1
|
Li Y, Sun Q, Yang Z, Yuan G. Inducible RNA targeting and N6-methyladenosine editing by a split-Cas13 architecture. J Mol Cell Biol 2024; 16:mjae002. [PMID: 38216515 PMCID: PMC11262032 DOI: 10.1093/jmcb/mjae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/11/2023] [Accepted: 01/11/2024] [Indexed: 01/14/2024] Open
Affiliation(s)
- Yang Li
- International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
| | - Qiang Sun
- International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Zhi Yang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Yuan
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Zhou C, Wagner S, Liang FS. Induced proximity labeling and editing for epigenetic research. Cell Chem Biol 2024; 31:1118-1131. [PMID: 38866004 PMCID: PMC11193966 DOI: 10.1016/j.chembiol.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Epigenetic regulation plays a pivotal role in various biological and disease processes. Two key lines of investigation have been pursued that aim to unravel endogenous epigenetic events at particular genes (probing) and artificially manipulate the epigenetic landscape (editing). The concept of induced proximity has inspired the development of powerful tools for epigenetic research. Induced proximity strategies involve bringing molecular effectors into spatial proximity with specific genomic regions to achieve the probing or manipulation of local epigenetic environments with increased proximity. In this review, we detail the development of induced proximity methods and applications in shedding light on the intricacies of epigenetic regulation.
Collapse
Affiliation(s)
- Chenwei Zhou
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA
| | - Sarah Wagner
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA
| | - Fu-Sen Liang
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA.
| |
Collapse
|
3
|
Bae J, Kim J, Choi J, Lee H, Koh M. Split Proteins and Reassembly Modules for Biological Applications. Chembiochem 2024; 25:e202400123. [PMID: 38530024 DOI: 10.1002/cbic.202400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Split systems, modular entities enabling controlled biological processes, have become instrumental in biological research. This review highlights their utility across applications like gene regulation, protein interaction identification, and biosensor development. Covering significant progress over the last decade, it revisits traditional split proteins such as GFP, luciferase, and inteins, and explores advancements in technologies like Cas proteins and base editors. We also examine reassembly modules and their applications in diverse fields, from gene regulation to therapeutic innovation. This review offers a comprehensive perspective on the recent evolution of split systems in biological research.
Collapse
Affiliation(s)
- Jieun Bae
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Jonghoon Kim
- Department of Chemistry and Integrative Institute of Basic Science, Soongsil University, Seoul, 06978, Republic of Korea
| | - Jongdoo Choi
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Hwiyeong Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Minseob Koh
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
4
|
Kang W, Xiao F, Zhu X, Ling X, Xie S, Li R, Yu P, Cao L, Lei C, Qiu Y, Liu T, Nie Z. Engineering Anti-CRISPR Proteins to Create CRISPR-Cas Protein Switches for Activatable Genome Editing and Viral Protease Detection. Angew Chem Int Ed Engl 2024; 63:e202400599. [PMID: 38407550 DOI: 10.1002/anie.202400599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
Proteins capable of switching between distinct active states in response to biochemical cues are ideal for sensing and controlling biological processes. Activatable CRISPR-Cas systems are significant in precise genetic manipulation and sensitive molecular diagnostics, yet directly controlling Cas protein function remains challenging. Herein, we explore anti-CRISPR (Acr) proteins as modules to create synthetic Cas protein switches (CasPSs) based on computational chemistry-directed rational protein interface engineering. Guided by molecular fingerprint analysis, electrostatic potential mapping, and binding free energy calculations, we rationally engineer the molecular interaction interface between Cas12a and its cognate Acr proteins (AcrVA4 and AcrVA5) to generate a series of orthogonal protease-responsive CasPSs. These CasPSs enable the conversion of specific proteolytic events into activation of Cas12a function with high switching ratios (up to 34.3-fold). These advancements enable specific proteolysis-inducible genome editing in mammalian cells and sensitive detection of viral protease activities during virus infection. This work provides a promising strategy for developing CRISPR-Cas tools for controllable gene manipulation and regulation and clinical diagnostics.
Collapse
Affiliation(s)
- Wenyuan Kang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education & Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China
| | - Fei Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Xi Zhu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, 410082, P. R. China
| | - Xinyu Ling
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Shiyi Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Ruimiao Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Peihang Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Linxin Cao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Ye Qiu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, 410082, P. R. China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
5
|
Ding Y, Tous C, Choi J, Chen J, Wong WW. Orthogonal inducible control of Cas13 circuits enables programmable RNA regulation in mammalian cells. Nat Commun 2024; 15:1572. [PMID: 38383558 PMCID: PMC10881482 DOI: 10.1038/s41467-024-45795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
RNA plays an indispensable role in mammalian cell functions. Cas13, a class of RNA-guided ribonuclease, is a flexible tool for modifying and regulating coding and non-coding RNAs, with enormous potential for creating new cell functions. However, the lack of control over Cas13 activity has limited its cell engineering capability. Here, we present the CRISTAL (Control of RNA with Inducible SpliT CAs13 Orthologs and Exogenous Ligands) platform. CRISTAL is powered by a collection (10 total) of orthogonal split inducible Cas13 effectors that can be turned ON or OFF via small molecules in multiple cell types, providing precise temporal control. Also, we engineer Cas13 logic circuits that can respond to endogenous signaling and exogenous small molecule inputs. Furthermore, the orthogonality, low leakiness, and high dynamic range of our inducible Cas13d and Cas13b enable the design and construction of a robust incoherent feedforward loop, leading to near-perfect and tunable adaptation response. Finally, using our inducible Cas13 effectors, we achieve simultaneous multiplexed control of multiple genes in vitro and in mice. Together, our CRISTAL design represents a powerful platform for precisely regulating RNA dynamics to advance cell engineering and elucidate RNA biology.
Collapse
Affiliation(s)
- Yage Ding
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, 2215, USA
| | - Cristina Tous
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, 2215, USA
| | - Jaehoon Choi
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, 2215, USA
| | - Jingyao Chen
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, 2215, USA
| | - Wilson W Wong
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, 2215, USA.
| |
Collapse
|
6
|
Yu J, Shin J, Yu J, Kim J, Yu D, Heo WD. Programmable RNA base editing with photoactivatable CRISPR-Cas13. Nat Commun 2024; 15:673. [PMID: 38253589 PMCID: PMC10803366 DOI: 10.1038/s41467-024-44867-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
CRISPR-Cas13 is widely used for programmable RNA interference, imaging, and editing. In this study, we develop a light-inducible Cas13 system called paCas13 by fusing Magnet with fragment pairs. The most effective split site, N351/C350, was identified and found to exhibit a low background and high inducibility. We observed significant light-induced perturbation of endogenous transcripts by paCas13. We further present a light-inducible base-editing system, herein called the padCas13 editor, by fusing ADAR2 to catalytically inactive paCas13 fragments. The padCas13 editor enabled reversible RNA editing under light and was effective in editing A-to-I and C-to-U RNA bases, targeting disease-relevant transcripts, and fine-tuning endogenous transcripts in mammalian cells in vitro. The padCas13 editor was also used to adjust post-translational modifications and demonstrated the ability to activate target transcripts in a mouse model in vivo. We therefore present a light-inducible RNA-modulating technique based on CRISPR-Cas13 that enables target RNAs to be diversely manipulated in vitro and in vivo, including through RNA degradation and base editing. The approach using the paCas13 system can be broadly applicable to manipulating RNA in various disease states and physiological processes, offering potential additional avenues for research and therapeutic development.
Collapse
Affiliation(s)
- Jeonghye Yu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jongpil Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jihwan Yu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jihye Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Daseuli Yu
- Life Science Research Institute, KAIST, Daejeon, Republic of Korea
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- KAIST Institute for the BioCentury (KIB), KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
7
|
Xu Y, Wang Y, Liang FS. Site-Specific m 6 A Erasing via Conditionally Stabilized CRISPR-Cas13b Editor. Angew Chem Int Ed Engl 2023; 62:e202309291. [PMID: 37713087 PMCID: PMC10592254 DOI: 10.1002/anie.202309291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 09/16/2023]
Abstract
N6-methyladenosine (m6 A) on RNAs plays an important role in regulating various biological processes and CRIPSR technology has been employed for programmable m6 A editing. However, the bulky size of CRISPR protein and constitutively expressed CRISPR/RNA editing enzymes can interfere with the native function of target RNAs and cells. Herein, we reported a conditional m6 A editing platform (FKBP*-dCas13b-ALK) based on a ligand stabilized dCas13 editor. The inducible expression of this m6 A editing system was achieved by adding or removing the Shield-1 molecule. We further demonstrated that the targeted recruitment of dCas13b-m6 A eraser fusion protein and site-specific m6 A erasing were achieved under the control of Shield-1. Moreover, the release and degradation of dCas13b fusion protein occurred faster than the restoration of m6 A on the target RNAs after Shield-1 removal, which provides an ideal opportunity to study the m6 A function with minimal steric interference from bulky dCas13b fusion protein.
Collapse
Affiliation(s)
- Ying Xu
- Department of Chemistry, Case Western Reserve Universit, 2080 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Yufan Wang
- Department of Chemistry, Case Western Reserve Universit, 2080 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Fu-Sen Liang
- Department of Chemistry, Case Western Reserve Universit, 2080 Adelbert Rd, Cleveland, OH, 44106, USA
| |
Collapse
|