1
|
Zhang Y, Zhang YY, Zhang L, Qin Q, Tao Y, Cui J, Wang D, Huang C, Hou H. Programming Bifunctional Metal-Organic Frameworks to Integrate Multiple Triboelectric Nanogenerators for Green Electronics toward Effective Self-Powered Photocatalytic System. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1522-1532. [PMID: 39690491 DOI: 10.1021/acsami.4c16023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Programming and synthesizing bifunctional materials for regulating the output of triboelectric nanogenerators (TENGs) and their photocatalytic efficiency is a promising strategy for energy harvesting to build self-powered systems. Herein, we tackle this challenge by introducing metal-organic frameworks (MOFs) as molecular catalysts and triboelectric layers for self-powered photocatalytic systems. A zeolite-like mixed-valence MOF (CuICuII-1) and a ladder-structured MOF (CuII-2) were obtained through structural transformation. Due to the excellent charge-trapping capability and surface potential of CuICuII-1, the outputs of CuICuII-1-TENG (a short-circuit current (Isc) of 30.4 μA and an open-circuit voltage (Voc) of 524.1 V) were significantly superior to those of CuII-2-TENG. The incorporation of CuICuII-1 with ethylcellulose (EC) to form CuICuII-1@EC composite films greatly improved the TENG outputs, and the 10% CuICuII-1@EC-TENG offered the maximum Isc (57.2 μA) and Voc (986.8 V). Furthermore, multiple 10% CuICuII-1@EC-TENG devices were integrated in parallel to assemble multiple TENG devices (M-TENG) to harvest biomechanical energy, which displayed significant potential to continuously power blue LEDs, generating blue-light irradiation to trigger the photocatalytic C(sp)-H/Si-H cross-coupling reactions of aromatic alkyne and trimethylsilane for alkynylsilane over the photocatalysts CuICuII-1 and CuII-2. The results revealed that CuICuII-1 achieved a cooperative effect on remarkable catalytic selectivity and activity. This work demonstrates that bifunctional MOFs can serve as friction electrode materials for the large-scale integration and assembly of MOF-based TENG, and photocatalysts for achieving self-powered photocatalytic systems.
Collapse
Affiliation(s)
- Yue Zhang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, and School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Ying-Ying Zhang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, and School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Lin Zhang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, and School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Qi Qin
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, and School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Yuanmeng Tao
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, and School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Jiaxing Cui
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, and School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Dandan Wang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, and School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Chao Huang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, and School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Hongwei Hou
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
2
|
Xiao P, Wang L, Toyoda H, Wang Y, Nakamura K, Huang J, Osuga R, Nishibori M, Gies H, Yokoi T. Revealing Active Sites and Reaction Pathways in Direct Oxidation of Methane over Fe-Containing CHA Zeolites Affected by the Al Arrangement. J Am Chem Soc 2024; 146:31969-31981. [PMID: 39499854 PMCID: PMC11583304 DOI: 10.1021/jacs.4c11773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Fe-containing zeolites are effective catalysts in converting the greenhouse gases CH4 and N2O into valuable chemicals. However, the activities of Fe-containing zeolites in methane conversion and N2O decomposition are frequently conflated, and the activities of different Fe species are still controversial. Herein, Fe-containing aluminosilicate CHA zeolites with Fe species at different spatial distances affected by the arrangement of framework Al atoms were synthesized in a one-pot manner in the presence or absence of Na. The arrangement of framework Al atoms was identified by 27Al and 29Si MAS NMR spectra and thermogravimetry-differential thermal analysis (TG-DTA) curves. Ultraviolet (UV)-vis, X-ray absorption spectroscopy (XAS), and NO adsorption fourier transform infrared spectroscopy (FTIR) spectra were adopted to analyze Fe speciation. The higher proportion of Fe species in the 6 MR of Fe-CHA zeolites in the presence of Na was confirmed by the NO adsorption FTIR spectrum. The activities of proximal and distant Fe sites in reactions including direct oxidation of methane to methanol, methanol to hydrocarbon, and N2O decomposition were compared at different temperatures to provide the corresponding active sites and reaction pathways. The distant, isolated Fe and isolated proton were more active in the direct oxidation of methane to methanol and tandem conversion of methanol to hydrocarbon reactions than the proximal, isolated Fe and paired protons, respectively. Additionally, proximal, isolated Fe sites afforded higher activity in N2O decomposition. These findings guide the design of highly active catalysts in methane oxidation, methanol to hydrocarbon, and N2O decomposition reactions, addressing energy and environmental concerns.
Collapse
Affiliation(s)
- Peipei Xiao
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Lizhuo Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Hiroto Toyoda
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Yong Wang
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Kengo Nakamura
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Jun Huang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ryota Osuga
- Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Maiko Nishibori
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Hermann Gies
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Toshiyuki Yokoi
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- iPEACE223 Inc., Konwa Building, 1-12-22 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
3
|
Oh C, Nandy A, Yue S, Kulik HJ. MOFs with the Stability for Practical Gas Adsorption Applications Require New Design Rules. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39365083 DOI: 10.1021/acsami.4c13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Metal-organic frameworks (MOFs) have been widely studied for their ability to capture and store greenhouse gases. However, most computational discovery efforts study hypothetical MOFs without consideration of their stability, limiting the practical application of novel materials. We overcome this limitation by screening hypothetical ultrastable MOFs that have predicted high thermal and activation stability, as judged by machine learning (ML) models trained on experimental measures of stability. We enhance this set by computing the bulk modulus as a measure of mechanical stability and filter 1102 mechanically robust hypothetical MOFs from a database of ultrastable MOFs (USMOF DB). Grand Canonical Monte Carlo simulations are then employed to predict the gas adsorption properties of these hypothetical MOFs, alongside a database of experimental MOFs. We identify privileged building blocks that lead MOFs in USMOF DB to show exceptional working capacities compared to the experimental MOFs. We interpret these differences by training ML models on CO2 and CH4 adsorption in these databases, showing how poor model transferability between data sets indicates that novel design rules can be derived from USMOF DB that would not have been gathered through assessment of structurally characterized MOFs. We identify geometric features and node chemistry that will enable the rational design of MOFs with enhanced gas adsorption properties in synthetically realizable MOFs.
Collapse
Affiliation(s)
- Changhwan Oh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shuwen Yue
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Liu S, Yang H, Li S, Qin Q, Tao Y, Cui J, Wang D, Huang C, Zhang YY. Enhancement of Synergistic Photocatalytic Performance by Anchoring Cadmium Sulfide on Nanosphere Structured Coordination Polymers. Inorg Chem 2024; 63:17116-17126. [PMID: 39231020 DOI: 10.1021/acs.inorgchem.4c02796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Precisely tuning how and where a reaction occurs in a one-step selective system is important but challenging owing to the similar electronic environments in multiple active sites. In this work, highly selective and effective reaction sites were obtained by generating copper coordination polymers (Cu-CP) of a range of sizes and morphologies, from bulk solid crystals (1) to uniform nanosphere structures (1a), by controlling the amount of surfactant hexadecyl trimethylammonium bromide (CTAB). The results indicated that the morphology and size of the uniform nanosphere structures were affected by the proportion of CTAB; uniform distribution of nanosphere structures was achieved with a premade building carrier when the content of CTAB was 0.005 mmol, generating a well-established platform. Photocatalytic cadmium sulfide (CdS) was then immobilized on the surface of the premade platform unit 1a through an in situ process to generate CdS@1a composites with well-dispersed catalytic CdS active sites. Furthermore, the well-defined CdS@1a composite platform was utilized as photocatalysts to explore the selective one-step depolymerization reaction under blue-light irradiation. Notably, the CdS0.149@1a composite, which featured a unique structure with evenly dispersed, closely spaced catalytic sites, exhibiting remarkable photoelectrochemical behaviors for selective one-step depolymerization of lignin model substances to aromatic monomer phenol and acetophenone framework products. This work demonstrates the use of an inherently morphological process to construct outstanding photocatalysts that could enable a wide range of photocatalytic reactions.
Collapse
Affiliation(s)
- Saiwei Liu
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, and School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Haiyan Yang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, and School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Shuo Li
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, and School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Qi Qin
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, and School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Yuanmeng Tao
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, and School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Jiaxing Cui
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, and School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Dandan Wang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, and School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Chao Huang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, and School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Ying-Ying Zhang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, and School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| |
Collapse
|
5
|
Wu X, Du J, Gao Y, Wang H, Zhang C, Zhang R, He H, Lu GM, Wu Z. Progress and challenges in nitrous oxide decomposition and valorization. Chem Soc Rev 2024; 53:8379-8423. [PMID: 39007174 DOI: 10.1039/d3cs00919j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Nitrous oxide (N2O) decomposition is increasingly acknowledged as a viable strategy for mitigating greenhouse gas emissions and addressing ozone depletion, aligning significantly with the UN's sustainable development goals (SDGs) and carbon neutrality objectives. To enhance efficiency in treatment and explore potential valorization, recent developments have introduced novel N2O reduction catalysts and pathways. Despite these advancements, a comprehensive and comparative review is absent. In this review, we undertake a thorough evaluation of N2O treatment technologies from a holistic perspective. First, we summarize and update the recent progress in thermal decomposition, direct catalytic decomposition (deN2O), and selective catalytic reduction of N2O. The scope extends to the catalytic activity of emerging catalysts, including nanostructured materials and single-atom catalysts. Furthermore, we present a detailed account of the mechanisms and applications of room-temperature techniques characterized by low energy consumption and sustainable merits, including photocatalytic and electrocatalytic N2O reduction. This article also underscores the extensive and effective utilization of N2O resources in chemical synthesis scenarios, providing potential avenues for future resource reuse. This review provides an accessible theoretical foundation and a panoramic vision for practical N2O emission controls.
Collapse
Affiliation(s)
- Xuanhao Wu
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Jiaxin Du
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Yanxia Gao
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Haiqiang Wang
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Runduo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | | | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Reinhardt CR, Manetsch MT, Li WL, Román-Leshkov Y, Head-Gordon T, Kulik HJ. Computational Screening of Putative Catalyst Transition Metal Complexes as Guests in a Ga 4L 612- Nanocage. Inorg Chem 2024; 63:14609-14622. [PMID: 39049593 DOI: 10.1021/acs.inorgchem.4c02113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Metal-organic cages form well-defined microenvironments that can enhance the catalytic proficiency of encapsulated transition metal complexes (TMCs). We introduce a screening protocol to efficiently identify TMCs that are promising candidates for encapsulation in the Ga4L612- nanocage. We obtain TMCs from the Cambridge Structural Database with geometric and electronic characteristics amenable to encapsulation and mine the text of associated manuscripts to curate TMCs with documented catalytic functionality. By docking candidate TMCs inside the nanocage cavity and carrying out electronic structure calculations, we identify a subset of successfully optimized candidates (TMC-34) and observe that encapsulated guests occupy an average of 60% of the cavity volume, in line with previous observations. Notably, some guests occupy as much as 72% of the cavity as a result of linker rotation. Encapsulation has a universal effect on the electrostatic potential (ESP), systematically decreasing the ESP at the metal center of each TMC in the TMC-34 data set, while minimally altering TMC metal partial charges. Collectively these observations support geometry-based screening of potential guests and suggest that encapsulation in Ga4L612- cages could electrostatically stabilize diverse cationic or electropositive intermediates. We highlight candidate guests with associated known reactivity and solubility most amenable for encapsulation in experimental follow-up studies.
Collapse
Affiliation(s)
- Clorice R Reinhardt
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Melissa T Manetsch
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wan-Lu Li
- Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Chinchan K, Jiajaroen S, Theppitak C, Laksee S, Sukwattanasinitt M, Chainok K. Synthesis, structure and photoluminescence properties of heterometallic-based coordination polymers of trimesic acid. Acta Crystallogr C Struct Chem 2024; 80:230-238. [PMID: 38721808 DOI: 10.1107/s2053229624003528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
Reacting trimesic acid (H3TMA, C9H6O6) with CaCl2 and MCl2 at 110 °C under hydrothermal conditions gave the isostructural heterobimetallic coordination polymers (CPs) catena-poly[[tetraaquazinc(II)]-μ-5-carboxybenzene-1,3-dicarboxylato-[tetraaquacalcium(II)]-μ-5-carboxybenzene-1,3-dicarboxylato], [CaZn(HTMA)2(H2O)8]n, 1, and catena-poly[[tetraaquacobalt(II)]-μ-5-carboxybenzene-1,3-dicarboxylato-[tetraaquacalcium(II)]-μ-5-carboxybenzene-1,3-dicarboxylato], [CaCo(HTMA)2(H2O)8]n, 2. Compounds 1 and 2 crystallize in the monoclinic space group C2/c. The solid-state structures consist of eight-coordinate CaII ions and six-coordinate MII ions. These ions are connected by a doubly deprotonated HTMA2- ligand to create a one-dimensional (1D) zigzag chain. Poly[[decaaquabis(μ3-benzene-1,3,5-tricarboxylato)calcium(II)dizinc(II)] dihydrate], {[CaZn2(TMA)2(H2O)10]·2H2O}n, 3, was found incidentally as a minor by-product during the synthesis of 1 at a temperature of 140 °C. It forms crystals in the orthorhombic space group Ccce. The structure of 3 consists of a two-dimensional (2D) layer composed of [Zn(TMA)] chains that are interconnected by CaII ions. The presence of aromatic carboxylic acid ligands and water molecules, which can form numerous hydrogen bonds and π-π interactions, increases the stability of the three-dimensional (3D) supramolecular architecture of these CPs. Compounds 1 and 2 exhibit thermal stability up to 420 °C, as indicated by the thermogravimetric analysis (TGA) curves. The powder X-ray diffraction (PXRD) data reveal the formation of unidentified phases in methanol and dimethyl sulfoxide, while 1 exhibits chemical stability in a wide range of solvents. The luminescence properties of 1 dispersed in various low molecular weight organic solvents was also examined. The results demonstrate excellent selectivity, sensitivity and recyclability for detecting acetone molecules in aqueous media. Additionally, a possible sensing mechanism is also outlined.
Collapse
Affiliation(s)
- Kunlanit Chinchan
- Thammasat University Research Unit in Multifunctional Crystalline Materials, and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani, 12121, Thailand
| | - Suwadee Jiajaroen
- Thammasat University Research Unit in Multifunctional Crystalline Materials, and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani, 12121, Thailand
| | - Chatphorn Theppitak
- Thammasat University Research Unit in Multifunctional Crystalline Materials, and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani, 12121, Thailand
| | - Sakchai Laksee
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Ongkharak, Nakon Nayok, 26120, Thailand
| | | | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials, and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani, 12121, Thailand
| |
Collapse
|
8
|
Yang L, Jiang N, Zhang Z, Zhang X, Wu H, Li Z, Zhou Z. A Zn-modified PCN-224 fluorescent nanoprobe for selective and sensitive turn-on detection of glutathione. Talanta 2024; 270:125652. [PMID: 38199125 DOI: 10.1016/j.talanta.2024.125652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
Monitoring endogenous glutathione (GSH) levels in living cells is essential for cancer diagnose and treatment. In this work, GSH responsive fluorescent nanoprobe with turn-on property was constructed using Zn-modified porphyrinic metal-organic frameworks (PCN-224-Zn). The introduced Zn2+ could quench the fluorescence of PCN-224 by the metallization of organic ligand (TCPP) and serves as sensing site for GSH. When exposed to GSH, the strong binding affinity of GSH generates the formation of Zn-GSH complex, eliminating the fluorescence quenching effect of Zn2+. Based on the constructed PCN-224-Zn nanoprobe, selective determination of GSH was achieved in the range of 0.01-6 μM with a detection limit of 1.5 nM. Furthermore, the constructed nanoprobe can realize the fluorescence imaging of endogenous GSH in MCF-7 and HeLa cells. Meanwhile, PCN-224-Zn could also monitor GSH in cell lysate with recovery rates from 93.8 % to 102.3 %. The performance of PCN-224-Zn demonstrates its capacities in the application of fluorescence sensing and bio-imaging fields.
Collapse
Affiliation(s)
- Liyun Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Naijia Jiang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Zihan Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Xiao Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Huiyan Wu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Zhouyang Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Zhiqiang Zhou
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China.
| |
Collapse
|
9
|
Xu W, Wu Y, Gu W, Du D, Lin Y, Zhu C. Atomic-level design of metalloenzyme-like active pockets in metal-organic frameworks for bioinspired catalysis. Chem Soc Rev 2024; 53:137-162. [PMID: 38018371 DOI: 10.1039/d3cs00767g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Natural metalloenzymes with astonishing reaction activity and specificity underpin essential life transformations. Nevertheless, enzymes only operate under mild conditions to keep sophisticated structures active, limiting their potential applications. Artificial metalloenzymes that recapitulate the catalytic activity of enzymes can not only circumvent the enzymatic fragility but also bring versatile functions into practice. Among them, metal-organic frameworks (MOFs) featuring diverse and site-isolated metal sites and supramolecular structures have emerged as promising candidates for metalloenzymes to move toward unparalleled properties and behaviour of enzymes. In this review, we systematically summarize the significant advances in MOF-based metalloenzyme mimics with a special emphasis on active pocket engineering at the atomic level, including primary catalytic sites and secondary coordination spheres. Then, the deep understanding of catalytic mechanisms and their advanced applications are discussed. Finally, a perspective on this emerging frontier research is provided to advance bioinspired catalysis.
Collapse
Affiliation(s)
- Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Yu Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
10
|
Han X, Zhang W, Chen Z, Liu Y, Cui Y. The future of metal-organic frameworks and covalent organic frameworks: rational synthesis and customized applications. MATERIALS HORIZONS 2023; 10:5337-5342. [PMID: 37850465 DOI: 10.1039/d3mh01396k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are designable and tunable functional crystalline porous materials that have been explored for applications such as catalysis, chemical sensing, water harvesting, gas storage, and separation. On the basis of reticular chemistry, the rational design and synthesis of MOFs and COFs allows us to have unprecedented control over their structural features and functionalities. Given the vast number of possible MOF and COF structures and the flexibility of modifying them, it remains challenging to navigate the infinite chemical space solely through a trial-and-error process. This Opinion Article provides a brief perspective of the current state and future prospects of MOFs and COFs. We envision that emerging technologies based on machine learning and robotics, such as high-throughput computational screening and fully automatic synthesis, can potentially address some challenges facing this field, accelerating the discovery of porous framework materials and the development of rational synthetic strategies for customized applications.
Collapse
Affiliation(s)
- Xing Han
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wenqiang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhijie Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|