1
|
Ma D, Li J, Cao Z. CH 4 Carbonylation to Acetic Acid Using H 2O as an Oxidant on a Rh-Functionalized UiO-67 Combined with Oriented External Electric Fields: Selectivity and Mechanistic Insights from DFT Calculations. Inorg Chem 2024; 63:21110-21120. [PMID: 39444298 DOI: 10.1021/acs.inorgchem.4c03309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Acetic acid (CH3COOH), as an industrially important petrochemical product, is predominantly produced via multistep energy-intensive processes. The development of a rhodium single-site heterogeneous catalyst has received considerable attention due to its potential to transform CH4 into CH3COOH in a single step. Herein, the reaction mechanism for the generation of CH3COOH from CH4, CO, and H2O catalyzed by Rh-functionalized metal-organic framework (MOF) UiO-67 and the selectivity of products CH3COOH, formic acid (HCOOH), methanol (CH3OH), and acetaldehyde (CH3CHO) under the oriented external electric fields (OEEFs) were systematically explored by density functional theory (DFT) calculations. The results reveal that the insertion of CO into Rh-CH3 is the rate-determining step with a free energy barrier of 21.0 kcal/mol in CH4 carbonylation to CH3COOH. Upon applying an OEEF of Fx = +0.0050 au along the C-C bond, the rate-determining step shifts toward H2O decomposition with the barrier of 19.6 kcal/mol, significantly improving the selectivity for CH3COOH production, compared to the major competitive HCOOH route. The Brønsted-Evans-Polanyi (BEP) relationships between key transition states, field strength, and NPA charge transfer were established. This study may guide the rational design of atomically dispersed MOF catalysts for the selective coconversion of CH4 and CO to CH3COOH using H2O as the oxidant under the OEEF.
Collapse
Affiliation(s)
- Denghui Ma
- School of New Energy, Ningbo University of Technology, Ningbo 315336, P. R. China
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| | - Jianming Li
- School of New Energy, Ningbo University of Technology, Ningbo 315336, P. R. China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| |
Collapse
|
2
|
Nie S, Wu L, Liu Q, Wang X. Entropy-Derived Synthesis of the CuPd Sub-1nm Alloy for CO 2-to-acetate Electroreduction. J Am Chem Soc 2024; 146:29364-29372. [PMID: 39425939 DOI: 10.1021/jacs.4c07711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Bimetallic alloys exhibit remarkable properties in catalysis and energy storage, while their precise synthesis at the subnanoscale remains a formidable challenge due to their immiscible nature in thermodynamics. In this study, we engineer an atomically dispersed CuPd alloy with an average size of 1.5 nm loaded on CuO and phosphomolybdic acid (PMA) coassembly subnanosheets (CuO-PMA SNSs). Driven by the high vibrational entropy, Cu atoms could escape from CuO supports and bond with adjacent Pd single atoms, leading to the in situ formation of CuPd alloys. Furthermore, this strategy can also be utilized for synthesizing the ZnPt alloy with an average size of 1 nm, thereby providing a general pathway for the design of immiscible subnanoalloys. The fully exposed Cu-Pd pairs in CuPd subnanoalloys significantly enhance the adsorption and coverage of surface *CO during the electrochemical reduction of CO2, thereby leading to enhanced stability of ethenone intermediates and facilitating the production of C2 compounds. The resulting CuPd subnanoalloy exhibits a remarkable Faradaic efficiency of 46.5 ± 2.1% for CO2-to-acetate electroreduction and achieves a high acetate productivity of 99 ± 2.8 μmol cm-2 at -0.7 V versus RHE.
Collapse
Affiliation(s)
- Siyang Nie
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Wang M, Jia J, Meng Z, Xia J, Hu X, Xue F, Peng H, Meng X, Yi J, Chen X, Li J, Guo Y, Xu Y, Huang X. Plasmonic Pd-Sb nanosheets for photothermal CH 4 conversion to HCHO and therapy. SCIENCE ADVANCES 2024; 10:eado9664. [PMID: 39231231 PMCID: PMC11373601 DOI: 10.1126/sciadv.ado9664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Photothermal catalysis effectively increases catalytic activity by using the photothermal effect of metal nanomaterials; however, the combination of strong light absorption and high catalytic performance remains a challenge. Here, we demonstrate hexagonal ~5-nanometer-thick palladium antimony (chemical formula as Pd8Sb3) nanosheets (NSs) that exhibit strong light absorption within full spectral and localized surface plasmon resonance (LSPR) effects in the visible region. Such LSPR features lead to strong photothermal effects, and Pd8Sb3 NSs aqueous dispersion enables enhanced photothermal methane (CH4) conversion to formaldehyde (HCHO) under full-spectrum light irradiation at 1.7 watts per square centimeter, leading to selectivity of ~98.7%, productivity of ~665 millimoles per gram of catalyst, ~700 times higher than that of Pd NSs. Mechanism investigations suggest that different radicals were generated on Pd8Sb3 (·OH) and Pd NSs (·O2-), where Pd8Sb3 NSs displays stronger adsorption strength to CH4 and facilitates CH4 oxidation to HCHO. Besides, the strong light absorption ability of Pd8Sb3 NSs enables photothermal therapy for breast cancer.
Collapse
Affiliation(s)
- Mengjun Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, China
| | - Jun Jia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- School of Electrical Engineering and Automation, Wuhan University, Hubei 430072, China
| | - Zhaodong Meng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jing Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Xinyan Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fei Xue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huiping Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiangmin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Yi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
- College of Electronic Science and Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, China
| | - Xiaolan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuzheng Guo
- School of Electrical Engineering and Automation, Wuhan University, Hubei 430072, China
| | - Yong Xu
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Xue F, Zhang J, Ma Z, Wang Z. Copper Dispersed Covalent Organic Framework for Azide-Alkyne Cycloaddition and Fast Synthesis of Rufinamide in Water. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307796. [PMID: 38185802 DOI: 10.1002/smll.202307796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/27/2023] [Indexed: 01/09/2024]
Abstract
A crystalline porous bipyridine-based Bpy-COF with a high BET surface area (1864 m2 g-1) and uniform mesopore (4.0 nm) is successfully synthesized from 1,3,5-tris-(4'-formyl-biphenyl-4-yl)triazine and 5,5'-diamino-2,2'-bipyridine via a solvothermal method. After Cu(I)-loading, the resultant Cu(I)-Bpy-COF remained the ordered porous structure with evenly distributed Cu(I) ions at a single-atom level. Using Cu(I)-Bpy-COF as a heterogeneous catalyst, high conversions for cycloaddition reactions are achieved within a short time (40 min) at 25 °C in water medium. Moreover, Cu(I)-Bpy-COF proves to be applicable for aromatic and aliphatic azides and alkynes bearing various substituents such as ester, hydroxyl, amido, pyridyl, thienyl, bulky triphenylamine, fluorine, and trifluoromethyl groups. The high conversions remain almost constant after five cycles. Additionally, the antiepileptic drug (rufinamide) is successfully prepared by a simple one-step reaction using Cu(I)-Bpy-COF, proving its practical feasibility for pharmaceutical synthesis.
Collapse
Affiliation(s)
- Fei Xue
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Rd. 2, Dalian, 116024, China
| | - Jun Zhang
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Rd. 2, Dalian, 116024, China
| | - Zhongcheng Ma
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Rd. 2, Dalian, 116024, China
| | - Zhonggang Wang
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Rd. 2, Dalian, 116024, China
| |
Collapse
|
5
|
Qiu Z, Deng H, Neumann CN. Site-Isolated Rhodium(II) Metalloradicals Catalyze Olefin Hydrofunctionalization. Angew Chem Int Ed Engl 2024; 63:e202401375. [PMID: 38314637 DOI: 10.1002/anie.202401375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Rh(II) porphyrin complexes display pronounced metal-centered radical character and the ability to activate small molecules under mild conditions, but catalysis with Rh(II) porphyrins is extremely rare. In addition to facile dimerization, Rh(II) porphyrins readily engage in kinetically and thermodynamically facile reactions involving two Rh(II) centers to generate stable Rh(III)-X intermediates that obstruct turnover in thermal catalysis. Here we report site isolation of Rh(II) metalloradicals in a MOF host, which not only protects Rh(II) metalloradicals against dimerization, but also allows them to participate in thermal catalysis. Access to PCN-224 or PCN-222 in which the porphyrin linkers are fully metalated by Rh(II) in the absence of any accompanying Rh(0) nanoparticles was achieved via the first direct MOF synthesis with a linker containing a transition-metal alkyl moiety, followed by Rh(III)-C bond photolysis.
Collapse
Affiliation(s)
- Zihang Qiu
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Hao Deng
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Constanze N Neumann
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
6
|
Ren M, Li J, Huang M, Chen D, Li X, Yan X, An Q, Sun S. Solar-Driven Reforming of Methane and Nitrogen to Methanol and Ammonium on Iron-Modified Zeolite under Ambient Conditions in Water. Inorg Chem 2023; 62:14804-14814. [PMID: 37644618 DOI: 10.1021/acs.inorgchem.3c02393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Artificial photosynthesis from selective methane oxidation or nitrogen reduction to value-added chemicals provides a promising pathway for the sustainable chemical industry, while still remaining a great challenge due to the extreme difficulty in C-H and N≡N bond cleavage under ambient conditions. Catalysts that can cocatalyze these two reactions simultaneously are rarely reported. Here, Fe-ZSM-5 with highly dispersed extra-framework Fe-oxo species enables efficient and selective photocatalytic conversion of methane and nitrogen to coproduce methanol and ammonia using H2O as the redox reagent under ambient conditions. The optimized Fe-ZSM-5 photocatalyst achieves up to 0.88 mol/molFe·h of methanol products with 97% selectivity. Meanwhile, the productivity of ammonia is 0.61 mol/molFe·h. In situ EPR and DRIFT studies disclose that water serves as a redox reagent to provide hydroxyl radicals for methane oxidation and protons for nitrogen hydrogenation. Quantum chemical calculations revealed that Fe-oxo species play a significant role in the coactivation of methane and nitrogen molecules, which lowers the energy barriers of rate-determining steps for methanol and ammonia generation.
Collapse
Affiliation(s)
- Mei Ren
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jun Li
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Manhong Huang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Donghui Chen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoliang Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaoliang Yan
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China
| | - Qi An
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Songmei Sun
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|