1
|
Sabadini JB, Oliveira CLP, Loh W. Do ethoxylated polymeric coacervate micelles respond to temperature similarly to ethoxylated surfactant aggregates? J Colloid Interface Sci 2025; 678:1012-1021. [PMID: 39232474 DOI: 10.1016/j.jcis.2024.08.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
HYPOTHESIS Ethoxylated complex coacervate core micelles (C3Ms), formed by the electrostatic coacervation of a charge-neutral diblock copolymer and an oppositely charged homopolymer, exhibit morphology governed by molecular packing principles. Additionally, this morphology is temperature-dependent, leading to transitions similar to those observed in classical ethoxylated surfactant aggregates. EXPERIMENTS To explore the thermal effects on the size and morphology of C3Ms, we employed dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM). These techniques were applied to C3Ms formed by copolymers with varying poly(ethylene oxide) (EO) lengths. FINDINGS Increasing the temperature-induced a transition from spherical to elongated aggregates, contingent on the EO block length. This morphological transition in EO-containing C3Ms parallels the behavior of classical ethoxylated surfactant aggregates. Despite the fundamental differences between hydrophobically driven and electrostatic coacervate micelles, our findings suggest that similar molecular packing principles are universally applicable across both systems. Our results offer valuable insights for predicting the structural properties of these coacervate platforms, which is crucial for envisioning their future applications.
Collapse
Affiliation(s)
- Júlia Bonesso Sabadini
- Institute of Chemistry, University of Campinas (UNICAMP), P.O Box 6154, Campinas, SP, Brazil.
| | | | - Watson Loh
- Institute of Chemistry, University of Campinas (UNICAMP), P.O Box 6154, Campinas, SP, Brazil.
| |
Collapse
|
2
|
Fielden SDP. Kinetically Controlled and Nonequilibrium Assembly of Block Copolymers in Solution. J Am Chem Soc 2024; 146:18781-18796. [PMID: 38967256 PMCID: PMC11258791 DOI: 10.1021/jacs.4c03314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Covalent polymers are versatile macromolecules that have found widespread use in society. Contemporary methods of polymerization have made it possible to construct sequence polymers, including block copolymers, with high precision. Such copolymers assemble in solution when the blocks have differing solubilities. This produces nano- and microparticles of various shapes and sizes. While it is straightforward to draw an analogy between such amphiphilic block copolymers and phospholipids, these two classes of molecules show quite different assembly characteristics. In particular, block copolymers often assemble under kinetic control, thus producing nonequilibrium structures. This leads to a rich variety of behaviors being observed in block copolymer assembly, such as pathway dependence (e.g., thermal history), nonergodicity and responsiveness. The dynamics of polymer assemblies can be readily controlled using changes in environmental conditions and/or integrating functional groups situated on polymers with external chemical reactions. This perspective highlights that kinetic control is both pervasive and a useful attribute in the mechanics of block copolymer assembly. Recent examples are highlighted in order to show that toggling between static and dynamic behavior can be used to generate, manipulate and dismantle nonequilibrium states. New methods to control the kinetics of block copolymer assembly will provide endless unanticipated applications in materials science, biomimicry and medicine.
Collapse
Affiliation(s)
- Stephen D. P. Fielden
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| |
Collapse
|
3
|
Lin Z, Yang Z, Gao L. Engineering a polyvinyl butyral hydrogel as a thermochromic interlayer for energy-saving windows. MATERIALS HORIZONS 2024; 11:3127-3142. [PMID: 38625111 DOI: 10.1039/d4mh00158c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Achieving mastery over light using thermochromic materials is crucial for energy-saving glazing. However, challenges such as high production costs, limited durability, and recyclability issues have hindered their widespread application in buildings. Herein, we develop a glass interlayer made of a polyvinyl butyral-based hydrogel swollen with LiCl solution. In addition to a fast, isochoric, and reversible transparency-to-opacity transition occurring as ambient temperatures exceed thermally comfortable levels, this hydrogel uniquely encompasses multiple features such as frost resistance, recyclability, scalability, and toughness. The combination of these features is achieved through a delicate balance of polyvinyl butyral's amphiphilicity and the suppression of network-forming phase separation. This design endows a nanostructured polyvinyl butyral-LiCl composite gel with swollen molecular segments linked by dispersed cross-linking sites in the form of hydrophobic nano-nodules. Upon laminating this hydrogel (a thickness of 0.3 mm), the resultant glazing product demonstrates approximately 90% luminous transmittance even at sub-zero temperatures, along with a significant modulation of solar and infrared radiation at 80.8% and 68.5%, respectively. Through simulations, we determined that windows equipped with the hydrogel could reduce energy consumption by 36% compared to conventional glass windows in warm seasons. The widespread adoption of polyvinyl butyral in construction underscores the promise of this hydrogel as a thermochromic interlayer for glazing.
Collapse
Affiliation(s)
- Zequn Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, P. R. China
| | - Zican Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, P. R. China
| | - Liang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, P. R. China
| |
Collapse
|
4
|
Kelkar PU, Erk KA, Lindberg S. Dynamic diffusive interfacial transport (D-DIT): A novel quantitative swelling technique for developing binary phase diagrams of aqueous surfactant systems. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:035102. [PMID: 38426902 DOI: 10.1063/5.0182771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024]
Abstract
Current methods to develop surfactant phase diagrams are time-intensive and fail to capture the kinetics of phase evolution. Here, the design and performance of a quantitative swelling technique to study the dynamic phase behavior of surfactants are described. The instrument combines cross-polarized optical and short-wave infrared imaging to enable high-resolution, high-throughput, and in situ identification of phases and water compositions. Data across the entire composition spectrum for the dynamics and phase evolution of a binary aqueous non-ionic surfactant solution at two isotherms are presented. This instrument provides pathways to develop non-equilibrium phase diagrams of surfactant systems-critical to predicting the outcomes of formulation and processing. It can be applied to study time-dependent material relationships across a diverse range of materials and processes, including the dissolution of surfactant droplets and the drying of aqueous polymer films.
Collapse
Affiliation(s)
- Parth U Kelkar
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Kendra A Erk
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Seth Lindberg
- Corporate Engineering, The Procter & Gamble Company, West Chester, Ohio 45069, USA
| |
Collapse
|
5
|
Bakhrushina E, Khodenok A, Pyzhov V, Solomatina P, Demina N, Korochkina T, Krasnyuk I. Study of the effect of active pharmaceutical ingredients of various classes of BCS on the parameters of thermosensitive systems based on poloxamers. Saudi Pharm J 2023; 31:101780. [PMID: 37766821 PMCID: PMC10520434 DOI: 10.1016/j.jsps.2023.101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction The development of thermosensitive in situ systems has become widespread and prospective due to the optimal parameters of the phase transition - in the temperature range from room to physiological. Those properties can provide thermosensitive polymers, for example, poloxamers - as the most common.It is worth noting that the addition of active pharmaceutical ingredients (APIs) changes the parameters of in situ systems, but no systematic study of the effect of APIs has been conducted. The aim of this work was to develop a systematic approach to studying the effect of APIs on the in situ rheological properties of poloxamer compositions. Materials and methods The biopharmaceutical classification system (BCS) was chosen as the basis. Accordingly, the following APIs were selected for the experiment: BCS class I - lidocaine hydrochloride and ketorolac tromethamine, class II - ibuprofen and diclofenac, class III - pyridoxine hydrochloride and ribavirin, class IV - furosemide and abiraterone. To create thermoreversible compositions, previously studied for stability combinations of poloxamer 407, poloxamer 188 and PEG 1500 were used.At the stage of preparation of experimental samples formulations with APIs of classes II and IV of BCS were excluded, since the solubilizing ability of poloxamers is not enough to obtain stable combined complexes. Results In the course of the work, the following results were obtained: BCS class I APIs significantly reduced the phase transition temperature of the matrix of poloxamers 407 and 188, while the addition of PEG 1500 eliminated the effect of APIs on gels; BCS class III APIs practically did not affect the rheological properties of the studied combinations; the phase transition temperature of the gel based on poloxamer 407 did not change with the addition of Class I and Class III APIs.Nevertheless, the obtained results made it possible to reveal the regular behavior of in situ complexes of poloxamer matrices depending on the class of BCS of the API. Further research is required.
Collapse
Affiliation(s)
- E.O. Bakhrushina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), A.P.Nelyubin Institute of Pharmacy, Department of Pharmaceutical Technology, 96 Vernadsky Avenue, building 1 119571, Moscow, Russia
| | - A.I. Khodenok
- I.M. Sechenov First Moscow State Medical University (Sechenov University), A.P.Nelyubin Institute of Pharmacy, Department of Pharmaceutical Technology, 96 Vernadsky Avenue, building 1 119571, Moscow, Russia
| | - V.S. Pyzhov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), A.P.Nelyubin Institute of Pharmacy, Department of Pharmaceutical Technology, 96 Vernadsky Avenue, building 1 119571, Moscow, Russia
| | - P.G. Solomatina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), A.P.Nelyubin Institute of Pharmacy, Department of Pharmaceutical Technology, 96 Vernadsky Avenue, building 1 119571, Moscow, Russia
| | - N.B. Demina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), A.P.Nelyubin Institute of Pharmacy, Department of Pharmaceutical Technology, 96 Vernadsky Avenue, building 1 119571, Moscow, Russia
| | - T.V. Korochkina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), A.P.Nelyubin Institute of Pharmacy, Department of Pharmaceutical Technology, 96 Vernadsky Avenue, building 1 119571, Moscow, Russia
| | - I.I. Krasnyuk
- I.M. Sechenov First Moscow State Medical University (Sechenov University), A.P.Nelyubin Institute of Pharmacy, Department of Pharmaceutical Technology, 96 Vernadsky Avenue, building 1 119571, Moscow, Russia
| |
Collapse
|