1
|
Wu J, Zhang Y, Wang J, Ling Z, Yan X, Lyu X, Fang J, Cheng M, Zhao M, Ban T, Liu Y, Li Y. Advancing Protein Detection and Analysis Based on Ag/Au PHCN for Enhanced SERS Sensitivity and Specificity in Biomolecular Diagnostics. Anal Chem 2024; 96:15735-15745. [PMID: 39284018 DOI: 10.1021/acs.analchem.4c03467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
In the realm of disease diagnostics, particularly for conditions such as proteinuria and hemoglobinuria, the quest for a method that combines accurate, label-free detection of protein compositions and their conformational changes remains a formidable challenge. In this study, we introduce an innovative Ag/Au plasmonic hybrid coupling nanoarray (Ag/Au PHCN) architecture marked by sub-10 nm interparticle gaps. These nanoarrays, leveraging plasmonic hybrid coupling and synergistic enhancement mechanisms, create a plethora of uniform surface-enhanced Raman spectroscopy (SERS) hotspots. The Ag/Au PHCN substrates demonstrated unparalleled sensitivity in the unmarked detection of hemoglobin (HGB), bovine serum albumin (BSA), and cytochrome C (Cyt.C) in bodily fluids, incorporating the advantages of high sensitivity, high reproducibility, durability, recyclability, and biocompatibility. Notably, the detection limits for BSA and HGB are unprecedented at 0.5 and 5 ng/mL, respectively. This achievement sets a new benchmark for label-free protein detection using two-dimensional nanostructures. Crucially, the Ag/Au PHCNs possess the novel capability to discern protein conformational changes post denaturation, underscoring their potential in probing protein functionalities. Most importantly, these nanoarrays can differentiate between normal and proteinuria-affected urine samples and monitor protein content variations over time, heralding a new era in clinical diagnostics with particular relevance to proteinuria and hemoglobinuria detection.
Collapse
Affiliation(s)
- Jing Wu
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, P. R. China
| | - Ying Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Jiuchuan Wang
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, P. R. China
| | - Zhuangzhuang Ling
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, P. R. China
| | - Xuanhua Yan
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, P. R. China
| | - Xiaoming Lyu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Jinghuai Fang
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, P. R. China
| | - Mingfei Cheng
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, P. R. China
| | - Min Zhao
- School of Artificial Intelligence and Computer Science, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226019, P. R. China
| | - Tao Ban
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Yu Liu
- Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150081, P. R. China
| | - Yang Li
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, FI-90014 Oulu, Finland
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150081, P. R. China
| |
Collapse
|
2
|
Veale CGL, Chakraborty A, Mhlanga R, Albericio F, de la Torre BG, Edkins AL, Clarke DJ. A native mass spectrometry approach to qualitatively elucidate interfacial epitopes of transient protein-protein interactions. Chem Commun (Camb) 2024; 60:5844-5847. [PMID: 38752317 PMCID: PMC11139139 DOI: 10.1039/d4cc01251h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Native mass spectrometric analysis of TPR2A and GrpE with unpurified peptides derived from limited proteolysis of their respective PPI partners (HSP90 C-terminus and DnaK) facilitated efficient, qualitative identification of interfacial epitopes involved in transient PPI formation. Application of this approach can assist in elucidating interfaces of currently uncharacterised transient PPIs.
Collapse
Affiliation(s)
- Clinton G L Veale
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.
| | - Abir Chakraborty
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Richwell Mhlanga
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville, South Africa
| | - Beatriz G de la Torre
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, South Africa
| | - Adrienne L Edkins
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - David J Clarke
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH93FJ, UK.
| |
Collapse
|
3
|
Liang J, Davoodi H, Wadhwa S, Badilita V, Korvink JG. Broadband stripline Lenz lens achieves 11 × NMR signal enhancement. Sci Rep 2024; 14:1645. [PMID: 38238376 PMCID: PMC10796323 DOI: 10.1038/s41598-023-50616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/22/2023] [Indexed: 01/22/2024] Open
Abstract
A Lenz lens is an electrically passive conductive element that, when placed in a time-varying magnetic field, acts as a magnetic flux concentrator or a magnetic lens. In the realm of nuclear magnetic resonance (NMR), Lenz lenses have been exploited as electrically passive metallic radiofrequency interposers placed between a sample and a tuned or untuned NMR detector in order to focus the [Formula: see text]-field of the detector onto a smaller sample space. Here we explore a novel embodiment of the Lenz lens, which acts as a non-resonant stripline interposer, i.e., the [Formula: see text]-field acts along the longitudinal volume of a sample container, such as a capillary or other microfluidic channel that is coincident with the axis of the stripline. The almost vanishing self-resonance of the stripline Lenz lens, at frequencies relevant for NMR, leads to a desirable [Formula: see text]-field amplitude that is nearly perfectly uniform across the sample and hence lacking a characteristic sinusoidal modal shape. The action of Lenz' law ensures that no stray [Formula: see text]-field is found outside of the stripline's active volume. Because the stripline Lenz lens does not rely on its own geometry to achieve resonance, its frequency response is thus widely broadband for field enhancements up to a factor of 11, with only the external driving resonator properties governing the overall resonant behaviour. We explore the use of the stripline Lenz lens with a sub-nanolitre sample volume, readily detecting 4 isotopes with resonances ranging from 125.76 to 500 MHz. The concept holds potential for the NMR study of thin films, small biological samples, as well as the in situ study of battery materials.
Collapse
Affiliation(s)
- Jianyi Liang
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | | | | | - Vlad Badilita
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany.
| | - Jan G Korvink
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
4
|
Becker M, Cheng YT, Voigt A, Chenakkara A, He M, Lehmkuhl S, Jouda M, Korvink JG. Artificial intelligence-driven shimming for parallel high field nuclear magnetic resonance. Sci Rep 2023; 13:17983. [PMID: 37863971 PMCID: PMC10589267 DOI: 10.1038/s41598-023-45021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023] Open
Abstract
Rapid drug development requires a high throughput screening technology. NMR could benefit from parallel detection but is hampered by technical obstacles. Detection sites must be magnetically shimmed to ppb uniformity, which for parallel detection is precluded by commercial shimming technology. Here we show that, by centering a separate shim system over each detector and employing deep learning to cope with overlapping non-orthogonal shimming fields, parallel detectors can be rapidly calibrated. Our implementation also reports the smallest NMR stripline detectors to date, based on an origami technique, facilitating further upscaling in the number of detection sites within the magnet bore.
Collapse
Affiliation(s)
- Moritz Becker
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Karlsruhe, Germany
| | - Yen-Tse Cheng
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Karlsruhe, Germany
| | - Achim Voigt
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Karlsruhe, Germany
| | - Ajmal Chenakkara
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Karlsruhe, Germany
| | - Mengjia He
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Karlsruhe, Germany
| | - Sören Lehmkuhl
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Karlsruhe, Germany
| | - Mazin Jouda
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Karlsruhe, Germany.
| | - Jan G Korvink
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Karlsruhe, Germany.
| |
Collapse
|
5
|
Wetton H, Klukowski P, Riek R, Güntert P. Chemical shift transfer: an effective strategy for protein NMR assignment with ARTINA. Front Mol Biosci 2023; 10:1244029. [PMID: 37854037 PMCID: PMC10581199 DOI: 10.3389/fmolb.2023.1244029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
Chemical shift transfer (CST) is a well-established technique in NMR spectroscopy that utilizes the chemical shift assignment of one protein (source) to identify chemical shifts of another (target). Given similarity between source and target systems (e.g., using homologs), CST allows the chemical shifts of the target system to be assigned using a limited amount of experimental data. In this study, we propose a deep-learning based workflow, ARTINA-CST, that automates this procedure, allowing CST to be carried out within minutes or hours of computational time and strictly without any human supervision. We characterize the efficacy of our method using three distinct synthetic and experimental datasets, demonstrating its effectiveness and robustness even when substantial differences exist between the source and target proteins. With its potential applications spanning a wide range of NMR projects, including drug discovery and protein interaction studies, ARTINA-CST is anticipated to be a valuable method that facilitates research in the field.
Collapse
Affiliation(s)
- Henry Wetton
- Institute of Molecular Physical Science, ETH Zurich, Zurich, Switzerland
| | - Piotr Klukowski
- Institute of Molecular Physical Science, ETH Zurich, Zurich, Switzerland
| | - Roland Riek
- Institute of Molecular Physical Science, ETH Zurich, Zurich, Switzerland
| | - Peter Güntert
- Institute of Molecular Physical Science, ETH Zurich, Zurich, Switzerland
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|