1
|
Wang M, Ren HY, Pu XY, Zhang XL, Zhu HY, Wu AX, Zhao BT. Rongalite/iodine-mediated C(sp 3)-H bond oximation and thiomethylation reaction of methyl ketones using copper nitrate as the [NO] reagent: synthesis of thiohydroximic acids. Org Biomol Chem 2024; 22:7623-7627. [PMID: 39222034 DOI: 10.1039/d4ob01217h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In this work, a highly efficient rongalite/iodine-mediated oxime formation reaction for the preparation of thiohydroximic acids from methyl ketones by employing copper nitrate as the [NO] reagent has been developed. Notably, copper nitrate participated as both a catalyst and the mild oximation reagent in the transformation. This reaction is highly efficient and facile, with a broad substrate scope, especially for fused ring skeleton substrates, heterocyclic skeleton substrates, and acetyl-substituted natural products. Mechanistic studies revealed that copper nitrate might be converted into a NO2 radical or the NO2 radical dimeric forms as an ion-pair equivalent to participate in the transformation.
Collapse
Affiliation(s)
- Miao Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Function-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China.
| | - Hui-Ying Ren
- College of Chemistry and Chemical Engineering, Key Laboratory of Function-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China.
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiao-Yu Pu
- College of Chemistry and Chemical Engineering, Key Laboratory of Function-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China.
| | - Xiao-Lu Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Function-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China.
| | - He-Ying Zhu
- College of Chemistry and Chemical Engineering, Key Laboratory of Function-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China.
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Bang-Tun Zhao
- College of Chemistry and Chemical Engineering, Key Laboratory of Function-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China.
| |
Collapse
|
2
|
Vu J, Haug GC, Li Y, Zhao B, Chang CJ, Paton RS, Dong Y. Enantioconvergent Cross-Nucleophile Coupling: Copper-Catalyzed Deborylative Cyanation. Angew Chem Int Ed Engl 2024:e202408745. [PMID: 39264815 DOI: 10.1002/anie.202408745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/23/2024] [Accepted: 09/11/2024] [Indexed: 09/14/2024]
Abstract
Organoboron compounds are widely utilized in organic synthesis for their diverse reactivity, modular preparation, and stability compared to other classes of organometallic reagents. While organoboron species are commonly employed as nucleophiles in cross-coupling reactions, their potential as racemic building blocks in enantioconvergent transformations remains largely untapped. Herein, we demonstrate the direct utilization of alkylboronic pinacol esters in intermolecular enantioconvergent transformations. Specifically, this work describes the development and mechanistic study of an enantioconvergent deborylative cyanation enabled by Cu catalysis. This method imparts a high degree of enantioselectivity and tolerates a wide range of common functional groups and heterocycles. The reaction is proposed to proceed through a radical-relay mechanism. Aniline-assisted homolysis of the carbon-boron bond results in prochiral alkyl radicals that are functionalized by in situ generated Cu(II)(CN)2 species in an enantioselective fashion. The Cu(II)(CN)2 intermediate was characterized by electron paramagnetic resonance (EPR) spectroscopy, and its electronic structure was probed using density functional theory (DFT) calculations. Computational studies were carried out to corroborate the proposed radical-relay mechanism.
Collapse
Affiliation(s)
- Jonathan Vu
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| | - Graham C Haug
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| | - Yongxian Li
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| | - Biyu Zhao
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| | - Christopher J Chang
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| | - Robert S Paton
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| | - Yuyang Dong
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| |
Collapse
|
3
|
Yue F, Li M, Yang K, Song H, Liu Y, Wang Q. Deboronative functionalization of alkylboron species via a radical-transfer strategy. Chem Sci 2024:d4sc02889a. [PMID: 39144459 PMCID: PMC11320062 DOI: 10.1039/d4sc02889a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
With advances in organoboron chemistry, boron-centered functional groups have become increasingly attractive. In particular, alkylboron species are highly versatile reagents for organic synthesis, but the direct generation of alkyl radicals from commonly used, bench-stable boron species has not been thoroughly investigated. Herein, we describe a method for activating C-B bonds by nitrogen- or oxygen-radical transfer that is applicable to alkylboronic acids and esters and can be used for both Michael addition reactions and Minisci reactions to generate alkyl or arylated products.
Collapse
Affiliation(s)
- Fuyang Yue
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Mingxing Li
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Kangkang Yang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University Tianjin 300071 People's Republic of China
| |
Collapse
|
4
|
Tang DD, Wang YZ, Liu C, Xia Y, Li Y. Photoredox-Catalyzed Amino-Radical-Transfer-Mediated Three-Component Alkylarylation of Alkenes. Org Lett 2024; 26:6477-6481. [PMID: 39041703 DOI: 10.1021/acs.orglett.4c02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
We herein reported a novel photoredox-catalyzed three-component alkylarylation of vinyl arenes with alkylboronic pinacol esters (APEs) and cyanoarenes via radical addition/cross-coupling to construct 1,1-diarylalkanes. In this transformation, alkyl radicals were easily available by visible-light-induced oxidative N-H cleavage of morpholine, which used APEs as a radical precursor. Furthermore, this protocol exhibited a broad substrate scope, enabling various styrenes, APEs, and cyanoarenes, as well as bioactive molecule derivatives.
Collapse
Affiliation(s)
- Di-Di Tang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yu-Zhao Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yan Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| |
Collapse
|
5
|
Dennis FM, Romero Arenas A, Rodgers G, Shanmugam M, Andrews JA, Peralta-Arriaga SL, Partridge BM. Cu-Catalyzed Coupling of Aliphatic Amines with Alkylboronic Esters. Chemistry 2024; 30:e202303636. [PMID: 38168746 DOI: 10.1002/chem.202303636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
We report a Cu-catalyzed oxidative coupling of aliphatic amines with benzylic and aliphatic boronic esters to give high value alkyl amines, products found widely in applications from medicinal chemistry to materials science. This operationally simple reaction, which can be performed on gram scale, runs under mild conditions and exhibits broad functional group tolerance. The terminal oxidant of the reaction is O2 from the air, avoiding the need for additional chemical oxidants. Investigation into the reaction mechanism suggests that the boronic ester is activated by an aminyl radical, formed through oxidation of the amine by the Cu catalyst, to give a key alkyl radical intermediate. To demonstrate its utility and potential for late-stage functionalization, we showcase the method as the final step in the total synthesis of a TRPV1 antagonist.
Collapse
Affiliation(s)
- Francesca M Dennis
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield, S3 7HF, United Kingdom
| | - Antonio Romero Arenas
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield, S3 7HF, United Kingdom
| | - George Rodgers
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield, S3 7HF, United Kingdom
| | - Muralidharan Shanmugam
- Department of Chemistry and Photon Science Institute, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Jonathan A Andrews
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield, S3 7HF, United Kingdom
| | | | - Benjamin M Partridge
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield, S3 7HF, United Kingdom
| |
Collapse
|
6
|
Zhou G, Guo Z, Liu S, Shen X. Divergent Synthesis of Fluoroalkyl Ketones through Controlling the Reactivity of Organoboronate Complexes. J Am Chem Soc 2024; 146:4026-4035. [PMID: 38299789 DOI: 10.1021/jacs.3c12150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Herein, we report a divergent synthesis of fluoroalkyl ketones through visible-light-induced reactions between readily available organoboronic esters and fluoroalkyl acylsilanes. Selective control of the reactivity of the in situ generated organoboronate complexes is the key to achieving divergent transformations. Under basic conditions, the organoboronate complexes undergo deboronative fluoride elimination, resulting in the formation of enol silyl ethers as intermediates that react with various electrophiles to generate defluorinated ketones as the products. Moreover, in combination with peroxide, a 1,2-shift of fluoroalkyl group is favored over deboronative fluoride elimination to generate ketal intermediates, leading to the formation of ketones as the products. This transition-metal-free reaction is operationally simple, and aryl, alkenyl, and alkyl boronic esters are all suitable substrates. The synthetic potential has been demonstrated by gram-scale reactions and facile synthesis of bioactive molecules including zifrosilone and its fluoroalkyl analogs.
Collapse
Affiliation(s)
- Gang Zhou
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Zhuanzhuan Guo
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Shanshan Liu
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xiao Shen
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
7
|
Lan H, Huo X, Jia Y, Wang D. Silyl Radical Generation from Silylboronic Pinacol Esters through Substitution with Aminyl Radicals. Org Lett 2024; 26:1011-1016. [PMID: 38289174 DOI: 10.1021/acs.orglett.3c04085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
A novel strategy was developed to generate silyl radicals from silylboronic pinacol esters (SPEs) through nucleohomolytic substitution of boron with aminyl radicals. We successfully applied this strategy to obtain diverse organosilicon compounds using SPEs and N-nitrosamines under photoirradiation without any catalyst. The ability to access silyl radicals offers a new perspective for chemists to rapidly construct Si-X bonds.
Collapse
Affiliation(s)
- Hongyan Lan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xiangyu Huo
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yinggang Jia
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Dingyi Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
8
|
Binayeva M, Ma X, Ghaemimohammadi P, Biscoe MR. A general approach to stereospecific Pd-catalyzed cross-coupling reactions of benzylic stereocenters. Chem Sci 2023; 14:14124-14130. [PMID: 38098708 PMCID: PMC10717501 DOI: 10.1039/d3sc04519f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
We have developed a general process for the formation of enantioenriched benzylic stereocenters via stereospecific Pd-catalyzed cross-coupling reactions of enantioenriched benzylic tricyclohexyltin nucleophiles. This process proceeds with excellent stereospecificity for a remarkably broad scope of electrophilic coupling partners including aryl and heteroaryl halides and triflates, acid chlorides, thioesters, chloroformates, and carbamoyl chlorides. Thus, enantioenriched 1,1-diarylalkanes as well as formal products of asymmetric enolate arylation are readily accessed using this approach. We additionally provide the first demonstration of a Sn-selective cross-coupling reaction using a vicinal alkylborylstannane nucleophile. In these reactions, the presence of cyclohexyl spectator ligands on tin is essential to ensure selective transfer of the secondary benzylic unit from tin to palladium.
Collapse
Affiliation(s)
- Meruyert Binayeva
- Department of Chemistry and Biochemistry, The City College of New York (CCNY) New York NY 10031 USA
- The Graduate Center of the City University of New York (CUNY) 365 Fifth Avenue New York NY 10016 USA
| | - Xinghua Ma
- Department of Chemistry and Biochemistry, The City College of New York (CCNY) New York NY 10031 USA
- The Graduate Center of the City University of New York (CUNY) 365 Fifth Avenue New York NY 10016 USA
| | - Pejman Ghaemimohammadi
- Department of Chemistry and Biochemistry, The City College of New York (CCNY) New York NY 10031 USA
- The Graduate Center of the City University of New York (CUNY) 365 Fifth Avenue New York NY 10016 USA
| | - Mark R Biscoe
- Department of Chemistry and Biochemistry, The City College of New York (CCNY) New York NY 10031 USA
- The Graduate Center of the City University of New York (CUNY) 365 Fifth Avenue New York NY 10016 USA
| |
Collapse
|
9
|
Yang S, Wang Y, Xu W, Tian X, Bao M, Yu X. Visible-Light-Driven Iron-Catalyzed Decarboxylative C-N Coupling Reaction of Alkyl Carboxylic Acids with NaNO 2. Org Lett 2023. [PMID: 38054743 DOI: 10.1021/acs.orglett.3c03526] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
An efficient visible-light-driven iron-catalyzed decarboxylative C-N coupling reaction of alkyl carboxylic acids with NaNO2 under mild conditions was developed. The reaction proceeds under photosensitizer-free conditions and features good to excellent yields, broad functional group tolerance, and an easy operation procedure. Preliminary mechanistic investigations showed that visible-light-driven iron catalysis not only achieved oxidative decarboxylation of alkyl carboxylic acids to alkyl radicals but also promoted the reduction of NO2- to NO, thus leading to the C-N radical coupling reaction.
Collapse
Affiliation(s)
- Shilei Yang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116023, People's Republic of China
| | - Yi Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116023, People's Republic of China
| | - Wenyao Xu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116023, People's Republic of China
| | - Xiao Tian
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116023, People's Republic of China
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116023, People's Republic of China
- School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, People's Republic of China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116023, People's Republic of China
| |
Collapse
|