1
|
Osawa A, Balasubramanian M, Nakao Y. Reductive Homologation of Nitroalkanes via Denitrative Aminoalkylation. Org Lett 2024; 26:9046-9050. [PMID: 39413283 DOI: 10.1021/acs.orglett.4c03269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
We present the reductive homologation of nitroalkanes through the utilization of the denitrative aminoalkylation reaction. This transformation is accomplished by the radical-radical coupling of alkyl radicals derived from nitroalkanes and persistent aminoalkyl radicals. By capitalizing on the diverse α-functionalization of nitroalkanes, α,β-multifunctionalized amines can be readily accessed.
Collapse
Affiliation(s)
- Ayumi Osawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Maanashaa Balasubramanian
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yoshiaki Nakao
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
2
|
Jana R, Pradhan K. Shining light on the nitro group: distinct reactivity and selectivity. Chem Commun (Camb) 2024; 60:8806-8823. [PMID: 39081204 DOI: 10.1039/d4cc02582b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The nitro moiety is an indispensable functional group in organic synthesis due to its facile introduction and reduction to the corresponding amines for a plethora of organic transformations. Owing to its distinct electronegative and conventional properties, it has been used for activated aromatic nucleophilic substitution (SNAr) reactions, Smiles reactions, Henry reactions, acyl anion equivalents, etc. Recently, the excellent photochemical properties of nitroarenes have been rediscovered by several groups, and their untapped potential in organic synthesis under UV or visible light irradiation has been exploited. Photoexcited nitroarenes can undergo facile reduction to amines, azo-coupling, metal-free reductive C-N coupling with boronic acids via a 1,2-boronate shift, hydrogen atom transfer (HAT), oxygen atom transfer for anaerobic oxidation of organic molecules, molecular editing via nitrene intermediates, denitrative coupling of β-nitrostyrene, radical α-alkylation of nitroalkanes, etc. They have also been used as a photolabile protecting group in medicinal chemistry and chemical biology applications. Here, we summarise the recent findings on visible-light-mediated transformations involving nitro-containing organic molecules.
Collapse
Affiliation(s)
- Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India.
| | - Kangkan Pradhan
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
3
|
Fu H, Hyster TK. From Ground-State to Excited-State Activation Modes: Flavin-Dependent "Ene"-Reductases Catalyzed Non-natural Radical Reactions. Acc Chem Res 2024; 57:1446-1457. [PMID: 38603772 DOI: 10.1021/acs.accounts.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Enzymes are desired catalysts for chemical synthesis, because they can be engineered to provide unparalleled levels of efficiency and selectivity. Yet, despite the astonishing array of reactions catalyzed by natural enzymes, many reactivity patterns found in small molecule catalysts have no counterpart in the living world. With a detailed understanding of the mechanisms utilized by small molecule catalysts, we can identify existing enzymes with the potential to catalyze reactions that are currently unknown in nature. Over the past eight years, our group has demonstrated that flavin-dependent "ene"-reductases (EREDs) can catalyze various radical-mediated reactions with unparalleled levels of selectivity, solving long-standing challenges in asymmetric synthesis.This Account presents our development of EREDs as general catalysts for asymmetric radical reactions. While we have developed multiple mechanisms for generating radicals within protein active sites, this account will focus on examples where flavin mononucleotide hydroquinone (FMNhq) serves as an electron transfer radical initiator. While our initial mechanistic hypotheses were rooted in electron-transfer-based radical initiation mechanisms commonly used by synthetic organic chemists, we ultimately uncovered emergent mechanisms of radical initiation that are unique to the protein active site. We will begin by covering intramolecular reactions and discussing how the protein activates the substrate for reduction by altering the redox-potential of alkyl halides and templating the charge transfer complex between the substrate and flavin-cofactor. Protein engineering has been used to modify the fundamental photophysics of these reactions, highlighting the opportunity to tune these systems further by using directed evolution. This section highlights the range of coupling partners and radical termination mechanisms available to intramolecular reactions.The next section will focus on intermolecular reactions and the role of enzyme-templated ternary charge transfer complexes among the cofactor, alkyl halide, and coupling partner in gating electron transfer to ensure that it only occurs when both substrates are bound within the protein active site. We will highlight the synthetic applications available to this activation mode, including olefin hydroalkylation, carbohydroxylation, arene functionalization, and nitronate alkylation. This section also discusses how the protein can favor mechanistic steps that are elusive in solution for the asymmetric reductive coupling of alkyl halides and nitroalkanes. We are aware of several recent EREDs-catalyzed photoenzymatic transformations from other groups. We will discuss results from these papers in the context of understanding the nuances of radical initiation with various substrates.These biocatalytic asymmetric radical reactions often complement the state-of-the-art small-molecule-catalyzed reactions, making EREDs a valuable addition to a chemist's synthetic toolbox. Moreover, the underlying principles studied with these systems are potentially operative with other cofactor-dependent proteins, opening the door to different types of enzyme-catalyzed radical reactions. We anticipate that this Account will serve as a guide and inspire broad interest in repurposing existing enzymes to access new transformations.
Collapse
Affiliation(s)
- Haigen Fu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Todd K Hyster
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Phaenok S, Nguyen LA, Soorukram D, Nguyen TTT, Retailleau P, Nguyen TB. Sulfur- and Amine- Promoted Multielectron Autoredox Transformation of Nitromethane: Multicomponent Access to Thiourea Derivatives. Chemistry 2024; 30:e202303703. [PMID: 37953668 DOI: 10.1002/chem.202303703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
Thiourea derivatives are in-demand motifs in organic synthesis, medicinal chemistry and material science, yet redox methods for the synthesis that start from safe, simple, inexpensive and readily available feedstocks are scarce. In this article, we disclose the synthesis of these motifs using elemental sulfur and nitromethane as the starting materials. The method harnesses the multi-electron auto-redox property of nitromethane in the presence of sulfur and amines, delivering thiourea products without any added oxidant or reductant. Extension of this reaction to cyclizable amines and/or higher homologues of nitromethane led to a wide range of nitrogen heterocycles and thioamides. Operationally simple, the reactions are scalable, tolerate a wide range of functional groups, and can be employed for the direct functionalization of natural products. Mechanistically, the nitro group was found to act as an oxidant leaving group, being reduced to ammonia whereas sulfur, along with the role of a sulfur building block for the thiocarbonyl group, behaved as a complementary reductant, being oxidized to sulfate.
Collapse
Affiliation(s)
- Supasorn Phaenok
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198, Gif-sur-Yvette, France
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Le Anh Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Darunee Soorukram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Thi Thanh Tam Nguyen
- Univ Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est, UMR 7182, 2 rue Henri Dunant, 94320, Thiais, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Thanh Binh Nguyen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Zhao H, Hu Y, Zheng S, Yuan W. α-Tertiary Primary Amine Synthesis via Photocatalytic C(sp 3)-H Aminoalkylation. Org Lett 2023; 25:6699-6704. [PMID: 37675946 DOI: 10.1021/acs.orglett.3c02507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Facile access to sterically hindered α-tertiary primary amines via photocatalytic radical coupling of native C(sp3)-H substrates with N-unsubstituted ketimines is reported. LiBr was used as a hydrogen atom transfer reagent to cleave C(sp3)-H bonds to get alkyl radicals. The in situ-generated HBr can then serve as a Bronsted acid to activate N-unsubstituted ketimines readily for single-electron reduction to deliver α-amino radicals. As a consequence, radical-radical coupling affords primary amines with a congested α-tertiary substituent. This reaction is highlighted by simple and mild conditions, 100% atom-economy, and broad hydrocarbon substrate scope for benzyl ethers, cyclic ethers, benzyl alcohols, alkylarenes, and carbocycles.
Collapse
Affiliation(s)
- Hongping Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, PR China
| | - Yuanyuan Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, PR China
| | - Songlin Zheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, PR China
| | - Weiming Yuan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, PR China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, PR China
| |
Collapse
|
6
|
Du Z, Liu S, Li Y, Peng J, Sun Y, Song Y, Liu Y, Zeng X. Fluoroamide-Directed Regiodivergent C-Alkylation of Nitroalkanes. Org Lett 2023. [PMID: 37314942 DOI: 10.1021/acs.orglett.3c01297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, by exploiting different activation modes of fluoroamides, we achieved α- and δ-C(sp3)-H alkylation of nitroalkanes with switchable regioselectivity. Cu catalysis enabled the interception of a distal C-centered radical by a N-centered radical to couple nitroalkanes and unactivated δ-C-H bonds. In addition, imines generated in situ by fluoroamides were trapped by nitroalkanes to realize the α-C-H alkylation of amides. Both of those scalable protocols have broad substrate scopes and good functional group tolerance.
Collapse
Affiliation(s)
- Zhibin Du
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Shiwen Liu
- College of Textiles and Clothing, Institute of Flexible Functional Materials, Yancheng Institute of Technology, Yancheng, Jiangsu 224000, China
| | - Yuke Li
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Junjie Peng
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yanji Sun
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yanshan Song
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yuxuan Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xiaojun Zeng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
7
|
Ma X, Zhang Q, Zhang W. Remote Radical 1,3-, 1,4-, 1,5-, 1,6- and 1,7-Difunctionalization Reactions. Molecules 2023; 28:molecules28073027. [PMID: 37049790 PMCID: PMC10095731 DOI: 10.3390/molecules28073027] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/25/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Radical transformations are powerful in organic synthesis for the construction of molecular scaffolds and introduction of functional groups. In radical difunctionalization reactions, the radicals in the first functionalized intermediates can be relocated through resonance, hydrogen atom or group transfer, and ring opening. The resulting radical intermediates can undertake the following paths for the second functionalization: (1) couple with other radical groups, (2) oxidize to cations and then react with nucleophiles, (3) reduce to anions and then react with electrophiles, (4) couple with metal-complexes. The rearrangements of radicals provide the opportunity for the synthesis of 1,3-, 1,4-, 1,5-, 1,6-, and 1,7-difunctionalization products. Multiple ways to initiate the radical reaction coupling with intermediate radical rearrangements make the radical reactions good for difunctionalization at the remote positions. These reactions offer the advantages of synthetic efficiency, operation simplicity, and product diversity.
Collapse
Affiliation(s)
- Xiaoming Ma
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China;
| | - Qiang Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou 215009, China;
| | - Wei Zhang
- Department of Chemistry and Center for Green Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, USA
- Correspondence: ; Tel.: +1-617-287-6147
| |
Collapse
|