1
|
Tian Q, Ge J, Liu Y, Wu X, Li Z, Cheng G. Solvent-Controlled Enantiodivergent Construction of P(V)-Stereogenic Molecules via Palladium-Catalyzed Annulation of Prochiral N-Aryl Phosphonamides with Aromatic Iodides. Angew Chem Int Ed Engl 2024; 63:e202409366. [PMID: 38979942 DOI: 10.1002/anie.202409366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
In this work, we describe an efficient and modular method for enantiodivergent accessing P(V)-stereogenic molecules by utilizing the catalytic atroposelective Catellani-type C-H arylation/desymmetric intramolecular N-arylation cascade reaction. The enantioselectivity of this protocol was proved to be tuned by the polarity of the solvent, thus providing a wide range of both chiral P(V)-stereogenic enantiomers in moderate to good yields with good to excellent enantiomeric excesses. Noteworthy is that the strategy developed herein represents an unprecedented example of solvent-dictated inversion of the enantioselectivity of P(V)-stereogenic compounds.
Collapse
Affiliation(s)
- Qingyu Tian
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Jin Ge
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yaopeng Liu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Xi Wu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Zhenghao Li
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Guolin Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
2
|
Sheng T, Kang G, Zhang T, Meng G, Zhuang Z, Chekshin N, Yu JQ. One-Step Synthesis of Chiral 9,10-Dihydrophenanthrenes via Ligand-Enabled Enantioselective Cascade β,γ-Diarylation of Acids. Angew Chem Int Ed Engl 2024; 63:e202408603. [PMID: 38980976 DOI: 10.1002/anie.202408603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/29/2024] [Accepted: 07/07/2024] [Indexed: 07/11/2024]
Abstract
Pd(II)-catalyzed enantioselective C-H activation has emerged as a versatile platform for constructing point, axial, and planar chirality. Herein, we present an unexpected discovery of a Pd-catalyzed enantioselective cascade β,γ-methylene C(sp3)-H diarylation of free carboxylic acids using bidentate chiral mono-protected amino thioether ligands (MPAThio), enabling one-step synthesis of a complex chiral 9,10-dihydrophenanthrene scaffolds with high enantioselectivity. In this process, two methylene C(sp3)-H bonds and three C(sp2)-H bonds were activated, leading to the formation of four C-C bonds and three chiral centers in one pot. A plausible catalytic pathway starts with enantioselective β,γ-dehydrogenation to form chiral β,γ-cyclohexene. Intriguingly, this olefin serves as a norbornene-type reagent (presumably assisted by the carboxyl directing effect), relaying two successive Catellani arylation reactions and a C-H arylation reaction to furnish chiral 9,10-dihydrophenanthrenes along with meta-selective homocoupling products of iodoarene.
Collapse
Affiliation(s)
- Tao Sheng
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Guowei Kang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tao Zhang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Guangrong Meng
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nikita Chekshin
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Wang XX, Jiao L. Dual Ligand Enabled Pd-Catalyzed Ortho-Alkylation of Iodoarenes. J Am Chem Soc 2024; 146:25552-25561. [PMID: 39236317 DOI: 10.1021/jacs.4c06544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The synthesis of complex polysubstituted aromatic molecules from simple precursors is a central goal in organic chemistry. In this study, we developed an approach for the ortho-alkylation of iodoarenes utilizing a dual ligand catalytic system. By combining Pd/olefin ligand cooperative catalysis with bulky trialkylphosphine ligand-promoted C(sp2)-I reductive elimination, we have established an ortho-alkylative Catellani-type reaction with the aryl-iodine bond reconstruction as the final step, which opens new synthetic opportunities within the Catellani-type reactions. Through in-depth mechanistic investigations, we have isolated and characterized key organopalladium intermediates, revealing the synergistic interaction of the dual ligands in merging the Catellani-type process with C(sp2)-I reductive elimination. The present study showcases the unique advantages of Pd/olefin ligand catalysis and emphasizes the effectiveness of the dual ligand system in expanding the chemical space of the Catellani chemistry.
Collapse
Affiliation(s)
- Xiao-Xia Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Zhang BS, Deng BJ, Zhi YX, Guo TJ, Wang YM, Gou XY, Quan ZJ, Wang XC, Liang YM. A switch strategy for the synthesis of C4-ethylamine indole and C7-aminoindoline via controllable carbon elimination. Chem Sci 2024:d4sc05111d. [PMID: 39290589 PMCID: PMC11403580 DOI: 10.1039/d4sc05111d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Controllable β-carbon elimination to extrude norbornene remains a long-standing challenge in palladium and norbornene chemistry. Herein, this manuscript describes a switchable synthesis of biologically active C4-ethylaminoindole and C7-aminoindoline scaffolds by controlling β-carbon elimination, utilizing aziridine as a C-H ethylamination reagent through a C-N bond cleavage reaction. Furthermore, the protecting groups of the product can be easily removed, offering an unusual method for the synthesis of dopamine receptor agonists.
Collapse
Affiliation(s)
- Bo-Sheng Zhang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Bao-Jie Deng
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Yuan-Xin Zhi
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Tian-Jiao Guo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Yi-Ming Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Xue-Ya Gou
- State Key Laboratory of Applied OrganicChemistry, Lanzhou University Lanzhou 730000 China
| | - Zheng-Jun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Xi-Cun Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Yong-Min Liang
- State Key Laboratory of Applied OrganicChemistry, Lanzhou University Lanzhou 730000 China
| |
Collapse
|
5
|
Chen C, Song JH, Ding LY, Zhang XX, Wang K, Ni C, Hu J, Zhu B. Modular Synthesis of Polysubstituted α-Phosphorylated Arenes via the Catellani Strategy. Org Lett 2024; 26:5770-5775. [PMID: 38940694 DOI: 10.1021/acs.orglett.4c01944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
In this paper, we described a palladium/norbornene-catalyzed ortho-C-H phosphormethylation of aryl iodides using XCH2P(O)RR', offering a reliable method for the modular synthesis of polysubstituted α-phosphorylated arenes. Alkenylation, hydrogenation, cyanation, methylation, and arylation were all viable termination steps compatible with the reaction. This method demonstrates excellent functional group tolerance and can be extended to the late-stage modification of bioactive molecules. Furthermore, the synthetic transformations of the products demonstrate the practical utility of this reaction.
Collapse
Affiliation(s)
- Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jia-Hui Song
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Lu-Yao Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Xiao-Xu Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Chunjie Ni
- School of Pharmacy, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China
| | - Jian Hu
- Effepharm (Shanghai) Co., Ltd, Shanghai 201620, People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
6
|
Nan J, Lei M, Chen G, Ma Y, Liang C, Wang J. Palladium/norbornene-catalyzed diversified trifunctionalization of aryl-thianthreniums. Chem Commun (Camb) 2024; 60:5558-5561. [PMID: 38712611 DOI: 10.1039/d4cc01426j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A novel Catellani-type conversion is reported using aryl-thianthreniums (aryl-TTs) instead of aryl halides. Three classes of ortho-dual C-H functionalization involving alkylation, amination, and deuterated methylation and five types of ipso-operation including alkenylation, cyanation, methylation, hydrogenation, and alkynylation all proceed well in this procedure. In this conversion, aryl-TTs exhibit satisfactory reactivity and feature the advantage that the leaving TT unit can be recovered. More strikingly, this finding represents a new chemistry conversion of aryl-TTs, wherein contiguous tri-functionalization in a single chemical manipulation is realized.
Collapse
Affiliation(s)
- Jiang Nan
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Min Lei
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Gaoyang Chen
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Chengyuan Liang
- Xi'an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jing Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
7
|
Babu US, Kotipalli R, Nanubolu JB, Reddy MS. Pd-Catalyzed Vicinal Intermolecular Annulations of Iodoarenes, Indoles, and Carbazoles with Enynes. Chemistry 2024; 30:e202302788. [PMID: 37929623 DOI: 10.1002/chem.202302788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/07/2023]
Abstract
Reaching the formidable C-H corners has been one of the top priorities of organic chemists in the recent past. This prompted us to disclose herein a vicinal annulation of 2-iodo benzoates, indoles, and carbazoles with N-embedded 1,6-enynes through 7-/8-membered palladacycles. The relay does not require the assistance of any directing group, leading to multicyclic scaffolds, which are readily diversified to an array of adducts (with new functional tethers and/or three contiguous stereocenters), in which we showcase a rare benzylic mono-oxygenation.
Collapse
Affiliation(s)
- Undamatla Suri Babu
- Department of Oraganic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Ramesh Kotipalli
- Department of Oraganic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Jagadeesh Babu Nanubolu
- Department of Oraganic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Jagadeesh Babu Nanubolu, Analytical Department, CSIR-IICT, Hyderabad, 500007, India
| | - Maddi Sridhar Reddy
- Department of Oraganic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
8
|
Liu G, Zheng M, Tian R, Zhou Y. Site-Selective Synthesis of Antitumor C5-Aminated Indoles via Neighboring Aldehyde Group Assisted Catellani Reaction. Org Lett 2023; 25:9231-9236. [PMID: 38105532 DOI: 10.1021/acs.orglett.3c03932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
A palladium/norbornene (NBE) cooperative catalytic system was developed to access C5-aminated indoles, starting from readily available C4-idonated indoles. Good yields and exclusive site selectivity were achieved for a broad substrate scope, including drug molecule core architectures. Control experiments found that both aldehyde on the C3 position and sulfonyl protecting group on the N1 position were vital for the transformation. Preliminary bioactivity evaluation identified a promising leading compound 3af with potent antitumor proliferative activity against several cancer cells.
Collapse
Affiliation(s)
- Guangyuan Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengzhu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rong Tian
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yirong Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
9
|
Liu YW, Wang MM, Zhang YQ, Xu H, Dai HX. Construction of Indole-Fused Seven- and Eight-Membered Azaheterocycles via a Tandem Pd/NBE-Catalyzed Decarbonylation and Dual C-H Activation Sequence. Org Lett 2023; 25:5406-5410. [PMID: 37458387 DOI: 10.1021/acs.orglett.3c01579] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Herein, we report the transformation of aromatic acids to indole-fused seven- and eight-membered azaheterocycles. Two C-C bonds are formed via the cleavage of one C-C bond and two C-H bonds. The incorporation of indole moieties into bioactive pharmaceuticals and natural products to construct a medium-sized polyfused heterocycle demonstrates the synthetic utility of the protocol.
Collapse
Affiliation(s)
- Yu-Wen Liu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Meng-Meng Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yun-Qian Zhang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui Xu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui-Xiong Dai
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|