1
|
Jiang HJ, Fang W, Chen X, Yu XR, Meng YD, Fang LP, Shen ML, Yao CZ, Li Q, Hong X, Yu J. Unlocking Chiral Sulfinimidoyl Electrophiles: Asymmetric Synthesis of Sulfinamides Catalyzed by Anionic Stereogenic-at-Cobalt(III) Complexes. J Am Chem Soc 2025; 147:2137-2147. [PMID: 39748605 DOI: 10.1021/jacs.4c16233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Asymmetric catalysis involving a sulfoxide electrophile intermediate presents an efficient methodology for accessing stereogenic-at-sulfur compounds, such as sulfinate esters, sulfinamides, etc., which have garnered increasing attention in modern pharmaceutical sciences. However, as the aza-analog of sulfoxide electrophiles, the asymmetric issues about electrophilic sulfinimidoyl species remain largely unexplored and represent a significant challenge in sulfur stereochemistry. Herein, we exhibit an anionic stereogenic-at-cobalt(III) complex-catalyzed asymmetric synthesis of chiral sulfinamides via chiral sulfinimidoyl iodide intermediates. Mechanistic investigations reveal that the catalytic cycle is initiated by asymmetric oxidative iodination, generating sulfinimidoyl iodides. These active intermediates subsequently undergo an enantiospecific nucleophilic substitution with water, affording a diverse array of enantioenriched sulfinamides. Notably, these sulfinamides exhibit promising antifungal activities against Sclerotinia sclerotiorum and serve as ideal platform molecules facilitating the stereospecific transformation into various stereogenic aza-sulfur compounds.
Collapse
Affiliation(s)
- Hua-Jie Jiang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Wei Fang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Xinran Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Xin-Ran Yu
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Yan-Dong Meng
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Li-Ping Fang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Meng-Lan Shen
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Chuan-Zhi Yao
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Qiankun Li
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Jie Yu
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
2
|
Xiao Z, Pu M, Li Y, Yang W, Wang F, Feng X, Liu X. Asymmetric Catalytic Synthesis of Allylic Sulfenamides from Vinyl α-Diazo Compounds by a Rearrangement Route. Angew Chem Int Ed Engl 2025; 64:e202414712. [PMID: 39226119 DOI: 10.1002/anie.202414712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
The asymmetric rearrangement of allylic sulfilimines is an effective route to synthetically attractive targets, such as allylic sulfenamides. The current methods are limited to chirality transfer from chiral allylic sulfilimine precursors. Herein, we report a general and fundamentally new rearrangement route to access optically enriched allylic sulfenamides and their derivatives. The process involves S-alkylation and an unusual S-to-N rearrangement step. A chiral nickel complex enables the transformation of a broad scope of sulfenamides and vinyl α-diazo pyrazoleamides under mild conditions. Various allylic sulfenamides have been synthesized with excellent γ-regioselectivity and enantioselectivity, and can be efficiently converted into sulfinamide and 4-aminobutenoic acid derivatives. In addition, DFT calculations demonstrate the connection between the spin state and conformation of the nickel vinyl carbenoid, as well as an unknown rearrangement process.
Collapse
Affiliation(s)
- Zhijie Xiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Maoping Pu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yuzhen Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Wei Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610047, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
3
|
Liu Q, Feng X, Xie F, Lai Y, Jiang H, Jiao Y, Wang J. Synthesis of Sulfenamides via Photoredox N-S Coupling of Dialkyl Azodicarboxylates and Thiols. Org Lett 2025; 27:409-414. [PMID: 39729373 DOI: 10.1021/acs.orglett.4c04454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
We herein report a photoredox N-S coupling reaction between dialkyl azodicarboxylates and thiols to access sulfenamide scaffolds. This reaction proceeds under mild, green, and operationally simple conditions, offering a broad scope of sulfenamides with high yields and excellent atom efficiency. Mechanistic investigations revealed this reaction followed a photoinitiated radical pathway in which iodide plays a crucial role as both a radical initiator and a single-electron reductant.
Collapse
Affiliation(s)
- Qun Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Xiaoyun Feng
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Fenghao Xie
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yingchao Lai
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Haokun Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yujing Jiao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Jin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
4
|
Chen WL, Fang S, Song JL, Hu Q, Zhang SS, Shu B. Base-Promoted Sulfur Arylation of Sulfenamides to Oxonium Aryne Precursors: Chemoselective Synthesis of Sulfilimines and o-Sulfanylanilines. J Org Chem 2025; 90:448-457. [PMID: 39680633 DOI: 10.1021/acs.joc.4c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
In this study, a metal-free and efficient method for the synthesis of sulfilimines and o-sulfanylanilines in high yields with excellent chemoselectivities from oxonium aryne precursors with sulfenamides has been developed. This method features mild reaction conditions, simple operations, a general substrate scope, and good tolerance of functional groups. In addition, scale-up synthesis, related applications, and preliminary mechanistic explorations were also investigated.
Collapse
Affiliation(s)
- Wang-Liang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Sheng Fang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Jia-Lin Song
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Qiong Hu
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Bing Shu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| |
Collapse
|
5
|
Greenwood NS, Boyer ZW, Ellman JA, Gnamm C. Sulfilimines from a Medicinal Chemist's Perspective: Physicochemical and in Vitro Parameters Relevant for Drug Discovery. J Med Chem 2025. [PMID: 39787298 DOI: 10.1021/acs.jmedchem.4c02714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
While sulfoximines are nowadays a well established functional group for medicinal chemistry, the properties of sulfilimines are significantly less well studied, and no sulfilimine has progressed to the clinic to date. In this account, the physicochemical and in vitro properties of sulfilimines are reported and compared to those of sulfoximines and other more traditional functional groups. Furthermore, the impact on the physicochemical and in vitro properties of real drug scaffolds is studied in two series of sulfilimine-containing analogs of imatinib and hNE inhibitors. We show that sulfilimines can be chemically and configurationally stable under physiologically relevant conditions and that they are basic and highly polar and thus are often beneficial for solubility and metabolic stability, although at the cost of reduced permeability. We conclude that S-cyclopropyl,S-(hetero)aryl and S,S-di(hetero)aryl sulfilimines are so far neglected but potentially valuable S(IV) based pharmacophores that deserve to be considered as part of the medicinal chemistry toolbox.
Collapse
Affiliation(s)
- Nathaniel S Greenwood
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Zachary W Boyer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jonathan A Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Christian Gnamm
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| |
Collapse
|
6
|
Zhang ZK, Yuan Y, Peng H, Han Y, Zhang J, Yang J. Synthesis of Sulfinamidines via Iron-Catalyzed Nitrene Transfer Reaction with Sulfenamides. J Org Chem 2024; 89:17609-17614. [PMID: 39557583 DOI: 10.1021/acs.joc.4c02286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
An iron-catalyzed nitrene transfer reaction for the rapid synthesis of sulfinamidines from readily available sulfenamides is reported. This method features mild conditions, short reaction times, and a broad substrate scope, allowing the preparation of a variety of sulfinamidines in good to excellent yields. The synthetic utility of the sulfinamidine products was further demonstrated through their conversion to other valuable sulfur(VI) compounds, such as sulfondiimidoyl fluorides, sulfinamidiate esters, and sulfonimidamides. Preliminary efforts in the development of an asymmetric variant showed moderate enantioselectivity.
Collapse
Affiliation(s)
- Zhi-Kun Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yin Yuan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Huiling Peng
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yidan Han
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Junfeng Yang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
7
|
V R PP, Mercy A AH, K N, S S, Nandi GC. A Rapid, Mild and Direct Route to Sulfonimidoyl Fluoride from Sulfenamide. J Org Chem 2024; 89:16426-16432. [PMID: 39478286 DOI: 10.1021/acs.joc.4c01644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We develop a rapid and mild protocol to access sulfonimidoyl fluoride-[S(VI)] from sulfenamide-[S(II)] directly. The transformation occurs via the reaction of sulfenamide with NCS (N-chlorosuccinimide), water, and TBAF in acetonitrile. Water and TBAF act as the source for S═O bond formation and fluoride, respectively. The reaction takes a very short time (within 5 min). The drug molecules, such as Carbamazepine and Levetiracetam attached sulfonimidoyl fluorides are also achieved following this protocol. Furthermore, sulfonimidoyl fluoride is transformed into sulfonimidamide in the presence of AlCl3. To the best of our knowledge, it is the first report detailing the synthesis of sulfonimidoyl fluoride-[S(VI)] directly from S(II)-sulfenamide.
Collapse
Affiliation(s)
- Padma Priya V R
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamilnadu 620015, India
| | - Antony Haritha Mercy A
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamilnadu 620015, India
| | - Natarajan K
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamilnadu 620015, India
| | - Sugapriya S
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamilnadu 620015, India
| | - Ganesh Chandra Nandi
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamilnadu 620015, India
| |
Collapse
|
8
|
Wall BJ, Byerly-Duke J, VanVeller B. Thermal Rearrangement of the S-N Bond of Thiooxime Esters. J Org Chem 2024; 89:15312-15316. [PMID: 39361875 DOI: 10.1021/acs.joc.4c01571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The labile O-N bond of oxime esters has enabled versatile access to many heterocyclic scaffolds. Alternatively, the analogous chemistry for thiooxime esters, which contain an S-N bond, has not been explored. Herein, we interrogate the reactivity of thiooxime esters and identify a homolytic fragmentation and rearrangement mechanism. This work provides the first exploration of the reactivity of this S-N functional group.
Collapse
Affiliation(s)
- Brendan J Wall
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Jacob Byerly-Duke
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
9
|
Wu X, Zheng J, He FS, Wu J. Ligand-Enabled Copper-Catalyzed Ullmann-Type S-C Bond Formation to Access Sulfilimines. Org Lett 2024; 26:8200-8205. [PMID: 39264317 DOI: 10.1021/acs.orglett.4c03116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
A copper-catalyzed Ullmann-type cross-coupling reaction of sulfenamides with aryl iodides is developed. The key to success is the use of a 2-methylnaphthalen-1-amine-derived amide ligand, which enables the formation of an S-C bond to access functionalized sulfilimines in good to excellent yields at room temperature. This method has the advantages of mild conditions, a broad substrate scope, good functional group compatibility, and high chemoselectivity. The utility of this protocol is highlighted through late-stage modification of drug-relevant molecules and sulfilimine product derivatization.
Collapse
Affiliation(s)
- Xianda Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Jiayi Zheng
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Fu-Sheng He
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, Zhejiang, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
10
|
Yu T, Jin Z, Ji Y, Yang A, Jia P. Photoredox-Catalyzed Difunctionalization of Alkenes with Sulfilimines. Org Lett 2024; 26:7944-7948. [PMID: 39255005 DOI: 10.1021/acs.orglett.4c02971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Herein, we disclose a facile photoinduced difunctionalization of alkenes, enabling the synthesis of valuable β-amino alcohols, β-amino ethers, and 1,2-diamines with diverse nucleophiles. The protocol relies on the use of readily accessible dibenzothiophene-based sulfilimines as novel N-radical precursors, showcasing high functional-group tolerance and exclusive regioselectivity under mild reaction conditions.
Collapse
Affiliation(s)
- Tingwei Yu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhe Jin
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Ji
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Aihong Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Penghao Jia
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
11
|
Wang F, Xiang W, Xie Y, Huai L, Zhang L, Zhang X. Synthesis of chiral sulfilimines by organocatalytic enantioselective sulfur alkylation of sulfenamides. SCIENCE ADVANCES 2024; 10:eadq2768. [PMID: 39270024 PMCID: PMC11397483 DOI: 10.1126/sciadv.adq2768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
Sulfilimines are versatile synthetic intermediates and important moieties in bioactive molecules. However, their applications in drug discovery are underexplored, and efficient asymmetric synthetic methods are highly desirable. Here, we report a transition metal-free pentanidium-catalyzed sulfur alkylation of sulfenamides with exclusive chemoselectivity over nitrogen and high enantioselectivity. The reaction conditions were mild, and a wide range of enantioenriched aryl and alkyl sulfilimines were obtained. The synthetic utility and practicability of this robust protocol were further demonstrated through gram-scale reactions and late-stage functionalization of drugs.
Collapse
Affiliation(s)
- Fucheng Wang
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Wanxing Xiang
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yiting Xie
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Linge Huai
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Luoqiang Zhang
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xin Zhang
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Yuan Y, Han Y, Zhang ZK, Sun S, Wu K, Yang J, Zhang J. Enantioselective Arylation of Sulfenamides to Access Sulfilimines Enabled by Palladium Catalysis. Angew Chem Int Ed Engl 2024; 63:e202409541. [PMID: 38935325 DOI: 10.1002/anie.202409541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Sulfur-containing functional groups have garnered considerable attention due to their common occurrence in ligands, pharmaceuticals, and insecticides. Nevertheless, enantioselective synthesis of sulfilimines, particularly diaryl sulfilimines remains a challenging and persistent goal. Herein we report a highly enantio- and chemoselective cross-coupling of sulfenamides with aryl diazonium salt to construct diverse S(IV) stereocenters by Pd catalysis. Bisphosphine ligands bearing sulfinamide groups play a crucial role in achieving high reactivity and selectivity. This approach provides a general, modular and divergent framework for quickly synthesizing chiral sulfilimines and sulfoximines that are otherwise challenging to access. In addition, the origins of the high chemoselectivity and enantioselectivity were extensively investigated using density functional theory calculations.
Collapse
Affiliation(s)
- Yin Yuan
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Yidan Han
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, China
| | - Zhi-Kun Zhang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Shijin Sun
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Ke Wu
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Junfeng Yang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| |
Collapse
|
13
|
Arichi N, Amano T, Wu S, Inuki S, Ohno H. Synthesis of Sulfilimines via Visible-Light-Mediated Triplet Energy Transfer to Sulfonyl Azides. Chemistry 2024; 30:e202401842. [PMID: 38923056 DOI: 10.1002/chem.202401842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Sulfilimines and their derivatives have garnered considerable interest in both synthetic and medicinal chemistry. Photochemical nitrene transfer to sulfides is known as a conventional synthetic approach to sulfilimines. However, the existing methods have a limited substrate scope stemming from the incompatibility of singlet nitrene intermediates with nucleophilic functional groups. Herein, we report the synthesis of N-sulfonyl sulfilimines via visible-light-mediated energy transfer to sulfonyl azides, uncovering the previously overlooked reactivity of triplet nitrenes with sulfides. This reaction features broad functional group tolerance, water compatibility, and amenability to the late-stage functionalization of drugs. Thus, this work represents an important example of energy transfer chemistry that overcomes challenges in traditional synthetic methods.
Collapse
Affiliation(s)
- Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tsuyoshi Amano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shuhan Wu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
14
|
Fimm M, Saito F. Enantioselective Synthesis of Sulfinamidines via Asymmetric Nitrogen Transfer from N-H Oxaziridines to Sulfenamides. Angew Chem Int Ed Engl 2024; 63:e202408380. [PMID: 38747676 DOI: 10.1002/anie.202408380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Indexed: 07/21/2024]
Abstract
Sulfinamidines are promising aza-SIV chiral building blocks in asymmetric synthesis and drug discovery. However, no report has documented their enantioselective synthesis. Here we present an enantioselective synthesis of sulfinamidines via electrophilic amination of sulfenamides using an enantiopure N-H oxaziridine. The resulting enantiomerically enriched primary sulfinamidines are configurationally stable at 90 °C in solution and show remarkable stability against organic acids and bases under non-aqueous conditions. We also demonstrate a one-pot, three-component, enantioselective synthesis of sulfinamides using N-H oxaziridine reagents.
Collapse
Affiliation(s)
- Marc Fimm
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus F, 81377, München, Germany
| | - Fumito Saito
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus F, 81377, München, Germany
| |
Collapse
|
15
|
Periasamy K, Gordeeva S, Bolm C. Syntheses of Sulfilimines by Iron-Catalyzed Iminations of Sulfides with 2,2,2-Trichloroethyl Sulfamate. J Org Chem 2024; 89:9705-9709. [PMID: 38870476 DOI: 10.1021/acs.joc.4c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
N-protected sulfilimines are prepared by imination of sulfides with a combination of 2,2,2-trichloroethyl sulfamate (H2NTces), (diacetoxyiodo)benzene (PIDA), and a catalytic amount of iron triflate. The reaction proceeds at room temperature, and after only 3 h a wide range of acyclic and cyclic NTces-sulfilimines with various functional groups and (hetero)aryl substituents can be obtained. By subsequent oxidation followed by deprotection, the products are converted into NH-sulfoximines.
Collapse
Affiliation(s)
- Kiruthika Periasamy
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Sofya Gordeeva
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
16
|
V R PP, Mercy A AH, K N, S R, Nandi GC. 1,2-Difunctionalization of Aryne with Sulfenamide and Organohalide: Mild and Metal-Free Access to S-( o-Halo)aryl Sulfilimine. J Org Chem 2024; 89:9043-9050. [PMID: 38842348 DOI: 10.1021/acs.joc.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
A mild and metal-free approach has been developed for 1,2-difunctionalization of aryne using sulfenamides as a nucleophile and a halogen source (CX4) as an electrophile to synthesize S-(o-halo)aryl sulfilimines. The late-stage functionalizations of halide handles via Suzuki-Miyaura and Buchwald-Hartwig reactions exhibit the synthetic utilities of the products. The chemoselectivity, regioselectivity, rapidity, and use of economical CCl4 are the advantages of this protocol.
Collapse
Affiliation(s)
- Padma Priya V R
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - Antony Haritha Mercy A
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - Natarajan K
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - Ravindra S
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - Ganesh Chandra Nandi
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| |
Collapse
|
17
|
Han K, Liu H, Rotella ME, Xu Z, Tao L, Chen S, Kozlowski MC, Jia T. A combined experimental and computational study of ligand-controlled Chan-Lam coupling of sulfenamides. Nat Commun 2024; 15:4747. [PMID: 38834552 PMCID: PMC11150460 DOI: 10.1038/s41467-024-49089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024] Open
Abstract
The unique features of the sulfenamides' S(II)-N bond lead to interesting stereochemical properties and significant industrial functions. Here we present a chemoselective Chan-Lam coupling of sulfenamides to prepare N-arylated sulfenamides. A tridentate pybox ligand governs the chemoselectivity favoring C-N bond formation, and overrides the competitive C-S bond formation by preventing the S,N-bis-chelation of sulfenamides to copper center. The Cu(II)-derived resting state of catalyst is captured by UV-Vis spectra and EPR technique, and the key intermediate is confirmed by the EPR isotope response using 15N-labeled sulfenamide. A computational mechanistic study reveals that N-arylation is both kinetically and thermodynamically favorable, with deprotonation of the sulfenamide nitrogen atom occurring prior to reductive elimination. The origin of ligand-controlled chemoselectivity is explored, with the interaction between the pybox ligand and the sulfenamide substrate controlling the energy of the S-arylation and the corresponding product distribution, in agreement with the EPR studies and kinetic results.
Collapse
Affiliation(s)
- Kaiming Han
- Research Center for Chemical Biology and Omics Analysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong, P. R. China
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
| | - Hong Liu
- Research Center for Chemical Biology and Omics Analysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong, P. R. China
| | - Madeline E Rotella
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, USA
| | - Zeyu Xu
- Research Center for Chemical Biology and Omics Analysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong, P. R. China
| | - Lizhi Tao
- Research Center for Chemical Biology and Omics Analysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong, P. R. China
| | - Shufeng Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China.
| | - Marisa C Kozlowski
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, USA.
| | - Tiezheng Jia
- Research Center for Chemical Biology and Omics Analysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong, P. R. China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, P. R. China.
| |
Collapse
|
18
|
Han Y, Yuan Y, Qi S, Zhang ZK, Kong X, Yang J, Zhang J. Copper-Catalyzed Sulfur Alkylation of Sulfenamides with N-Sulfonylhydrazones. Org Lett 2024; 26:3906-3910. [PMID: 38683227 DOI: 10.1021/acs.orglett.4c01086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Sulfilimines are valuable compounds in both organic synthesis and pharmaceuticals. In this study, we present a copper-catalyzed sulfur alkylation of sulfenamides with N-sulfonylhydrazones. In contrast to prior findings, hydrazones derived from aldehydes act as donor-type carbene precursors, effectively engaging in coupling with sulfenamides via a copper catalyst, demonstrating exclusive S selectivity. The utility of the protocol was highlighted in the rapid access to a wide range of sulfoximine derivatives.
Collapse
Affiliation(s)
- Yidan Han
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, People's Republic of China
| | - Yin Yuan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Shutao Qi
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Zhi-Kun Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Xiangfei Kong
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, People's Republic of China
| | - Junfeng Yang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
- Zhuhai Fudan Innovation Institute, Zhuhai, Guangdong 519000, People's Republic of China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| |
Collapse
|
19
|
Porey A, Fremin SO, Nand S, Trevino R, Hughes WB, Dhakal SK, Nguyen VD, Greco SG, Arman HD, Larionov OV. Multimodal Acridine Photocatalysis Enables Direct Access to Thiols from Carboxylic Acids and Elemental Sulfur. ACS Catal 2024; 14:6973-6980. [PMID: 38737399 PMCID: PMC11081195 DOI: 10.1021/acscatal.4c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Development of photocatalytic systems that facilitate mechanistically divergent steps in complex catalytic manifolds by distinct activation modes can enable previously inaccessible synthetic transformations. However, multimodal photocatalytic systems remain understudied, impeding their implementation in catalytic methodology. We report herein a photocatalytic access to thiols that directly merges the structural diversity of carboxylic acids with the ready availability of elemental sulfur without substrate preactivation. The photocatalytic transformation provides a direct radical-mediated segue to one of the most biologically important and synthetically versatile organosulfur functionalities, whose synthetic accessibility remains largely dominated by two-electron-mediated processes based on toxic and uneconomical reagents and precursors. The two-phase radical process is facilitated by a multimodal catalytic reactivity of acridine photocatalysis that enables both the singlet excited state PCET-mediated decarboxylative carbon-sulfur bond formation and the previously unknown radical reductive disulfur bond cleavage by a photoinduced HAT process in the silane-triplet acridine system. The study points to a significant potential of multimodal photocatalytic systems in providing unexplored directions to previously inaccessible transformations.
Collapse
Affiliation(s)
- Arka Porey
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Seth O Fremin
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Sachchida Nand
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ramon Trevino
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - William B Hughes
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Shree Krishna Dhakal
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Viet D Nguyen
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Samuel G Greco
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hadi D Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Oleg V Larionov
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
20
|
Zhang M, Liu L, Tan Y, Jing Y, Liu Y, Wang Z, Wang Q. Decarboxylative Radical Sulfilimination via Photoredox, Copper, and Brønsted Base Catalysis. Angew Chem Int Ed Engl 2024; 63:e202318344. [PMID: 38126567 DOI: 10.1002/anie.202318344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Sulfilimines, the aza-variants of sulfoxides, are key structural motifs in natural products, pharmaceuticals, and agrochemicals; and sulfilimine synthesis is therefore important in organic chemistry. However, methods for radical sulfilimination remain elusive, and as a result, the structural diversity of currently available sulfilimines is limited. Herein, we report the first protocol for decarboxylative radical sulfilimination reactions between sulfenamides and N-hydroxyphthalimide esters of primary, secondary, and tertiary alkyl carboxylic acids, which were achieved via a combination of photoredox, copper, and Brønsted base catalysis. This novel protocol provided a wide variety of sulfilimines, in addition to serving as an efficient route for the synthesis of S-alkyl/S-aryl homocysteine sulfilimines and S-(4-methylphenyl) homocysteine sulfoximine. Moreover, it could be used for late-stage introduction of a sulfilimine group into structurally complex molecules, thereby avoiding the need to preserve labile organosulfur moieties through multistep synthetic sequences. A mechanism involving photocatalytic substrate transformation and copper-mediated C(sp3 )-S bond formation is proposed.
Collapse
Affiliation(s)
- Mingjun Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Lixia Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yuhao Tan
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yue Jing
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ziwen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300071, P. R. China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
21
|
Roy A, Gauld JW. Sulfilimine bond formation in collagen IV. Chem Commun (Camb) 2024; 60:646-657. [PMID: 38116662 DOI: 10.1039/d3cc05715a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The collagen IV network plays a crucial role in providing structural support and mechanical integrity to the basement membrane and surrounding tissues. A key aspect of this network is the formation of intra- and inter-collagen fibril crosslinks. One particular crosslink, an inter-residue sulfilimine bond, has been found, so far, to be unique to collagen IV. More specifically, these crosslinks are primarily formed between methionine and lysine or hydroxylysine residues and can occur within a single collagen fibril or between different collagen fibrils. Due to its significance as the major crosslink in the collagen IV network, the sulfilimine bond plays critical roles in tissue development and various human diseases. While the proposed reaction mechanism for sulfilimine bond formation is supported by experimental evidence, the precise nature of this bond remained uncertain until computational studies were conducted. The process involves the reaction of hypohalous acids (e.g., HOBr, HOCl), produced by a peroxidasin enzyme in the basement membrane, with the sidechain sulfur of methionine or sidechain nitrogen of lysine/hydroxylysine residues in collagen IV, to form halosulfonium or haloamine intermediates, respectively. The halosulfonium/haloamine then reacts with the sidechain amine/sulfide of the lysine (or hydroxylysine) or methionine respectively, eventually resulting in the formation of the sulfilimine (MetSNLys/Hyl) crosslink. The sulfilimine product formed not only plays a crucial role in physiological processes but also finds applications in various industrial and pharmaceutical contexts. In this review, we provide a comprehensive summary of existing studies, including our own research, aimed at understanding the reaction mechanism, protonation states, characteristic nature, and dynamic behavior of the sulfilimine bond in collagen IV. The goal is to offer readers an overview of this critically important biochemical bond.
Collapse
Affiliation(s)
- Anupom Roy
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| | - James W Gauld
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| |
Collapse
|
22
|
Greenwood NS, Cerny NP, Deziel AP, Ellman JA. Synthesis of N-Acylsulfenamides from (Hetero)Aryl Iodides and Boronic Acids by One-Pot Sulfur-Arylation and Dealkylation. Angew Chem Int Ed Engl 2024; 63:e202315701. [PMID: 38015869 PMCID: PMC10813656 DOI: 10.1002/anie.202315701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
A general one-pot approach to diverse N-acylsulfenamides from a common S-phenethylsulfenamide starting material is reported. This approach was demonstrated by C-S bond formation utilizing commercially abundant (hetero)aryl iodides and boronic acids to provide sulfilimine intermediates that undergo thermal elimination of styrene. In contrast, all prior approaches to N-acylsulfenamides rely on thiol inputs to introduce sulfenamide S-substituents. A broad scope of reaction inputs was demonstrated including for approved drugs and drug precursors with dense display of functionality. Several different types of sulfur functionalization were performed on a sulfenamide derived from a complex precursor of the blockbuster anticoagulant drug apixaban, highlighting the utility of this approach for the introduction of high oxidation state sulfur groups in complex bioactive compounds. Mechanistic studies established that the key styrene elimination step proceeds by a concerted elimination that does not require reagents or catalysts, and therefore, this one-pot approach should be applicable to the synthesis of N-acylsulfenamides utilizing diverse electrophiles and reaction conditions for C-S bond formation.
Collapse
Affiliation(s)
- Nathaniel S Greenwood
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520, USA
| | - Nicholas P Cerny
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520, USA
| | - Anthony P Deziel
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520, USA
| | - Jonathan A Ellman
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520, USA
| |
Collapse
|
23
|
Huang G, Ye J, Tan M, Chen Y, Lu X. Copper-Catalyzed Aerobic S-Amination of Sulfenamides for the Synthesis of Sulfinamidines. J Org Chem 2023; 88:16116-16121. [PMID: 37982347 DOI: 10.1021/acs.joc.3c01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Herein, we present a copper-catalyzed oxidative amination of sulfenamides for the synthesis of sulfinamidines. By the employment of air as the terminal oxidant, a diverse array of secondary and primary amines can be efficiently transformed into their corresponding products. This method is well-suited for last-stage functionalization, and the underlying mechanism has been investigated. The transformation is characterized by exceptional chemoselectivity, mild conditions, facile operation, and broad substrate compatibility, which have significant implications for the fields of pharmaceuticals and organic synthesis.
Collapse
Affiliation(s)
- Guoling Huang
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University (LNU), 29 Cunjin Road, Zhanjiang, 524048, P. R. China
| | - Jianlin Ye
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University (LNU), 29 Cunjin Road, Zhanjiang, 524048, P. R. China
| | - Minxi Tan
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University (LNU), 29 Cunjin Road, Zhanjiang, 524048, P. R. China
| | - Yuetong Chen
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University (LNU), 29 Cunjin Road, Zhanjiang, 524048, P. R. China
| | - Xunbo Lu
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University (LNU), 29 Cunjin Road, Zhanjiang, 524048, P. R. China
| |
Collapse
|
24
|
Wall BJ, VanVeller B. Anomeric Answer to Sulfenamide Stability and α-Nucleophilicity. J Org Chem 2023; 88:15067-15072. [PMID: 37873923 DOI: 10.1021/acs.joc.3c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The S-N bond remains a synthetically challenging motif for organic chemists to access. The problem arises from instability in many sulfenamide derivatives, which has led to fewer S-N bond surrogate molecules compared to their hydroxylamine (NH2OH) and hydrazine (NH2NH2) analogues. In turn, sulfenamides have often been omitted in studies regarding α-nucleophilicity. Herein, we provide factors responsible for the stability of the sulfenamide motif and provide new insights on the nucleophilic properties of sulfenamides as they relate to the α-effect.
Collapse
Affiliation(s)
- Brendan J Wall
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
25
|
Zou X, Wang H, Gao B. Synthesis of Sulfoximines by Copper-Catalyzed Oxidative Coupling of Sulfinamides and Aryl Boronic Acids. Org Lett 2023; 25:7656-7660. [PMID: 37823578 DOI: 10.1021/acs.orglett.3c02970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
A novel copper-catalyzed cross-coupling reaction of sulfinamides and aryl boronic acids is developed. The reaction is highly chemoselective and stereospecific, which allows mild synthesis of optically pure sulfoximines with broad scope and functional group tolerance. The utility of this method is demonstrated by the asymmetric synthesis of pharmaceutical intermediates.
Collapse
Affiliation(s)
- Xi Zou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Hanbing Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Bing Gao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
26
|
Guo Y, Zhuang Z, Feng X, Ma Q, Li N, Jin C, Yoshida H, Tan J. Selective S-Arylation of Sulfenamides with Arynes: Access to Sulfilimines. Org Lett 2023; 25:7192-7197. [PMID: 37733632 DOI: 10.1021/acs.orglett.3c02785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Sulfilimines, the aza analogues of sulfoxides, are of increasing interest in medicinal and agrochemical research programs. However, the development of efficient routes for their synthesis has remained relatively unexplored. In this study, we report a transition metal-free, selective S-arylation reaction between sulfenamides and arynes, enabling the facile preparation of structurally diverse sulfilimines under mild and redox-neutral conditions in good yields. The application value of our method was further demonstrated by scale-up synthesis, downstream derivatization, and robustness screen.
Collapse
Affiliation(s)
- Yifeng Guo
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Zhe Zhuang
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Xiaoying Feng
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Quanyu Ma
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Ningning Li
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Chaochao Jin
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Hiroto Yoshida
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Jiajing Tan
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| |
Collapse
|
27
|
Xie P, Zheng Y, Luo Y, Luo J, Wu L, Cai Z, He L. Synthesis of Sulfilimines via Multicomponent Reaction of Arynes, Sulfamides, and Thiosulfonates. Org Lett 2023; 25:6133-6138. [PMID: 37579216 DOI: 10.1021/acs.orglett.3c02217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In this work, a facile and efficient method for the synthesis of sulfilimines through multicomponent reaction of arynes, sulfamides, and thiosulfonates was developed. A variety of structurally diverse substrates and functional groups were very compatible in the reaction, giving the corresponding sulfilimines in good to high yields. This protocol could be conducted on a gram scale, and the product was easily converted to sulfide and sulfoximine. Mechanism studies revealed that sulfenamide generated in situ is the key intermediate for the reaction.
Collapse
Affiliation(s)
- Pei Xie
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Yating Zheng
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Yuping Luo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Jinyun Luo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Leifang Wu
- Analysis and Testing Center of Shihezi University, Shihezi University, Shihezi 832000, P. R. China
| | - Zhihua Cai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Lin He
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| |
Collapse
|
28
|
Huang G, Ye J, Bashir MA, Chen Y, Chen W, Lu X. Hypervalent Iodine Mediated Synthesis of Sulfinamidines from Sulfenamides. J Org Chem 2023; 88:11728-11734. [PMID: 37506052 DOI: 10.1021/acs.joc.3c00999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
In this study, we present a novel, efficient method for the oxidative amination of sulfenamides using diacetoxyiodobenzene (PhI(OAc)2) and amines under basic conditions. This innovative technique streamlines the synthesis of sulfinamidines under mild, metal-free conditions, achieving outstanding yields of up to 99%. Furthermore, we propose possible pathways that elucidate the observed molecular sequence of events in this reaction. This cutting-edge approach not only advances the synthesis of valuable sulfinamidine compounds but also expands the synthetic toolbox available to chemists, paving the way for future discoveries in organic synthesis and potential applications in medicinal chemistry.
Collapse
Affiliation(s)
- Guoling Huang
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048, P. R. China
| | - Jianlin Ye
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048, P. R. China
| | | | - Yuetong Chen
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048, P. R. China
| | - Wenjing Chen
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048, P. R. China
| | - Xunbo Lu
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048, P. R. China
| |
Collapse
|
29
|
Abstract
An efficient and metal-free approach for the synthesis of sulfilimines from sulfenamides with aryne and cyclohexyne precursors has been developed. The reaction proceeds through unusual S-C bond formation, which offers a novel and practical entry to access a wide range of sulfilimines in moderate to good yields with excellent chemoselectivity. Moreover, this protocol is amenable to gram-scale synthesis and is applicable to the transformation of the products into useful sulfoximines.
Collapse
Affiliation(s)
- Xianda Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Minghong Chen
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Fu-Sheng He
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
30
|
Greenwood NS, Ellman JA. Sulfur-Arylation of Sulfenamides via Ullmann-Type Coupling with (Hetero)aryl Iodides. Org Lett 2023; 25:4759-4764. [PMID: 37338140 PMCID: PMC10330900 DOI: 10.1021/acs.orglett.3c01874] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Sulfur-(hetero)arylation of sulfenamides with commercially abundant (hetero)aryl iodides by Ullmann-type coupling with inexpensive copper(I) iodide as the catalyst is reported. A broad scope of reaction inputs was demonstrated, including both aryl and alkyl sulfenamides and highly sterically hindered aryl and 5- and 6-membered ring heteroaryl iodides. Relevant to many bioactive high oxidation state sulfur compounds, the (hetero)arylation of S-methyl sulfenamides is reported, including for complex aryl iodides. Smiles rearrangement of electron-deficient S-heteroaryl sulfilimines is also disclosed.
Collapse
Affiliation(s)
| | - Jonathan A. Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, United States
| |
Collapse
|
31
|
Wu X, Li Y, Chen M, He FS, Wu J. Metal-Free Chemoselective S-Arylation of Sulfenamides To Access Sulfilimines. J Org Chem 2023. [PMID: 37327035 DOI: 10.1021/acs.joc.3c00961] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A novel and efficient S-arylation of sulfenamides with diaryliodonium salts for the synthesis of sulfilimines is developed. The reaction proceeds smoothly under transition-metal-free and air conditions, giving rapid access to sulfilimines in good to excellent yields via selective S-C bond formation. This protocol is scalable and exhibits a broad substrate scope, good functional group tolerance, and excellent chemoselectivity.
Collapse
Affiliation(s)
- Xianda Wu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 3180000, China
| | - Yuqing Li
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 3180000, China
| | - Minghong Chen
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 3180000, China
| | - Fu-Sheng He
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 3180000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 3180000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
32
|
Champlin AT, Ellman JA. Preparation of Sulfilimines by Sulfur-Alkylation of N-Acyl Sulfenamides with Alkyl Halides. J Org Chem 2023; 88:7607-7614. [PMID: 37221855 PMCID: PMC10257216 DOI: 10.1021/acs.joc.3c00750] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sulfur alkylation of N-acyl sulfenamides with alkyl halides provides sulfilimines in 47% to 98% yields. A broad scope was established with a variety of aryl and alkyl sulfenamides, including for different N-acyl groups. Alkyl halides with different steric and electronic properties were effective inputs, including methyl, primary, secondary, benzyl, and propargyl halides. A proof-of-concept asymmetric phase-transfer alkylation was also demonstrated. A sulfilimine product was readily converted to an N-acyl and to a free sulfoximine, which represent important motifs in medicinal chemistry.
Collapse
Affiliation(s)
- Andrew T. Champlin
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jonathan A. Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
33
|
Zhou Q, Li J, Wang T, Yang X. Base-Promoted S-Arylation of Sulfenamides for the Synthesis of Sulfilimines. Org Lett 2023. [PMID: 37267093 DOI: 10.1021/acs.orglett.3c01436] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Sulfilimines are key intermediates to common motifs in medicines and agrochemicals. Typically, this class of compounds are prepared by imidation of thioethers, transition-metal-catalyzed or base-promoted sulfur alkylation and transition-metal-catalyzed sulfur arylation. Here, we report a practical and efficient base-mediated sulfur arylation reaction for the preparation of sulfilimines. A wide range of N-acyl and N-aryl sulfenamides react with various diaryliodonium salts smoothly to afford the sulfilimines in high yields with excellent chemoselectivities.
Collapse
Affiliation(s)
- Qinglong Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jiaomeng Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Tianyi Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xing Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
34
|
Greenwood NS, Ellman JA. Sulfur-Arylation of Sulfenamides via Chan-Lam Coupling with Boronic Acids: Access to High Oxidation State Sulfur Pharmacophores. Org Lett 2023; 25:2830-2834. [PMID: 37042652 PMCID: PMC10163624 DOI: 10.1021/acs.orglett.3c00779] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Sulfur-arylation of sulfenamides is reported. This reaction proceeds via a Chan-Lam-type coupling with commercially abundant boronic acids to give sulfilimines. A broad scope was established with a variety of readily accessible aryl and alkyl sulfenamide and boronic acid inputs. Synthetic utility and functional group compatibility were further demonstrated through the direct late-stage introduction of sulfilimines into approved drugs. Derivatization of the sulfilimine products provided access to medicinally relevant sulfoximines and sulfondiimines.
Collapse
Affiliation(s)
| | - Jonathan A. Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
35
|
Huang G, Lu X, Liang F. Redox-Neutral Strategy for Sulfilimines Synthesis via S-Arylation of Sulfenamides. Org Lett 2023; 25:3179-3183. [PMID: 37104714 DOI: 10.1021/acs.orglett.3c01077] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
In this investigation, an unprecedented transition-metal-free and redox-neutral synthesis of sulfilimines was realized through the S-arylation of readily obtainable sulfenamides employing diaryliodonium salts. The pivotal step encompassed the resonance between bivalent nitrogen-centered anions, engendered postdeprotonation of sulfenamides under alkaline conditions, and sulfinimidoyl anions. The experimental outcomes demonstrate that sulfinimidoyl anionic species function as efficacious nucleophilic reagents, affording sulfilimines with notable to exceptional yields and superlative chemoselectivity, all executed within a transition-metal-free protocol and under exceptionally mild conditions.
Collapse
Affiliation(s)
- Guoling Huang
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University (LNU), 29 Cunjin Road, Zhanjiang 524048, P. R. China
| | - Xunbo Lu
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University (LNU), 29 Cunjin Road, Zhanjiang 524048, P. R. China
| | - Fangpeng Liang
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University (LNU), 29 Cunjin Road, Zhanjiang 524048, P. R. China
| |
Collapse
|