1
|
Ghosh M, Mandal T, Lepori M, Barham JP, Rehbein J, Reiser O. Electrochemical Homo- and Crossannulation of Alkynes and Nitriles for the Regio- and Chemoselective Synthesis of 3,6-Diarylpyridines. Angew Chem Int Ed Engl 2024; 63:e202411930. [PMID: 39185589 DOI: 10.1002/anie.202411930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
We disclose a mediated electrochemical [2+2+2] annulation of alkynes with nitriles, forming substituted pyridines in a single step from low-cost, readily available starting materials. The combination of electrochemistry and a triarylamine redox mediator obviates the requirements of transition metals and additional oxidants. Besides the formation of diarylpyridine moieties via the homocoupling of two identical alkynes, the heterocoupling of two different alkynes depending on their electronic nature is possible, highlighting the unprecedented control of chemoselectivity in this catalytic [2+2+2] process. Mechanistic investigations like cyclic voltammetry and crossover experiments combined with DFT calculations indicate the initial oxidation of an alkyne as the key step leading to the formation of a vinyl radical cation intermediate. The utilization of continuous flow technology proved instrumental for an efficient process scale-up. The utility of the products is exemplified by the synthesis of π-extended molecules, being relevant for material or drug synthesis.
Collapse
Affiliation(s)
- Mangish Ghosh
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Tirtha Mandal
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Mattia Lepori
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Joshua P Barham
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Julia Rehbein
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Oliver Reiser
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| |
Collapse
|
2
|
Jankins TC, Blank PM, Brugnetti A, Boehm P, Aouane FA, Morandi B. Shuttle HAT for mild alkene transfer hydrofunctionalization. Nat Commun 2024; 15:9397. [PMID: 39477933 PMCID: PMC11525564 DOI: 10.1038/s41467-024-53281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Hydrogen atom transfer (HAT) from a metal-hydride is a reliable and powerful method for functionalizing unsaturated C-C bonds in organic synthesis. Cobalt hydrides (Co-H) have garnered significant attention in this field, where the weak Co-H bonds are most commonly generated in a catalytic fashion through a mixture of stoichiometric amounts of peroxide oxidant and silane reductant. Here we show that the reverse process of HAT to an alkene, i.e. hydrogen atom abstraction of a C-H adjacent to a radical, can be leveraged to generate catalytically active Co-H species in an application of shuttle catalysis coined shuttle HAT. This method obviates the need for stoichiometric reductant/oxidant mixtures thereby greatly simplifying the generation of Co-H. To demonstrate the generality of this shuttle HAT platform, five different reaction manifolds are shown, and the reaction can easily be scaled up to 100 mmol.
Collapse
Affiliation(s)
- Tanner C Jankins
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Philip M Blank
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Andrea Brugnetti
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Philip Boehm
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Françoise A Aouane
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland.
| |
Collapse
|
3
|
Kalomenopoulos PG, Emayavaramban B, Johnston CP. Enantioselective Synthesis of α-Aryl Ketones by a Cobalt-Catalyzed Semipinacol Rearrangement. Angew Chem Int Ed Engl 2024:e202414342. [PMID: 39312676 DOI: 10.1002/anie.202414342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
A highly enantioselective cobalt-catalyzed semipinacol rearrangement of symmetric α,α-diarylallylic alcohols is disclosed. A chiral cobalt-salen catalyst generates a highly electrophilic carbocation surrogate following hydrogen atom transfer and radical-polar crossover steps. This methodology provides access to enantioenriched α-aryl ketones through invertive displacement of a cobalt(IV) complex during 1,2-aryl migration. A combination of readily available reagents, silane and N-fluoropyridinium oxidant, are used to confer this type of reactivity. An exploration into the effect of aryl substitution revealed the reaction tolerates para- and meta-halogenated, mildly electron-rich and electron-poor aromatic rings with excellent enantioselectivities and yields. The yield of the rearrangement diminished with highly electron-rich aryl rings whereas very electron-deficient and ortho-substituted arenes led to poor enantiocontrol. A Hammett analysis demonstrated the migratory preference for electron-rich aromatic rings, which is consistent with the intermediacy of a phenonium cation.
Collapse
Affiliation(s)
| | | | - Craig P Johnston
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
4
|
Wearing ER, Yeh YC, Terrones GG, Parikh SG, Kevlishvili I, Kulik HJ, Schindler CS. Visible light-mediated aza Paternò-Büchi reaction of acyclic oximes and alkenes to azetidines. Science 2024; 384:1468-1476. [PMID: 38935726 DOI: 10.1126/science.adj6771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 05/15/2024] [Indexed: 06/29/2024]
Abstract
The aza Paternò-Büchi reaction is a [2+2]-cycloaddition reaction between imines and alkenes that produces azetidines, four-membered nitrogen-containing heterocycles. Currently, successful examples rely primarily on either intramolecular variants or cyclic imine equivalents. To unlock the full synthetic potential of aza Paternò-Büchi reactions, it is essential to extend the reaction to acyclic imine equivalents. Here, we report that matching of the frontier molecular orbital energies of alkenes with those of acyclic oximes enables visible light-mediated aza Paternò-Büchi reactions through triplet energy transfer catalysis. The utility of this reaction is further showcased in the synthesis of epi-penaresidin B. Density functional theory computations reveal that a competition between the desired [2+2]-cycloaddition and alkene dimerization determines the success of the reaction. Frontier orbital energy matching between the reactive components lowers transition-state energy (ΔGǂ) values and ultimately promotes reactivity.
Collapse
Affiliation(s)
- Emily R Wearing
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu-Cheng Yeh
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gianmarco G Terrones
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seren G Parikh
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Corinna S Schindler
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of British Columbia, Vancouver V6T 1Z1 BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver V6T 1Z4 BC, Canada
- BC Cancer, Vancouver V5Z 1G1 BC, Canada
| |
Collapse
|
5
|
Lian F, Li JL, Xu K. When transition-metal catalysis meets electrosynthesis: a recent update. Org Biomol Chem 2024; 22:4390-4419. [PMID: 38771266 DOI: 10.1039/d4ob00484a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
While aiming at sustainable synthesis, organic electrosynthesis has attracted increasing attention in the past few years. In parallel, with a deeper understanding of catalyst and ligand design, 3d transition-metal catalysis allows the conception of more straightforward synthetic routes in a cost-effective fashion. Owing to their intrinsic advantages, the merger of organic electrosynthesis with 3d transition-metal catalysis has offered huge opportunities for conceptually novel transformations while limiting ecological footprint. This review summarizes the key advancements in this direction published in the recent two years, with specific focus placed on strategy design and mechanistic aspects.
Collapse
Affiliation(s)
- Fei Lian
- School of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan 467000, China.
| | - Jiu-Ling Li
- School of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan 467000, China.
| | - Kun Xu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
6
|
Lindner H, Amberg WM, Martini T, Fischer DM, Moore E, Carreira EM. Photo- and Cobalt-Catalyzed Synthesis of Heterocycles via Cycloisomerization of Unactivated Olefins. Angew Chem Int Ed Engl 2024; 63:e202319515. [PMID: 38415968 DOI: 10.1002/anie.202319515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
We report a general, intramolecular cycloisomerization of unactivated olefins with pendant nucleophiles. The reaction proceeds under mild conditions and tolerates ethers, esters, protected amines, acetals, pyrazoles, carbamates, and arenes. It is amenable to N-, O-, as well as C-nucleophiles, yielding a number of different heterocycles including, but not limited to, pyrrolidines, piperidines, oxazolidinones, and lactones. Use of both a benzothiazinoquinoxaline as organophotocatalyst and a Co-salen catalyst obviates the need for stoichiometric oxidant or reductant. We showcase the utility of the protocol in late-stage drug diversification and synthesis of several small natural products.
Collapse
Affiliation(s)
- Henry Lindner
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Willi M Amberg
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Tristano Martini
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - David M Fischer
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Eléonore Moore
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Erick M Carreira
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
7
|
Wang Y, Wang Q, Wu L, Jia K, Wang M, Qiu Y. Electroreduction of unactivated alkenes using water as hydrogen source. Nat Commun 2024; 15:2780. [PMID: 38555370 PMCID: PMC10981685 DOI: 10.1038/s41467-024-47168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Herein, we report an electroreduction of unactivated alkyl alkenes enabled by [Fe]-H, which is provided through the combination of anodic iron salts and the silane generated in situ via cathodic reduction, using H2O as an H-source. The catalytic amounts of Si-additive work as an H-carrier from H2O to generate a highly active silane species in situ under continuous electrochemical conditions. This approach shows a broad substrate scope and good functional group compatibility. In addition to hydrogenation, the use of D2O instead of H2O provides the desired deuterated products in good yields with excellent D-incorporation (up to >99%). Further late-stage hydrogenation of complex molecules and drug derivatives demonstrate potential application in the pharmaceutical industry. Mechanistic studies are performed and provide support for the proposed mechanistic pathway.
Collapse
Affiliation(s)
- Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Qian Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Lei Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Kangping Jia
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
8
|
Zhuang K, Haug GC, Wang Y, Yin S, Sun H, Huang S, Trevino R, Shen K, Sun Y, Huang C, Qin B, Liu Y, Cheng M, Larionov OV, Jin S. Cobalt-Catalyzed Carbon-Heteroatom Transfer Enables Regioselective Tricomponent 1,4-Carboamination. J Am Chem Soc 2024; 146:8508-8519. [PMID: 38382542 DOI: 10.1021/jacs.3c14828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Tricomponent cobalt(salen)-catalyzed carbofunctionalization of unsaturated substrates by radical-polar crossover has the potential to streamline access to broad classes of heteroatom-functionalized synthetic targets, yet the reaction platform has remained elusive, despite the well-developed analogous hydrofunctionalizations mediated by high-valent alkylcobalt intermediates. We report herein the development of a cobalt(salen) catalytic system that enables carbofunctionalization. The reaction entails a tricomponent decarboxylative 1,4-carboamination of dienes and provides a direct route to aromatic allylic amines by obviating preformed allylation reagents and protection of oxidation-sensitive aromatic amines. The catalytic system merges acridine photocatalysis with cobalt(salen)-catalyzed regioselective 1,4-carbofunctionalization that facilitates the crossover of the radical and polar phases of the tricomponent coupling process, revealing critical roles of the reactants, as well as ligand effects and the nature of the formal high-valent alkylcobalt species on the chemo- and regioselectivity.
Collapse
Affiliation(s)
- Kaitong Zhuang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Graham C Haug
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Yangyang Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Shuyu Yin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Huiying Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Siwen Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Ramon Trevino
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Kunzhi Shen
- Shenyang Photosensitive Chemical Research Institute Company Limited, 8-12 No. 6 Road, Shenyang 110141, P. R. China
| | - Yao Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Chao Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Bin Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yongxiang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Oleg V Larionov
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Shengfei Jin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| |
Collapse
|
9
|
Liu J, Rong J, Wood DP, Wang Y, Liang SH, Lin S. Co-Catalyzed Hydrofluorination of Alkenes: Photocatalytic Method Development and Electroanalytical Mechanistic Investigation. J Am Chem Soc 2024; 146:4380-4392. [PMID: 38300825 PMCID: PMC11219133 DOI: 10.1021/jacs.3c10989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The hydrofluorination of alkenes represents an attractive strategy for the synthesis of aliphatic fluorides. This approach provides a direct means to form C(sp3)-F bonds selectively from readily available alkenes. Nonetheless, conducting hydrofluorination using nucleophilic fluorine sources poses significant challenges due to the low acidity and high toxicity associated with HF and the poor nucleophilicity of fluoride. In this study, we present a new Co(salen)-catalyzed hydrofluorination of simple alkenes utilizing Et3N·3HF as the sole source of both hydrogen and fluorine. This process operates via a photoredox-mediated polar-radical-polar crossover mechanism. We also demonstrated the versatility of this method by effectively converting a diverse array of simple and activated alkenes with varying degrees of substitution into hydrofluorinated products. Furthermore, we successfully applied this methodology to 18F-hydrofluorination reactions, enabling the introduction of 18F into potential radiopharmaceuticals. Our mechanistic investigations, conducted using rotating disk electrode voltammetry and DFT calculations, unveiled the involvement of both carbocation and CoIV-alkyl species as viable intermediates during the fluorination step, and the contribution of each pathway depends on the structure of the starting alkene.
Collapse
Affiliation(s)
- Jinjian Liu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Devin P. Wood
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yi Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Steven H. Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
10
|
Wang T, He F, Jiang W, Liu J. Electrohydrogenation of Nitriles with Amines by Cobalt Catalysis. Angew Chem Int Ed Engl 2024; 63:e202316140. [PMID: 38124405 DOI: 10.1002/anie.202316140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Catalytic hydrogenation of nitriles represents an efficient and sustainable one-step synthesis of valuable bulk and fine chemicals. We report herein a molecular cobalt electrocatalyst for selective hydrogenative coupling of nitriles with amines using protons as the hydrogen source. The key to success for this reductive reaction is the use of an electrocatalytic approach for efficient cobalt-hydride generation through a sequence of cathodic reduction and protonation. As only electrons (e- ) and protons (H+ ) as the redox equivalent and hydrogen source, this general electrohydrogenation protocol is showcased by highly selective and straightforward synthesis of various functionalized and structurally diverse amines, as well as deuterium isotope labeling applications. Mechanistic studies reveal that the electrogenerated cobalt-hydride transfer to nitrile process is the rate-determining step.
Collapse
Affiliation(s)
- Tiantian Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Fangfang He
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Wei Jiang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Jie Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
- Greater Bay Area Institute for Innovation, Hunan University, 511300, Guangzhou, Guangdong Province, China
| |
Collapse
|
11
|
Wilson CV, Holland PL. Mechanism of Alkene Hydrofunctionalization by Oxidative Cobalt(salen) Catalyzed Hydrogen Atom Transfer. J Am Chem Soc 2024; 146:2685-2700. [PMID: 38227206 PMCID: PMC10872242 DOI: 10.1021/jacs.3c12329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Oxidative MHAT hydrofunctionalization of alkenes provides a mild cobalt-catalyzed route to forming C-N and C-O bonds. Here, we characterize relevant salen-supported cobalt complexes and their reactions with alkenes, silanes, oxidant, and solvent. These stoichiometric investigations are complemented by kinetic studies of the catalytic reaction and catalyst speciation. We describe the solution characterization of an elusive cobalt(III) fluoride complex, which surprisingly is not the species that reacts with silane under catalytic conditions; rather, a cobalt(III) aquo complex is more active. Accordingly, the addition of water (0.15 M) speeds the catalytic reaction, and kinetic studies show that water addition enables catalytic product formation in 2 h at -50 °C in acetone. Under these conditions, cobalt(III) resting states can be observed by UV-vis spectrophotometry, including a cobalt(III)-alkyl complex. It comes from a transient cobalt(III) hydride complex that is formed in the turnover-limiting step of the catalytic cycle. This hydride readily degrades but not to H2; it releases H+ through a bimetallic pathway that explains the [Co]2 dependence of the off-cycle reaction. In contrast, the rate of the catalytic reaction follows the power law kobs[Co]1[silane]1. Because of the different [Co] dependence of the catalytic reaction and the degradation reaction, lower catalyst loading improves the yield of the catalytic reaction by reducing the relative rate of unproductive silane/oxidant consumption. These studies illuminate mechanistic details of oxidative MHAT hydrofunctionalization of alkenes and lay the groundwork for understanding other catalytic reactions mediated by cobalt hydride and cobalt alkyl complexes.
Collapse
Affiliation(s)
- Conner V. Wilson
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520, USA
| | - Patrick L. Holland
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520, USA
| |
Collapse
|
12
|
Mayerhofer VJ, Lippolis M, Teskey CJ. Dual-Catalysed Intermolecular Reductive Coupling of Dienes and Ketones. Angew Chem Int Ed Engl 2024; 63:e202314870. [PMID: 37947372 DOI: 10.1002/anie.202314870] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
We report a mild, catalytic method for the intermolecular reductive coupling of feedstock dienes and styrenes with ketones. Our conditions allow concomitant formation of a cobalt hydride species and single-electron reduction of ketones. Subsequent selective hydrogen-atom transfer from the cobalt hydride generates an allylic radical which can selectively couple with the persistent radical-anion of the ketone. This radical-radical coupling negates unfavourable steric interactions of ionic pathways and avoids the unstable alkoxy radical of previous radical olefin-carbonyl couplings, which were limited, as a result, to aldehydes. Applications of this novel and straightforward approach include the efficient synthesis of drug molecules, key intermediates in drug synthesis and site-selective late-stage functionalisation.
Collapse
Affiliation(s)
- Victor J Mayerhofer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Martina Lippolis
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Christopher J Teskey
- Institute of Organic Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
13
|
Qin J, Barday M, Jana S, Sanosa N, Funes-Ardoiz I, Teskey CJ. Photoinduced Cobalt Catalysis for the Reductive Coupling of Pyridines and Dienes Enabled by Paired Single-Electron Transfer. Angew Chem Int Ed Engl 2023; 62:e202310639. [PMID: 37676106 DOI: 10.1002/anie.202310639] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/08/2023]
Abstract
Selective hydroarylation of dienes has potential to provide swift access to useful building blocks. However, most existing methods rely on dienes stabilised by an aromatic group and transmetallation or nucleophilic attack steps require electron-rich aryl coupling partners. As such, there are few examples which tolerate wide-spread heteroarenes such as pyridine. Whilst allylic C-H functionalisation could be considered an alternative approach, the positional selectivity of unsymmetrical substrates is hard to control. Here, we report a general approach for selective hydropyridylation of dienes under mild conditions using metal catalysed hydrogen-atom transfer. Photoinduced, reductive conditions enable simultaneous formation of a cobalt-hydride catalyst and the persistent radical of easily-synthesised pyridyl phosphonium salts. This facilitates selective coupling of dienes in a traceless manner at the C4-position of a wide-range of pyridine substrates. The mildness of the method is underscored by its functional-group tolerance and demonstrated by applications in late-stage functionalisation. Based on a combination of experimental and computational studies, we propose a mechanistic pathway which proceeds through non-reversible hydrogen-atom transfer (HAT) from a cobalt hydride species which is uniquely selective for dienes in the presence of other olefins due to a much higher relative barrier associated with olefin HAT.
Collapse
Affiliation(s)
- Jingyang Qin
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Manuel Barday
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Samikshan Jana
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Nil Sanosa
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006, Logroño, Spain
| | - Ignacio Funes-Ardoiz
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006, Logroño, Spain
| | - Christopher J Teskey
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
14
|
Yang K, Feng T, Qiu Y. Organo-Mediator Enabled Electrochemical Deuteration of Styrenes. Angew Chem Int Ed Engl 2023; 62:e202312803. [PMID: 37698174 DOI: 10.1002/anie.202312803] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
Despite widespread use of the deuterium isotope effect, selective deuterium labeling of chemical molecules remains a major challenge. Herein, a facile and general electrochemically driven, organic mediator enabled deuteration of styrenes with deuterium oxide (D2 O) as the economical deuterium source was reported. Importantly, this transformation could be suitable for various electron rich styrenes mediated by triphenylphosphine (TPP). The reaction proceeded under mild conditions without transition-metal catalysts, affording the desired products in good yields with excellent D-incorporation (D-inc, up to >99 %). Mechanistic investigations by means of isotope labeling experiments and cyclic voltammetry tests provided sufficient support for this transformation. Notably, this method proved to be a powerful tool for late-stage deuteration of biorelevant compounds.
Collapse
Affiliation(s)
- Keming Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Tian Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
15
|
Li P, Kou G, Feng T, Wang M, Qiu Y. Electrochemical NiH-Catalyzed C(sp 3 )-C(sp 3 ) Coupling of Alkyl Halides and Alkyl Alkenes. Angew Chem Int Ed Engl 2023; 62:e202311941. [PMID: 37708153 DOI: 10.1002/anie.202311941] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Herein, an electrochemically driven NiH-catalyzed reductive coupling of alkyl halides and alkyl alkenes for the construction of Csp3 -Csp3 bonds is firstly reported. Notably, alkyl halides serve dual function as coupling substrates and as hydrogen sources to generate NiH species under electrochemical conditions. The tunable nature of this reaction is realized by introducing an intramolecular coordinating group to the substrate, where the product can be easily adjusted to give the desired branched products. The method proceeds under mild conditions, exhibits a broad substrate scope, and affords moderate to excellent yields with over 70 examples, including late-stage modification of natural products and drug derivatives. Mechanistic insights offer evidence for an electrochemically driven coupling process. The sp3 -carbon-halogen bonds can be activated through single electron transfer (SET) by the nickel catalyst in its low valence state, generated by cathodic reduction, and the generation of NiH species from alkyl halides is pivotal to this transformation.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Guangsheng Kou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Tian Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
16
|
Wang H, Liu R, Sun Q, Xu K. Direct alkylation of quinoxalinones with electron-deficient alkenes enabled by a sequential paired electrolysis. Chem Commun (Camb) 2023; 59:12763-12766. [PMID: 37812023 DOI: 10.1039/d3cc04356h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The metal-free alkylation of N-heterocycles with alkenes has remained a synthetic challenge. We report here the successful implementation of metal-free alkylation of quinoxalinones with electron-deficient alkenes enabled by a sequential paired electrolysis. This protocol provides a mechanistically distinct approach to prepare a variety of C-3 alkylated quinoxalinones that are otherwise quite difficult to synthesize by other means.
Collapse
Affiliation(s)
- Huiqiao Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Ruoyu Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Qi Sun
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|