Stable, and Self-Healing Polyimine Networks with Strongly Recyclable Adhesion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406821. [PMID: 39392200 DOI: 10.1002/smll.202406821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/22/2024] [Indexed: 10/12/2024]
Abstract
Reversible and recyclable thermosets have garnered increasing attention for their smart functionality and sustainability. However, they still face challenges in balancing comprehensive performance and dynamic features. Herein, silicon (Si)─oxygen (O) and imidazole units covalent bonds are coupled to generate a new class of bio-polyimines (Bio-Si-PABZs), to endow them with high performance and excellent reprocessing capability and acid-degradability. By tailoring the molar content of diamines, this Bio-Si-PABZs displayed both a markedly high glass transition temperature (162 °C) and a high char yield at 800 °C in an oxygen atmosphere (73.1%). These Bio-Si-PABZs with their favorable properties outperformed various previously reported polyimines and competed effectively with commercial fossil-based polycarbonate. Moreover, the scratch (≈10 µm) on the surface of samples can be self-healing within only 2 min, and an effective "Bird Nest"-to-"Torch" recycling can also be achieved through free amines solution. Most importantly, a bio-based siloxane adhesive derived from the intermediate Bio-Si-PABZ-1 by acidic degradation demonstrated broad and robust adhesion in various substrates, with values reaching up to ≈3.5 MPa. For the first time, this study lays the scientific groundwork for designing robust and recyclable polyimine thermosets with Si─O and imidazole units, as well as converting plastic wastes into thermal-reversibility and renewable adhesives.
Collapse
Affiliation(s)
- Zichen Jia
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Haiyue Wang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Ping Yu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Hongfei He
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qirui Huang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Wei Hong
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Cai Liu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Yanji Shi
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Jue Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yumeng Xin
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Xuemeng Jia
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Juanjuan Ma
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Bin Yu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
4
|
Zong Y, Gao RT, Liu N, Luo J, Chen Z, Wu ZQ. Helical Polyallenes: From Controlled Synthesis to Distinct Properties. Macromol Rapid Commun 2024:e2400671. [PMID: 39388665 DOI: 10.1002/marc.202400671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Indexed: 10/12/2024]
Abstract
Polyallenes with appropriate pendants can form stable helices and exhibit significant optical activity. These helical polyallenes contain reactive double bonds that allow for further functionalization, making them a class of chiral functional materials with broad application prospects. This review article delves into the intricacies of synthesizing well-defined helical polyallenes through controlled synthetic methodologies, including helix-sense selective living polymerization, regioselective and asymmetric living polymerization, and one-pot block copolymerization of allenes with aryl monomers. The systemically outlined characteristics of the resulting helical polyallenes and related copolymers are summarized include their unique chiroptical properties, stimuli-responsiveness, helix-induced chiral self-assembly, and circularly polarized luminescence (CPL). Additionally, current challenges and future perspectives in the research of controlled synthesis, functionalities, and applications of helical polyallenes are discussed in detail.
Collapse
Affiliation(s)
- Yang Zong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Run-Tan Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Jing Luo
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230009, China
| | - Zheng Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
5
|
Wang H, Huang Q, Liu C, Hong W, Li J, Ma J, Yu P, Wang C, Yan X. Development of Fluorenyl-Based Copolyimines with Adjustable Mechanical Properties, Recyclability and Friction Resistance. Chemistry 2024; 30:e202401481. [PMID: 38831477 DOI: 10.1002/chem.202401481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Dynamic polyimines are a class of fascinating dynamic polymers with recyclability and reparability owing to their reversible Schiff-base reactions. However, balancing the dynamic properties and mechanical strength of dynamic polyimines presents a major challenge due to the dissociative and associative nature of the imine bonds. Herein, we introduced bulky fluorene groups and polyether amine into the skeleton of polyimine networks to achieve a tradeoff in comprehensive properties. The resulting dynamic polyimines with fluorene groups (Cardo-DPIs) were successfully synthesized by combining the rigid diamine 9,9-bis(4-aminophenyl)fluorene and the flexible polyether amine, demonstrating a high tensile strength of 64.7 MPa. Additionally, Cardo-DPIs films with more content of rigid fluorene groups exhibited higher water resistance, glass transition temperature and wear-resisting ability. Moreover, the Cardo-DPIs films not only efficiently underwent thermal reshaping, but also exhibited excellent self-healing capabilities and chemical degradation in acidic solutions. Furthermore, the resulting films can achieve fully closed-loop recovery by free amine solution for 2 h at room temperature. This study broadens the scope of dynamic polyimine materials and promotes the balanced development of their functional and mechanical properties.
Collapse
Affiliation(s)
- Haiyue Wang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, P. R. China
| | - Qirui Huang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, P. R. China
| | - Cai Liu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, P. R. China
| | - Wei Hong
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, P. R. China
| | - Jianing Li
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, P. R. China
| | - Juanjuan Ma
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, P. R. China
| | - Ping Yu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, P. R. China
| | - Chunyu Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
6
|
Liu X, Zhang H, Liu C, Wang Z, Zhang X, Yu H, Zhao Y, Li MJ, Li Y, He YL, He G. Commercializable Naphthalene Diimide Anolytes for Neutral Aqueous Organic Redox Flow Batteries. Angew Chem Int Ed Engl 2024; 63:e202405427. [PMID: 38603586 DOI: 10.1002/anie.202405427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Neutral aqueous organic redox flow batteries (AORFBs) hold the potential to facilitate the transition of renewable energy sources from auxiliary to primary energy, the commercial production of anolyte materials still suffers from insufficient performance of high-concentration and the high cost of the preparation problem. To overcome these challenges, this study provides a hydrothermal synthesis methodology and introduces the charged functional groups into hydrophobic naphthalene diimide cores, and prepares a series of high-performance naphthalene diimide anolytes. Under the synergistic effect of π-π stacking and H-bonding networks, the naphthalene diimide exhibits excellent structural stability and the highest water solubility (1.85 M for dex-NDI) reported to date. By employing the hydrothermal method, low-cost naphthalene diimides are successfully synthesized on a hundred-gram scale of $0.16 g-1 ($2.43 Ah-1), which is also the lowest price reported to date. The constructed full battery achieves a high electron concentration of 2.4 M, a high capacity of 54.4 Ah L-1, and a power density of 318 mW cm-2 with no significant capacity decay observed during long-duration cycling. These findings provide crucial support for the commercialization of AORFBs and pave the way for revolutionary developments in neutral AORFBs.
Collapse
Affiliation(s)
- Xu Liu
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Heng Zhang
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Chenjing Liu
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Zengrong Wang
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Xuri Zhang
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Haiyan Yu
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Yujie Zhao
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Ming-Jia Li
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yinshi Li
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| | - Ya-Ling He
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| | - Gang He
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| |
Collapse
|
7
|
Zhang GH, Zhu QH, Zhang L, Li L, Fu J, Wang SL, Yuan WL, He L, Tao GH. Bio-based ionic liquid filter with enhanced electrostatic attraction for outside filtration and inside collection of viral aerosols. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133480. [PMID: 38219589 DOI: 10.1016/j.jhazmat.2024.133480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Hazardous biological pathogens in the air pose a significant public environmental health concern as infected individuals emit virus-laden aerosols (VLAs) during routine respiratory activities. Mask-wearing is a key preventive measure, but conventional filtration methods face challenges, particularly in high humidity conditions, where electrostatic charge decline increases the risk of infection. This study introduces a bio-based air filter comprising glycine ionic liquids (GILs) and malleable polymer composite (GILP) with high polarity and functional group density, which are wrapped around a melamine-formaldehyde (MF) resin skeleton, forming a conductive, porous GIL functionized ionic network air filter (GILP@MF). When subjected to low voltage, the GILP@MF composite efficiently captures VLAs including nanoscale virus particles through the enhanced electrostatic attraction, especially in facing high humidity bioaerosols exhaled by human body. The filtration/collection efficiency and quality factor can reach 98.3% and 0.264 Pa-1 at 0.1 m s-1, respectively. This innovative filter provides effective VLA protection and offers potential for non-invasive respiratory virus sampling, advancing medical diagnosis efforts.
Collapse
Affiliation(s)
- Guo-Hao Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China; School of National Defence Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qiu-Hong Zhu
- College of Chemistry, Sichuan University, Chengdu 610064, China; School of National Defence Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lei Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lei Li
- MGI Tech. Co., Ltd., Shenzhen 518083, China
| | - Jie Fu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | | | - Wen-Li Yuan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ling He
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Guo-Hong Tao
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
8
|
Wang J, Lin W, Chen Z, Nikolaeva VO, Alimi LO, Khashab NM. Smart touchless human-machine interaction based on crystalline porous cages. Nat Commun 2024; 15:1575. [PMID: 38383478 PMCID: PMC10881501 DOI: 10.1038/s41467-024-46071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/13/2024] [Indexed: 02/23/2024] Open
Abstract
The rise of touchless technology, driven by the recent pandemic, has transformed human-machine interaction (HMI). Projections indicate a substantial growth in the touchless technology market, nearly tripling from $13.6 billion in 2021 to an estimated $37.6 billion by 2026. In response to the pandemic-driven shift towards touchless technology, here we show an organic cage-based humidity sensor with remarkable humidity responsiveness, forming the basis for advanced touchless platforms in potential future HMI systems. This cage sensor boasts an ultrafast response/recovery time (1 s/3 s) and exceptional stability (over 800 cycles) across relative humidity (RH) changes from 11% to 95%. The crystal structure's 3D pore network and luxuriant water-absorbing functional groups both inside and outside of the cage contribute synergistically to superior humidity sensing. Demonstrating versatility, we showcase this cage in smart touchless control screens and touchless password managers, presenting cost-effective and easily processable applications of molecularly porous materials in touchless HMI.
Collapse
Affiliation(s)
- Jinrong Wang
- Smart Hybrid Materials Laboratory (SHMs), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Weibin Lin
- Smart Hybrid Materials Laboratory (SHMs), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Zhuo Chen
- Advanced Membranes and Porous Materials Center (AMPM), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Valeriia O Nikolaeva
- Smart Hybrid Materials Laboratory (SHMs), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lukman O Alimi
- Smart Hybrid Materials Laboratory (SHMs), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Advanced Membranes and Porous Materials Center (AMPM), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
9
|
Schoustra S, Asadi V, Smulders MMJ. Probing the Solubility of Imine-Based Covalent Adaptable Networks. ACS APPLIED POLYMER MATERIALS 2024; 6:79-89. [PMID: 38230365 PMCID: PMC10788871 DOI: 10.1021/acsapm.3c01472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024]
Abstract
Covalent adaptable networks (CANs) are polymer materials that are covalently cross-linked via dynamic covalent bonds. The cross-linked polymer network is generally expected to be insoluble, as is seen for traditional thermosets. However, in recent years, it has become apparent that-under certain conditions-both dissociative and associative CANs can be dissolved in a good solvent. For some applications (e.g., those that require long-term (chemical) stability), the solubility of CANs can be problematic. However, many forget that (selective) solubility of CANs can also be applied advantageously, for example, in recycling or modification of the materials. In this work, we provide results and insights related to the tunable solubility of imine-based CANs. We observed that selected CANs could be fully dissolved in a good solvent without observing dissociation of imines. Only in an acidic environment (partial) dissociation of imines was observed, which could be reverted to the associated state by addition of a base. By adjusting the network composition, we were able to either facilitate or hamper solubility as well as control the size of the dissolved particles. DLS showed that the size of dissolved polymer particles decreased at lower concentrations. Similarly, decreasing cross-linking density resulted in smaller particles. Last, we showed that we could use the solubility of the CANs as a means for chemical recycling and postpolymerization modification. The combination of our studies with existing literature provides a better understanding of the solubility of CANs and their applications as recyclable thermosets.
Collapse
Affiliation(s)
- Sybren
Klaas Schoustra
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708
WE Wageningen, The
Netherlands
| | - Vahid Asadi
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708
WE Wageningen, The
Netherlands
| | | |
Collapse
|
10
|
La Cognata S, Amendola V. Recent applications of organic cages in sensing and separation processes in solution. Chem Commun (Camb) 2023; 59:13668-13678. [PMID: 37902039 DOI: 10.1039/d3cc04522f] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Organic cages are three-dimensional polycyclic compounds of great interest in the scientific community due to their unique features, which generally include simple synthesis based on the dynamic covalent chemistry strategies, structural tunability and high selectivity. In this feature article, we present the advances over the last ten years in the application of organic cages as chemosensors or components in chemosensing devices for the determination of analytes (pollutants, analytes of biological interest) in complex aqueous media including wine, fruit juice, urine. Details on the recent applications of organic cages as selective (back-)extractants or masking agents for potential applications in relevant separation processes, such as the plutonium and uranium recovery by extraction, are also provided. Over the last ten years, organic cages with permanent porosity in the liquid and solid states have been highly appreciated as porous materials able to discriminate molecules of different sizes. These features, combined with good solvent processability and film-forming tendency, have proved useful in the fabrication of membranes for gas separation, solvent nanofiltration and water remediation processes. An overview of the recent applications of organic cages in membrane separation technologies is given.
Collapse
Affiliation(s)
- Sonia La Cognata
- Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia, I-27100, Italy.
| | - Valeria Amendola
- Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia, I-27100, Italy.
| |
Collapse
|