1
|
Spielvogel KD, Campbell EJ, Chowdhury SR, Benner F, Demir S, Hatzis GP, Petras HR, Sembukuttiarachchige D, Shepherd JJ, Thomas CM, Vlaisavljevich B, Daly SR. Modulation of Fe-Fe distance and spin in diiron complexes using tetradentate ligands with different flanking donors. Chem Commun (Camb) 2024; 60:8399-8402. [PMID: 39028006 DOI: 10.1039/d4cc02522a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Here we report the synthesis and characterization of diiron complexes containing triaryl N4 and N2S2 ligands derived from o-phenylenediamine. The complexes display significant differences in Fe-Fe distances and magnetic properties that depend on the identity of the flanking NMe2 and SMe donor groups.
Collapse
Affiliation(s)
- Kyle D Spielvogel
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
| | - Emily J Campbell
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
| | - Sabyasachi Roy Chowdhury
- The University of South Dakota, Department of Chemistry, 414 E Clark St., Vermillion SD, 57069, USA
| | - Florian Benner
- Michigan State University, Department of Chemistry, 578 South Shaw Lane, East Lansing, Michigan 48824, USA
| | - Selvan Demir
- Michigan State University, Department of Chemistry, 578 South Shaw Lane, East Lansing, Michigan 48824, USA
| | - Gillian P Hatzis
- The Ohio State University, Department of Chemistry and Biochemistry, 100 West 18th Ave, Columbus, OH 43210, USA
| | - Hayley R Petras
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
| | | | - James J Shepherd
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
| | - Christine M Thomas
- The Ohio State University, Department of Chemistry and Biochemistry, 100 West 18th Ave, Columbus, OH 43210, USA
| | - Bess Vlaisavljevich
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
- The University of South Dakota, Department of Chemistry, 414 E Clark St., Vermillion SD, 57069, USA
| | - Scott R Daly
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
| |
Collapse
|
2
|
Stevens JE, Miller JD, Fitzsimmons MC, Moore CE, Thomas CM. Z-selective dimerization of terminal alkynes by a (PNNP)Fe II complex. Chem Commun (Camb) 2024; 60:5169-5172. [PMID: 38639737 DOI: 10.1039/d4cc00469h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
A tetradentate bis(amido)bis(phosphine) FeII complex, (PNNP)Fe, is shown to activate the terminal C-H bond of aryl alkynes across its Fe-Namide bonds. (PNNP)Fe is also shown to catalytically dimerize terminal aryl alkynes to produce 1,3-enynes with Z : E ratios as high as 96 : 4 with yields up to 95% and loadings as low as 1 mol% at 30 °C in 2 h. A plausible metal-ligand cooperative mechanism invoking a vinylidene intermediate is proposed.
Collapse
Affiliation(s)
- Jeremiah E Stevens
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, OH 43210, USA.
| | - Justin D Miller
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, OH 43210, USA.
| | - Matthew C Fitzsimmons
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, OH 43210, USA.
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, OH 43210, USA.
| | - Christine M Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, OH 43210, USA.
| |
Collapse
|
3
|
Marlier EE. Kappa what? Insights into the coordination modes of N 2P 2 ligands. Dalton Trans 2024; 53:1410-1420. [PMID: 38086708 DOI: 10.1039/d3dt02831c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
While first synthesized more than three decades ago, complexes supported by N2P2 ligands have seen renewed interest due to the synthesis of new ligands, expansion of their reactivity, and catalytic applications. Possessing both soft phosphines and hard nitrogen donors, N2P2 ligands can accommodate various metal geometries and coordination modes thanks to their capability to act as bidentate, tridentate or tetradentate ligands. This short review will explore how metals bind to these ligands and also highlight the complexes' reactivity and catalytic abilities.
Collapse
Affiliation(s)
- Elodie E Marlier
- Department of Chemistry, Saint Olaf College, 1520 St Olaf Avenue, Northfield, Minnesota, 55057, USA.
| |
Collapse
|
4
|
Banerjee S, Ballmann GM, Evans MJ, O'Reilly A, Kennedy AR, Fulton JR, Coles MP, Mulvey RE. Three Oxidative Addition Routes of Alkali Metal Aluminyls to Dihydridoaluminates and Reactivity with CO 2. Chemistry 2023; 29:e202301849. [PMID: 37429823 DOI: 10.1002/chem.202301849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Three distinct routes are reported to the soluble, dihydridoaluminate compounds, AM[Al(NONDipp )(H)2 ] (AM=Li, Na, K, Rb, Cs; [NONDipp ]2- =[O(SiMe2 NDipp)2 ]2- ; Dipp=2,6-iPr2 C6 H3 ) starting from the alkali metal aluminyls, AM[Al(NONDipp )]. Direct H2 hydrogenation of the heavier analogues (AM=Rb, Cs) produced the first examples of structurally characterized rubidium and caesium dihydridoaluminates, although harsh conditions were required for complete conversion. Using 1,4-cyclohexadiene (1,4-CHD) as an alternative hydrogen source in transfer hydrogenation reactions provided a lower energy pathway to the full series of products for AM=Li-Cs. A further moderation in conditions was noted for the thermal decomposition of the (silyl)(hydrido)aluminates, AM[Al(NONDipp )(H)(SiH2 Ph)]. Probing the reaction of Cs[Al(NONDipp )] with 1,4-CHD provided access to a novel inverse sandwich complex, [{Cs(Et2 O)}2 {Al(NONDipp )(H)}2 (C6 H6 )], containing the 1,4-dialuminated [C6 H6 ]2- dianion and representing the first time that an intermediate in the commonly utilized oxidation process of 1,4-CHD to benzene has been trapped. The synthetic utility of the newly installed Al-H bonds has been demonstrated by their ability to reduce CO2 under mild conditions to form the bis-formate AM[Al(NONDipp )(O2 CH)2 ] compounds, which exhibit a diverse series of eyecatching bimetallacyclic structures.
Collapse
Affiliation(s)
- Sumanta Banerjee
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, G1 1XL, Glasgow, UK
| | - Gerd M Ballmann
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, G1 1XL, Glasgow, UK
| | - Matthew J Evans
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
| | - Andrea O'Reilly
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
| | - Alan R Kennedy
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, G1 1XL, Glasgow, UK
| | - J Robin Fulton
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
| | - Martyn P Coles
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
| | - Robert E Mulvey
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, G1 1XL, Glasgow, UK
| |
Collapse
|