1
|
Liang Y, Zhou Y. Low-dose electron microscopy imaging for beam-sensitive metal-organic frameworks. J Appl Crystallogr 2024; 57:1270-1281. [PMID: 39387073 PMCID: PMC11460399 DOI: 10.1107/s1600576724007192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/20/2024] [Indexed: 10/12/2024] Open
Abstract
Metal-organic frameworks (MOFs) have garnered significant attention in recent years owing to their exceptional properties. Understanding the intricate relationship between the structure of a material and its properties is crucial for guiding the synthesis and application of these materials. (Scanning) Transmission electron microscopy (S)TEM imaging stands out as a powerful tool for structural characterization at the nanoscale, capable of detailing both periodic and aperiodic local structures. However, the high electron-beam sensitivity of MOFs presents substantial challenges in their structural characterization using (S)TEM. This paper summarizes the latest advancements in low-dose high-resolution (S)TEM imaging technology and its application in MOF material characterization. It covers aspects such as framework structure, defects, and surface and interface analysis, along with the distribution of guest molecules within MOFs. This review also discusses emerging technologies like electron ptychography and outlines several prospective research directions in this field.
Collapse
Affiliation(s)
- Yuhang Liang
- School of Physical Science and Technology and Shanghai Key Laboratory of High-Resolution Electron MicroscopyShanghaiTech UniversityShanghai201210People’s Republic of China
| | - Yi Zhou
- School of Physical Science and Technology and Shanghai Key Laboratory of High-Resolution Electron MicroscopyShanghaiTech UniversityShanghai201210People’s Republic of China
| |
Collapse
|
2
|
Zhan Z, Liu Y, Wang W, Du G, Cai S, Wang P. Atomic-level imaging of beam-sensitive COFs and MOFs by low-dose electron microscopy. NANOSCALE HORIZONS 2024; 9:900-933. [PMID: 38512352 DOI: 10.1039/d3nh00494e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Electron microscopy, an important technique that allows for the precise determination of structural information with high spatiotemporal resolution, has become indispensable in unravelling the complex relationships between material structure and properties ranging from mesoscale morphology to atomic arrangement. However, beam-sensitive materials, particularly those comprising organic components such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), would suffer catastrophic damage from the high energy electrons, hindering the determination of atomic structures. A low-dose approach has arisen as a possible solution to this problem based on the integration of advancements in several aspects: electron optical system, detector, image processing, and specimen preservation. This article summarizes the transmission electron microscopy characterization of MOFs and COFs, including local structures, host-guest interactions, and interfaces at the atomic level. Revolutions in advanced direct electron detectors, algorithms in image acquisition and processing, and emerging methodology for high quality low-dose imaging are also reviewed. Finally, perspectives on the future development of electron microscopy methodology with the support of computer science are presented.
Collapse
Affiliation(s)
- Zhen Zhan
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Yuxin Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Weizhen Wang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Guangyu Du
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Songhua Cai
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Peng Wang
- Department of Physics, University of Warwick, CV4 7AL, Coventry, UK.
| |
Collapse
|
3
|
Yang W, Sha H, Cui J, Mao L, Yu R. Local-orbital ptychography for ultrahigh-resolution imaging. NATURE NANOTECHNOLOGY 2024; 19:612-617. [PMID: 38286877 DOI: 10.1038/s41565-023-01595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024]
Abstract
Technical advances paired with developments in methodology have enabled electron microscopy to reach atomic resolution. Further improving the information limit in microscopic imaging requires further improvements in methodology. Here we report a ptychographic method that describes the object as the sum of discrete atomic-orbital-like functions (for example, Gaussian functions) and the probe in terms of aberration functions. Using this method, we realize an improved information limit of microscopic imaging, reaching down to 14 pm. High-quality probes and objects contribute to superior signal-to-noise ratios at low electron doses, allowing for relaxation of the sample thickness restriction to 50 nm for dense materials. Additionally, our method has the capability to decompose the total phase into element components, revealing that the information limit is element dependent. With enhanced spatial resolution, signal-to-noise ratio and thickness threshold compared with conventional ptychography methods, our local-orbital ptychography may find applications in atomic-resolution imaging of metals, ceramics, electronic devices or beam-sensitive material.
Collapse
Affiliation(s)
- Wenfeng Yang
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, China
| | - Haozhi Sha
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, China
| | - Jizhe Cui
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, China
| | - Liangze Mao
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, China
| | - Rong Yu
- School of Materials Science and Engineering, Tsinghua University, Beijing, China.
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing, China.
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Nguyen KX, Jiang Y, Lee CH, Kharel P, Zhang Y, van der Zande AM, Huang PY. Achieving sub-0.5-angstrom-resolution ptychography in an uncorrected electron microscope. Science 2024; 383:865-870. [PMID: 38386746 DOI: 10.1126/science.adl2029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Subangstrom resolution has long been limited to aberration-corrected electron microscopy, where it is a powerful tool for understanding the atomic structure and properties of matter. Here, we demonstrate electron ptychography in an uncorrected scanning transmission electron microscope (STEM) with deep subangstrom spatial resolution down to 0.44 angstroms, exceeding the conventional resolution of aberration-corrected tools and rivaling their highest ptychographic resolutions. Our approach, which we demonstrate on twisted two-dimensional materials in a widely available commercial microscope, far surpasses prior ptychographic resolutions (1 to 5 angstroms) of uncorrected STEMs. We further show how geometric aberrations can create optimized, structured beams for dose-efficient electron ptychography. Our results demonstrate that expensive aberration correctors are no longer required for deep subangstrom resolution.
Collapse
Affiliation(s)
- Kayla X Nguyen
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yi Jiang
- Advanced Photon Source Facility, Argonne National Laboratory, Lemont, IL, USA
| | - Chia-Hao Lee
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Priti Kharel
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yue Zhang
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Arend M van der Zande
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Pinshane Y Huang
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
5
|
Li G, Zhang H, Han Y. Applications of Transmission Electron Microscopy in Phase Engineering of Nanomaterials. Chem Rev 2023; 123:10728-10749. [PMID: 37642645 DOI: 10.1021/acs.chemrev.3c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Phase engineering of nanomaterials (PEN) is an emerging field that aims to tailor the physicochemical properties of nanomaterials by precisely manipulating their crystal phases. To advance PEN effectively, it is vital to possess the capability of characterizing the structures and compositions of nanomaterials with precision. Transmission electron microscopy (TEM) is a versatile tool that combines reciprocal-space diffraction, real-space imaging, and spectroscopic techniques, allowing for comprehensive characterization with exceptional resolution in the domains of time, space, momentum, and, increasingly, even energy. In this Review, we first introduce the fundamental mechanisms behind various TEM-related techniques, along with their respective application scopes and limitations. Subsequently, we review notable applications of TEM in PEN research, including applications in fields such as metallic nanostructures, carbon allotropes, low-dimensional materials, and nanoporous materials. Specifically, we underscore its efficacy in phase identification, composition and chemical state analysis, in situ observations of phase evolution, as well as the challenges encountered when dealing with beam-sensitive materials. Furthermore, we discuss the potential generation of artifacts during TEM imaging, particularly in scanning modes, and propose methods to minimize their occurrence. Finally, we offer our insights into the present state and future trends of this field, discussing emerging technologies including four-dimensional scanning TEM, three-dimensional atomic-resolution imaging, and electron microscopy automation while highlighting the significance and feasibility of these advancements.
Collapse
Affiliation(s)
- Guanxing Li
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hui Zhang
- Electron Microscopy Center, South China University of Technology, Guangzhou 510640, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Electron Microscopy Center, South China University of Technology, Guangzhou 510640, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|