1
|
Xu J, Zhou Y, Liu B. Dicarbofunctionalization of Vinylarenes with Pyridine and Aldehydes via Photocatalytic Hydrogen Atom Transfer. J Org Chem 2024; 89:15877-15883. [PMID: 39397537 DOI: 10.1021/acs.joc.4c02016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
We describe a metal-free and mild three-component reaction utilizing vinylarenes, alkyl aldehydes, and 4-cyanopyridine. In this reaction, the scope of vinylarenes and alkyl aldehydes includes over 40 examples, generating a variety of β-pyridinyl ketones. Moreover, potential applications of this method have been demonstrated by the functionalization of pharmaceutical molecules. An acyl radical is proposed to be produced via a polarity-matched hydrogen atom transfer between alkyl aldehydes and a triplet-state diradical from benzophenone.
Collapse
Affiliation(s)
- Junhua Xu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Yiting Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| |
Collapse
|
2
|
Qu CH, Li ST, Liu JB, Chen ZZ, Tang DY, Li JH, Song GT. Site-Selective Access to Functionalized Pyrroloquinoxalinones via H-Atom Transfer from N═C sp2-H Bonds of Quinoxalinones. Org Lett 2024; 26:9244-9250. [PMID: 39440848 DOI: 10.1021/acs.orglett.4c03353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Site-selective hydrogen atom transfer (HAT) from the N═Csp2-H bonds of quinoxaline-2(1H)-ones is a highly attractive but underdeveloped domain. Reported herein is a highly selective, practical, and economically efficient approach for facile assembly of pyrroloquinoxalinones by synergistic photocatalysis and HAT catalysis. The reaction proceeds through bromine radical-mediated HAT of quinoxalinones and imine radical addition to α-cyano-α,β-unsaturated ketones that establishes a cross-coupling/annulation cascade process, resulting in the synthesis of a series of functionalized pyrroloquinoxalinones. This protocol does not require transition metals or excess oxidants and uses easy-to-synthesize starting materials with excellent scalability and broad substrate scope. The establishment of N═Csp2 radical chemistry illustrates great potential for the synthesis of imine-containing molecules that are not possible with some traditional methods.
Collapse
Affiliation(s)
- Chuan-Hua Qu
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Shu-Ting Li
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Jian-Bo Liu
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Zhong-Zhu Chen
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Dian-Yong Tang
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Jia-Hong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Gui-Ting Song
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| |
Collapse
|
3
|
Zeng H, Yin R, Zhao Y, Ma JA, Wu J. Modular alkene synthesis from carboxylic acids, alcohols and alkanes via integrated photocatalysis. Nat Chem 2024; 16:1822-1830. [PMID: 39333390 DOI: 10.1038/s41557-024-01642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/28/2024] [Indexed: 09/29/2024]
Abstract
Alkenes serve as versatile building blocks in diverse organic transformations. Despite notable advancements in olefination methods, a general strategy for the direct conversion of carboxylic acids, alcohols and alkanes into alkenes remains a formidable challenge owing to their inherent reactivity disparities. Here we demonstrate an integrated photochemical strategy that facilitates a one-pot conversion of these fundamental building blocks into alkenes through a sequential C(sp3)-C(sp3) bond formation-fragmentation process, utilizing an easily accessible and recyclable phenyl vinyl ketone as the 'olefination reagent'. This practical method not only offers an unparalleled paradigm for accessing value-added alkenes from abundant and inexpensive starting materials but also showcases its versatility through various complex scenarios, including late-stage on-demand olefination of multifunctional molecules, chain homologation of acids and concise syntheses of bioactive molecules. Moreover, initiating from carboxylic acids, alcohols and alkanes, this protocol presents a complementary approach to traditional olefination methods, making it a highly valuable addition to the research toolkit for alkene synthesis.
Collapse
Affiliation(s)
- Hao Zeng
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, P. R. China
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Ruize Yin
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Yu Zhao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, P. R. China.
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore.
| | - Jun-An Ma
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, P. R. China.
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin, P. R. China.
| | - Jie Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, P. R. China.
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore.
- National University of Singapore (Suzhou) Research Institute, Suzhou, P. R. China.
| |
Collapse
|
4
|
Garwood JJA, Chen AD, Nagib DA. Radical Polarity. J Am Chem Soc 2024. [PMID: 39363280 DOI: 10.1021/jacs.4c06774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The polarity of a radical intermediate profoundly impacts its reactivity and selectivity. To quantify this influence and predict its effects, the electrophilicity/nucleophilicity of >500 radicals has been calculated. This database of open-shell species entails frequently encountered synthetic intermediates, including radicals centered at sp3, sp2, and sp hybridized carbon atoms or various heteroatoms (O, N, S, P, B, Si, X). Importantly, these computationally determined polarities have been experimentally validated for electronically diverse sets of >50 C-centered radicals, as well as N- and O- centered radicals. High correlations are measured between calculated polarity and quantified reactivity, as well as within parallel sets of competition experiments (across different radical types and reaction classes). These multipronged analyses show a strong relationship between the computed electrophilicity, ω, of a radical and its relative reactivity (krel vs Δω slopes up to 40; showing mere Δω of 0.1 eV affords up to 4-fold rate enhancement). We expect this experimentally validated database will enable reactivity and selectivity prediction (by harnessing polarity-matched rate enhancement) and assist with troubleshooting in synthetic reaction development.
Collapse
Affiliation(s)
- Jacob J A Garwood
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andrew D Chen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David A Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Siow A, Harris PWR. Leveraging the Mukaiyama oxidation-reduction condensation reaction for on-resin aryl thio-esterification for bio-conjugation. Org Biomol Chem 2024; 22:7337-7342. [PMID: 39189104 DOI: 10.1039/d4ob01230e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
A room-temperature Mukaiyama oxidation-reduction condensation inspired thioesterification methodology has been developed to afford aryl Cα-terminal peptide thioesters on-resin. The conditions herein feature mild reactions compatible with all Fmoc-SPPS protocols offering direct access to this critical arylthioester scaffold. This one-pot synthesis to aryl-thioester functionalised peptides facilitates peptide/protein synthesis by native chemical ligation.
Collapse
Affiliation(s)
- Andrew Siow
- School of Biological Sciences, School of Chemical Sciences and Maurice Wilkins Centre for Molecular Biodiversity. The University of Auckland, The University of Auckland, 3b and 23 Symonds Street, Auckland 1010, New Zealand.
| | - Paul W R Harris
- School of Biological Sciences, School of Chemical Sciences and Maurice Wilkins Centre for Molecular Biodiversity. The University of Auckland, The University of Auckland, 3b and 23 Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
6
|
Wu S, Melchiorre P. Photochemical Synthesis of Thioesters from Aryl Halides and Carboxylic Acids. Angew Chem Int Ed Engl 2024; 63:e202407520. [PMID: 38887166 DOI: 10.1002/anie.202407520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Thioesters are important in synthesis, materials science, and biology, and their preparation traditionally relies on the use of disagreeable thiols. Here, we report a thiol-free protocol that stitches together widespread carboxylic acids and aryl halides, producing a diverse array of thioesters. Crucial to this strategy is the discovery that tetramethylthiourea can serve as both a sulfur source and, upon direct excitation by purple light, as a strong reductant, suitable for activating aryl halides via single-electron transfer. Coupling of the resulting aryl radicals provides an isothiouronium ion intermediate, which can be attacked by carboxylic acids via a polar pathway, affording the thioester products under mild conditions.
Collapse
Affiliation(s)
- Shuo Wu
- ICIQ - Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and Technology, Avenida Països Catalans 16-, 43007, Tarragona, Spain
| | - Paolo Melchiorre
- University of Bologna, Department of Industrial Chemistry 'Toso Montanari', via Piero Gobetti, 85-, 40129, Bologna, Italy
| |
Collapse
|
7
|
Zhang G, Liu F, Zhu Q, Qian H, Zhong S, Tan J, Zheng A, Liu F, Jiang L. Triple Templates Directed Synthesis of Nitrogen-Doped Hierarchically Porous Carbons from Pyridine Rich Monomer as Efficient and Reversible SO 2 Adsorbents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404548. [PMID: 39092680 DOI: 10.1002/smll.202404548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Herein, a variety of 2,6-diaminopyridine (DAP) derived nitrogen-doped hierarchically porous carbon (DAP-NHPC-T) prepared from carbonization-induced structure transformation of DAP-Zn-SiO2-P123 nanocomposites are reported, which are facilely prepared from solvent-free co-assembly of block copolymer templates P123 with pyridine-rich monomer of DAP, Zn(NO3)2 and tetramethoxysilane. In the pyrolysis process, P123 and SiO2 templates promote the formation of mesoporous and supermicroporous structures in the DAP-NHPC-T, while high-temperature volatilization of Zn contributed to generation of micropores. The DAP-NHPC-T possess large BET surface areas (≈956-1126 m2 g-1), hierarchical porosity with micro-supermicro-mesoporous feature and high nitrogen contents (≈10.44-5.99 at%) with tunable density of pyridine-based nitrogen sites (≈5.99-3.32 at%), exhibiting good accessibility and reinforced interaction with SO2. Consequently, the DAP-NHPC-T show high SO2 capacity (14.7 mmol g-1, 25 °C and 1.0 bar) and SO2/CO2/N2 IAST selectivities, extraordinary dynamic breakthrough separation efficiency and cycling stability, far beyond any other reported nitrogen-doped metal-free carbon. As verified by in situ spectroscopy and theoretical calculations, the pyridine-based nitrogen sites of the DAP-NHPC-T boost SO2 adsorption via the unique charge transfer, the adsorption mechanism and reaction model have been finally clarified.
Collapse
Affiliation(s)
- Guanqing Zhang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian, 350002, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian, 362801, P.R. China
| | - Fengqing Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Qiliang Zhu
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian, 350002, China
| | - Hao Qian
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian, 350002, China
| | - Shouchao Zhong
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian, 350002, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian, 362801, P.R. China
| | - Jingze Tan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Fujian Liu
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian, 350002, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian, 362801, P.R. China
| | - Lilong Jiang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian, 350002, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian, 362801, P.R. China
| |
Collapse
|
8
|
Xiong W, Lai G, Liu WH. A Type of Stable Amides Behaves as Acyl Transfer Reagents upon Visible-Light Irradiation through Self-Aromatization. Chemistry 2024; 30:e202401619. [PMID: 38773843 DOI: 10.1002/chem.202401619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/24/2024]
Abstract
Organic molecules with light-modifiable reactivity are important in many fields because they can serve as the "switch" for light to trigger chemical processes. Herein, we disclose a new type of stable non-twisted amides, the reactivity of which can be turned on by light as acyl transfer reagents. Upon photo-activation, these amides react with various nucleophiles including amines, phenols, hydroxide, thiols, boronic acids, and alkynes either under metal-free or metal-catalysis conditions. This reactivity hinges on the design and synthesis of a photo-activatable reagent (7-nitro-5,6-dihydrophenanthridine), which undergoes self-aromatization enabled by an internal oxidant under light. This masked acyl donor group is anticipated to be useful in scenarios where light is preferred to trigger a chemical process.
Collapse
Affiliation(s)
- Wenzhang Xiong
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guoyin Lai
- Guangzhou Flower Flavours & Fragrances Co., Ltd, Guangzhou, 510442, China
| | - Wenbo H Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
9
|
Gao P, Zhong W, Li T, Liu W, Zhou L. Room temperature, ultrafast and one-step synthesis of highly fluorescent sulfur quantum dots probe and their logic gate operation. J Colloid Interface Sci 2024; 666:221-231. [PMID: 38598995 DOI: 10.1016/j.jcis.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/12/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
The direct and rapid conversion of abundant and cheap elemental sulfur into fluorescent sulfur quantum dots (SQDs) at room temperature is a critical and urgent challenge. Conventional synthesis methods require high temperatures, high pressures, or specific atmospheric conditions, making them complex and impractical for real applications. Herein, we propose a simple method for synthesizing SQDs simply by adding H2O2 to an elemental sulfur-ethylenediamine (S-EDA) solution at room temperature. Remarkably, within a mere 10 min, SQDs with a photoluminescence quantum yield of 23.6 % can be obtained without the need for additional steps. A comprehensive analysis of the mechanism has demonstrated that H2O2 is capable of converting Sx2- ions generated in the S-EDA solution into zero-valent sulfur atoms through oxidation. The obtained SQDs can be utilized as a fluorescent probe for detection of tetracycline (TC) and Ca2+ ions with the limit of detection (LOD) of 0.137 μM and 0.386 μM respectively. Moreover, we have developed a sensitive logic gate sensor based on SQDs, harnessing the activated cascade effect to create an intelligent probe for monitoring trace levels of TC and Ca2+ ions. This paper not only presents a viable approach for ultrafast and scalable synthesis of SQDs at room temperature, but also contributes to the efficient utilization of elemental sulfur resources.
Collapse
Affiliation(s)
- Pengxiang Gao
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Weiheng Zhong
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Tengbao Li
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Weizhen Liu
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Li Zhou
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
10
|
Wang R, Yuan JL, Liang KL, Hu JY, Fu Q, Liang FS. Ambient-Light-Promoted Stereospecific Synthesis of ( Z)-Vinyl Thioesters under Solvent- and Catalyst-Free Conditions. J Org Chem 2024; 89:9597-9608. [PMID: 38885461 DOI: 10.1021/acs.joc.4c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
An ambient-light-promoted stereospecific olefinic C(sp2)-S bond construction of thioacids and 1,1-diarylethenes has been demonstrated, affording various (Z)-vinyl thioesters in 51-85% yields under solvent- and catalyst-free conditions. Mechanistic studies indicated that the formation of thioacid-olefin complexes is responsible for generating a carbonyl thiyl radical and dioxygen in the air participates in the reaction and functions as a traceless reagent. Moreover, synthetic applications have been demonstrated by the gram scale synthesis and aggregation-induced emission property of representative compound 3i.
Collapse
Affiliation(s)
- Rui Wang
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
- College of Chemical Engineering, Tianjin University, Tianjin 300072, China
- YASUA Chemical Co., Ltd., Zhejiang 314200, China
| | - Jia-Long Yuan
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Kun-Long Liang
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Ji-Yun Hu
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Qiang Fu
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Fu-Shun Liang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| |
Collapse
|
11
|
Wang MC, Yang XY, Zhou JF, Zhang WX, Li BJ. Pyridine-borane complex-catalysed thioesterification: the direct conversion of carboxylic acids to thioesters. Chem Commun (Camb) 2024; 60:6671-6674. [PMID: 38860640 DOI: 10.1039/d4cc01326c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Thioesters are a common class of biologically active fragments and synthetically useful building blocks. An attractive synthetic approach would be to use simple and bench-stable carboxylic acids as a coupling partner. Herein, we present a 4-bromo pyridine-borane complex as a catalyst for the direct coupling of carboxylic acids with thiols. A wide range of thioesters with good functional group compatibility could be prepared via this metal-free approach. The merit of this strategy is exemplified by the modification of carboxylic acid-containing drugs.
Collapse
Affiliation(s)
- Ming-Chuan Wang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China.
| | - Xue-Ying Yang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China.
| | - Jian-Feng Zhou
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China.
| | - Wan-Xuan Zhang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China.
| | - Bin-Jie Li
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China.
| |
Collapse
|
12
|
Liu G, Xu S, Yue Y, Su C, Song W. Synthesis of thioesters using an electrochemical three-component reaction involving elemental sulfur. Chem Commun (Camb) 2024; 60:6154-6157. [PMID: 38804515 DOI: 10.1039/d4cc01910e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
An electrochemical three-component reaction involving elemental sulfur is disclosed for achieving a metal-free, oxidant-free synthesis of thioesters in a high atom-economical, step-economical and chemoselective manner. A mechanistic investigation indicates that the use of elemental sulfur to trap acyl radical derived from radical umpolung of α-keto acid with an electrochemical design can efficiently generate a carbonyl thiyl radical, which can further be captured by diazoalkane to afford various thioesters.
Collapse
Affiliation(s)
- Gongbo Liu
- Cancer Hospital of Dalian University of Technology, School of Chemistry, School of Chemical Engineering, Dalian, 116024, P. R. China.
| | - Shuoyu Xu
- Cancer Hospital of Dalian University of Technology, School of Chemistry, School of Chemical Engineering, Dalian, 116024, P. R. China.
| | - Yangyang Yue
- Cancer Hospital of Dalian University of Technology, School of Chemistry, School of Chemical Engineering, Dalian, 116024, P. R. China.
| | - Changhui Su
- Cancer Hospital of Dalian University of Technology, School of Chemistry, School of Chemical Engineering, Dalian, 116024, P. R. China.
| | - Wangze Song
- Cancer Hospital of Dalian University of Technology, School of Chemistry, School of Chemical Engineering, Dalian, 116024, P. R. China.
| |
Collapse
|
13
|
Hong BC, Indurmuddam RR. Tetrabutylammonium decatungstate (TBADT), a compelling and trailblazing catalyst for visible-light-induced organic photocatalysis. Org Biomol Chem 2024; 22:3799-3842. [PMID: 38651982 DOI: 10.1039/d4ob00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Tetrabutylammonium decatungstate (TBADT) has recently emerged as an intriguing photocatalyst under visible-light or near-visible-light irradiation in a wide range of organic reactions that were previously not conceivable. Given its ability to absorb visible light and excellent effectiveness in activating unactivated chemical bonds, it is a promising addition to traditional photocatalysts. This review covers some of the contemporary developments in visible-light or near-visible-light photocatalysis reactions enabled by the TBADT catalyst to 2023, with the contents organized by reaction type.
Collapse
Affiliation(s)
- Bor-Cherng Hong
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan.
| | | |
Collapse
|
14
|
Huang PF, Fu JL, Peng Y, Fan JH, Zhong LJ, Tang KW, Liu Y. Electro-oxidative three-component cascade coupling of isocyanides with elemental sulfur and amines for the synthesis of 2-aminobenzothiazoles. Org Biomol Chem 2024; 22:3752-3760. [PMID: 38652536 DOI: 10.1039/d4ob00432a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
2-Aminobenzothiazoles are commonly encountered in various functional compounds. Herein, we disclose an electro-oxidative three-component reaction for the effective synthesis of 2-aminobenzothiazoles under mild conditions, utilizing non-toxic and abundant elemental sulfur as the sulfur source. Both aliphatic amines and aryl amines demonstrate good compatibility at room temperature, highlighting the broad functional group tolerance of this approach. Additionally, elemental selenium demonstrated reactivities comparable to those of elemental sulfur.
Collapse
Affiliation(s)
- Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jia-Le Fu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ying Peng
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
15
|
Deng Y, Huang Z, Feringa BL, Tian H, Zhang Q, Qu DH. Converting inorganic sulfur into degradable thermoplastics and adhesives by copolymerization with cyclic disulfides. Nat Commun 2024; 15:3855. [PMID: 38719820 PMCID: PMC11079033 DOI: 10.1038/s41467-024-48097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Converting elementary sulfur into sulfur-rich polymers provides a sustainable strategy to replace fossil-fuel-based plastics. However, the low ring strain of eight-membered rings, i.e., S8 monomers, compromises their ring-opening polymerization (ROP) due to lack of an enthalpic driving force and as a consequence, poly(sulfur) is inherently unstable. Here we report that copolymerization with cyclic disulfides, e.g., 1,2-dithiolanes, can enable a simple and energy-saving way to convert elementary sulfur into sulfur-rich thermoplastics. The key strategy is to combine two types of ROP-both mediated by disulfide bond exchange-to tackle the thermodynamic instability of poly(sulfur). Meanwhile, the readily modifiable sidechain of the cyclic disulfides provides chemical space to engineer the mechanical properties and dynamic functions over a large range, e.g., self-repairing ability and degradability. Thus, this simple and robust system is expected to be a starting point for the organic transformation of inorganic sulfur toward sulfur-rich functional and green plastics.
Collapse
Affiliation(s)
- Yuanxin Deng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Zhengtie Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Ben L Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China.
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China.
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China.
| |
Collapse
|
16
|
Porey A, Fremin SO, Nand S, Trevino R, Hughes WB, Dhakal SK, Nguyen VD, Greco SG, Arman HD, Larionov OV. Multimodal Acridine Photocatalysis Enables Direct Access to Thiols from Carboxylic Acids and Elemental Sulfur. ACS Catal 2024; 14:6973-6980. [PMID: 38737399 PMCID: PMC11081195 DOI: 10.1021/acscatal.4c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Development of photocatalytic systems that facilitate mechanistically divergent steps in complex catalytic manifolds by distinct activation modes can enable previously inaccessible synthetic transformations. However, multimodal photocatalytic systems remain understudied, impeding their implementation in catalytic methodology. We report herein a photocatalytic access to thiols that directly merges the structural diversity of carboxylic acids with the ready availability of elemental sulfur without substrate preactivation. The photocatalytic transformation provides a direct radical-mediated segue to one of the most biologically important and synthetically versatile organosulfur functionalities, whose synthetic accessibility remains largely dominated by two-electron-mediated processes based on toxic and uneconomical reagents and precursors. The two-phase radical process is facilitated by a multimodal catalytic reactivity of acridine photocatalysis that enables both the singlet excited state PCET-mediated decarboxylative carbon-sulfur bond formation and the previously unknown radical reductive disulfur bond cleavage by a photoinduced HAT process in the silane-triplet acridine system. The study points to a significant potential of multimodal photocatalytic systems in providing unexplored directions to previously inaccessible transformations.
Collapse
Affiliation(s)
- Arka Porey
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Seth O Fremin
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Sachchida Nand
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ramon Trevino
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - William B Hughes
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Shree Krishna Dhakal
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Viet D Nguyen
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Samuel G Greco
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hadi D Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Oleg V Larionov
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
17
|
Bhat MUS, Ganie MA, Kumar S, Rizvi MA, Raheem S, Shah BA. Visible-Light-Mediated Synthesis of Thioesters Using Thiocarboxylic Acid as the Dual Reagent. J Org Chem 2024; 89:4607-4618. [PMID: 38509669 DOI: 10.1021/acs.joc.3c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
We have developed a visible-light-driven method for thioester synthesis that relies on the unique dual role of thiobenzoic acids as one-electron reducing agents and reactants leading to the formation of sulfur radical species. This synthetic process offers a wide scope, accommodating various thioacid and thiol substrates without the need for a photocatalyst.
Collapse
Affiliation(s)
- Muneer-Ul-Shafi Bhat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Majid Ahmad Ganie
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Sourav Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | | | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar 190006, India
| | - Bhahwal Ali Shah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| |
Collapse
|
18
|
Singh PP, Sinha S, Gahtori P, Tivari S, Srivastava V. Recent advances of decatungstate photocatalyst in HAT process. Org Biomol Chem 2024; 22:2523-2538. [PMID: 38456306 DOI: 10.1039/d4ob00213j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The decatungstate anion (W10O324-) appears to exhibit especially interesting properties as a photocatalyst. Because of its unique photocatalytic properties, it is now recognised as a promising tool in organic chemistry. This study examines recent advances in decatungstate chemistry, primarily concerned with synthetic and, to some degree, mechanistic challenges. In this short review we have selected to give a number of illustrative examples that demonstrate the various applications of decatungstate in the hydrogen atom transfer (HAT) process.
Collapse
Affiliation(s)
- Praveen P Singh
- Department of Chemistry, United College of Engineering & Research, Prayagraj, U.P.-211010, India.
| | - Surabhi Sinha
- Department of Chemistry, United College of Engineering & Research, Prayagraj, U.P.-211010, India.
| | - Prashant Gahtori
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248002 Uttarakhand, India
| | - Shraddha Tivari
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj, U.P.-211002, India.
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj, U.P.-211002, India.
| |
Collapse
|
19
|
Zhu Y, Tao Y. Stereoselective Ring-opening Polymerization of S-Carboxyanhydrides Using Salen Aluminum Catalysts: A Route to High-Isotactic Functionalized Polythioesters. Angew Chem Int Ed Engl 2024; 63:e202317305. [PMID: 38179725 DOI: 10.1002/anie.202317305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Polythioesters are important sustainable polymers with broad applications. The ring-opening polymerization (ROP) of S-Carboxyanhydrides (SCAs) can afford polythioesters with functional groups that are typically difficult to prepare by ROP of thiolactones. Typical methods involving organocatalysts, like dimethylaminopyridine (DMAP) and triethylamine (Et3 N), have been plagued by uncontrolled polymerization, including epimerization for most SCAs resulting in the loss of isotacticity. Here, we report the use of salen aluminum catalysts for the selective ROP of various SCAs without epimerization, affording functionalized polythioester with high molecular weight up to 37.6 kDa and the highest Pm value up to 0.99. Notably, the ROP of TlaSCA (SCA prepared from thiolactic acid) generates the first example of a isotactic crystalline poly(thiolactic acid), which exhibited a distinct Tm value of 152.6 °C. Effective ligand tailoring governs the binding affinity between the sulfide chain-end and the metal center, thereby maintaining the activity of organometallic catalysts and reducing the occurrence of epimerization reactions.
Collapse
Affiliation(s)
- Yinuo Zhu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
20
|
Chen W, Sheng D, Jiang YF, Zhu WC, Rao W, Shen SS, Yang ZY, Wang SY. Nickel-Catalyzed Acid Chlorides with Tetrasulfides for the Synthesis of Thioesters and Acyl Disulfides. J Org Chem 2023; 88:15871-15880. [PMID: 37882877 DOI: 10.1021/acs.joc.3c01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Herein, we report a novel method for the synthesis of thioesters and acyl disulfides via nickel-catalyzed reductive cross-electrophile coupling of acid chlorides with tetrasulfides. This approach for the synthesis of thioesters and acyl disulfides is convenient and practical under mild reaction conditions, relying on easy availability. In addition, a wide range of thioesters and acyl disulfides were obtained in medium to good yields with good functional group tolerance. Moreover, thioesters and acyl disulfides can also be prepared at the gram scale, indicating that they have certain potential for industrial application.
Collapse
Affiliation(s)
- Wang Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Daopeng Sheng
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yi-Fan Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Wei-Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99, Xuefu Road, Huqiu District, Suzhou, 215009, PR China
| | - Zhao-Ying Yang
- Soochow College, Soochow University, Suzhou, 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| |
Collapse
|
21
|
Su J, Chen A, Zhang G, Jiang Z, Zhao J. Photocatalytic Phosphine-Mediated Thioesterification of Carboxylic Acids with Disulfides. Org Lett 2023; 25:8033-8037. [PMID: 37889086 DOI: 10.1021/acs.orglett.3c03249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Herein, a practical and effective synthesis of thioesters from readily available carboxylic acids and odorless disulfides was developed under photocatalytic conditions. This approach involves phosphoranyl radical-mediated fragmentation to generate acyl radicals and allows for incorporation of both S atoms of the disulfides into the desired products. In addition to batch reactions, a continuous-flow reactor was employed, enabling rapid thioester synthesis on a gram scale. Preliminary experimental mechanistic studies and the rapid synthesis of dalcetrapib are also demonstrated.
Collapse
Affiliation(s)
- Junqi Su
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Aobo Chen
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Guofeng Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Ziyu Jiang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Jiannan Zhao
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| |
Collapse
|
22
|
Xiang H, Wang J, Guo Z, Chen Y, Jiang B, Ye S, Yi W. Functional Polythioamides Derived from Thiocarbonyl Fluoride. Angew Chem Int Ed Engl 2023; 62:e202313779. [PMID: 37749059 DOI: 10.1002/anie.202313779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Polythioamide is a unique type of sulfur-containing polymer with advanced functionalities. Nonetheless, the elemental sulfur commonly used in their synthesis tends to react readily with unsaturated functional groups, thereby limiting the scope of eligible substrates. Inspired by the highly efficient sulfur-fluoride exchange (SuFEx) polymerization through discrete hubs, we present herein a pioneering and versatile approach to the synthesis of polythioamides from diboronic acids, secondary diamines, and thiocarbonyl fluoride as the central connective hub. Well-defined structures, including previously inaccessible unsaturated substrates, were realized. These newly devised polythioamides can efficiently and selectively bind to metal ions and were applied in precious-metal recovery. Further development resulted in PdII -crosslinked single-chain nanoparticles serving as recyclable homogeneous catalysts, thus demonstrating the vast potential of these unprecedented polythioamides. We anticipate that thiocarbonyl fluoride could emerge as a potent hub for facilitating the intricate synthesis of sulfur-containing polymers.
Collapse
Affiliation(s)
- Haonan Xiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jieping Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zihao Guo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yucong Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Beihan Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Sitao Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
23
|
Li S, Zheng C, Wang S, Li XX, Zhang Q, Fan S, Feng YS. Ketone Synthesis via Irradiation-Induced Generation of a Persistent Ketyl Radical from Acyl Azolium Salts. Org Lett 2023; 25:6522-6527. [PMID: 37642302 DOI: 10.1021/acs.orglett.3c02300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A novel three-component α-acylated difunctionalization of alkenes strategy has been developed on the basis of a direct hydrogen atom transfer (HAT) process of photoinduced acyl azolium salts. With simple irradiation without the catalyst, a variety of olefins can be directly converted into ketone derivatives, including 1,4-dione, β-silyl ketone, 1,5-dione, etc. Mechanistic investigations indicated that the unique reactivity of the acyl azonium triplet excited state is crucial to the strategy's success.
Collapse
Affiliation(s)
- Shihao Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, China
| | - Chenglong Zheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, China
| | - Sheng Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, China
| | - Xiao-Xuan Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, China
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Qi Zhang
- Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Shilu Fan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, China
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Yi-Si Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, China
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| |
Collapse
|
24
|
Liu SP, He YH, Guan Z. Photoredox-Catalyzed Radical-Radical Cross-Coupling of Sulfonyl Chlorides with Trifluoroborate Salts. J Org Chem 2023. [PMID: 37490603 DOI: 10.1021/acs.joc.3c01124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Sulfones are widely found in natural products and drug molecules. Here, we disclose a strategy for direct synthesis of sulfone compounds with diverse structures by visible-light-catalyzed radical-radical cross-coupling of sulfonyl chlorides and trifluoroborate salts. Allyl, benzyl, vinyl, and aryl trifluoroborates can be successfully cross-coupled with (hetero)aryl and alkyl sulfonyl chlorides, respectively. This strategy features redox neutrality, good substrate generality, simple operation, and benign reaction conditions.
Collapse
Affiliation(s)
- Sheng-Ping Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|