1
|
Li YL, Wang HL, Xiao ZX, Ai JF, Liang FP, Zhu ZH, Zou HH. Dynamic Rare-Earth Metal-Organic Frameworks Based on Molecular Rotor Linkers with Efficient Emissions and Ultrasensitive Optical Sensing Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62301-62313. [PMID: 39475532 DOI: 10.1021/acsami.4c10628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
4,4',4″-Triphenylamine tricarboxylate (TPA-COOH) with a distinct molecular rotor structure was reacted with rare-earth (RE) metal ions to obtain seven dynamic RE-based luminescent MOFs (RE-LMOFs) (i.e., emission colors in the blue, yellow-green, red, and near-infrared regions and emission peak wavelengths between 400 and 1600 nm) via the effective transfer of absorbed energy from TPA-COOH to the RE metal ions through the antenna effect. Due to the large energy level difference between RE ions, it was rare in the early days to use the same ligand to construct energy-level matching RE-LMOF homologues with multiple RE metal centers. The uncoordinated oxygen atoms on the molecular rotor linkers in RE-LMOFs provide active sites that can specifically capture highly toxic metal ions and strong oxidative pollutants. The limit of detection (LOD) of RE-LMOF for Al(III) ions is far below the maximum concentration of Al(III) ions in drinking water stipulated by the U.S. Environmental Protection Agency (USEPA) and that for H2O2 is much lower than the H2O2 content in cancer cells, showing excellent application potential for diagnosing early cell cancelation.
Collapse
Affiliation(s)
- Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hai-Ling Wang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, P. R. China
| | - Zi-Xin Xiao
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Ju-Fen Ai
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fu-Pei Liang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhong-Hong Zhu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, P. R. China
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
2
|
Dong Q, Liu F, Wang J, Han E, Zhao H, Chen B, Li K, Yuan J, Jiang Z, Chen M, Li Y, Liu D, Lin Y, Wang P. Guest-Induced "Breathing-Helical" Dynamic System of a Porphyrinic Metallo-Organic Cage for Advanced Conformational Manipulation. Angew Chem Int Ed Engl 2024:e202416327. [PMID: 39343746 DOI: 10.1002/anie.202416327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Host-guest dynamic systems in coordination-driven metallo-organic cages have gained significant attentions since their promising applications in chiral separation, drug delivery, and catalytical fields. To maximize guest-binding affinity, hosts adopting multiple conformations are widely investigated on their structural flexibility for guest accommodation. In this study, a novel metallo-organic cage S with breathing inner cavity and freely twisted side chains was proposed. Single-crystal X-ray diffraction analyses depicted a characteristic "breathing-helical" dynamic system on the semiflexible framework, which led to an unprecedent co-crystallisation of racemic and symmetric conformations via the encapsulation locking of C70 guests. By taking advantages of the high binding affinity, selective extraction of C70 was realized. This research provides new ideas for the modification on the helicities of metallo-organic cages, which could pave a new way for advanced conformational manipulation of supramolecular host systems.
Collapse
Affiliation(s)
- Qiangqiang Dong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Fengxue Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jun Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Ermeng Han
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - He Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Bangtang Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Kaixiu Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jie Yuan
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yiming Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Die Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yifan Lin
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan, Guangdong, 528300, China
| | - Pingshan Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
3
|
Chang JP, Zhang YW, Sun LY, Zhang L, Hahn FE, Han YF. Synthesis of a Metalla[2]catenane, Metallarectangles and Polynuclear Assemblies from Di(N-Heterocyclic Carbene) Ligands. Angew Chem Int Ed Engl 2024; 63:e202409664. [PMID: 38949121 DOI: 10.1002/anie.202409664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
The 2,7-fluorenone-linked bis(6-imidazo[1,5-a]pyridinium) salt H2-1(PF6)2 reacts with Ag2O in CH3CN to yield the [2]catenane [Ag4(1)4](PF6)4. The [2]catenane rearranges in DMF to yield two metallamacrocycles [Ag2(1)2](PF6)2. 2,7-Fluorenone-bridged bis-(imidazolium) salts H2-L(PF6)2 (L=2 a, 2 b) react with Ag2O in CH3CN to yield metallamacrocycles [Ag2(L)2](PF6)2 with interplanar distances between the fluorenone rings too small for [2]catenane formation. Intra- and intermolecular π⋅⋅⋅π interactions between the fluorenone groups were observed by X-ray crystallography. The strongly kinked 2,7-fluorenone bridged bis(5-imidazo[1,5-a]pyridinium) salt H2-4(PF6)2 reacts with Ag2O to yield [Ag2(4)(CN)](PF6), while the tetranuclear assembly [Ag4(4)2(CO3)](PF6)2 was obtained in the presence of K2CO3.
Collapse
Affiliation(s)
- Jin-Ping Chang
- Key State Laboratory of Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ya-Wen Zhang
- Key State Laboratory of Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - Li-Ying Sun
- Key State Laboratory of Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - Le Zhang
- Key State Laboratory of Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - F Ekkehardt Hahn
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Ying-Feng Han
- Key State Laboratory of Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
4
|
Dang LL, Zheng J, Zhang JZ, Chen T, Chai YH, Fu HR, Aznarez F, Liu SR, Li DS, Ma LF. Triply Interlocked [2]catenanes: Rational Synthesis, Reversible Conversion Studies and Unprecedented Application in Photothermal Responsive Elastomer. Angew Chem Int Ed Engl 2024; 63:e202406552. [PMID: 38766881 DOI: 10.1002/anie.202406552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Triply interlocked [2]catenane complexes featuring two identical, mechanically interlocked units are extraordinarily rare chemical compounds, whose properties and applications remain open to detailed studies. Herein, we introduce the rational design of a new ligand precursor, L1, suitable for the synthesis of six triply interlocked [2]catenanes by coordination-driven self-assembly. The interlocked compounds can be reversibly converted into the corresponding simple triangular prism metallacage by addition of H2O or DMF solvents to their CH3OH solutions, thereby demonstrating the importance of π⋅⋅⋅π stacking and hydrogen bonding interactions in the formation of triply interlocked [2]catenanes. Moreover, extensive studies have been conducted to assess the remarkable photothermal conversion performance. Complex 6 a, exhibiting outstanding photothermal conversion performance (conversion efficiency in solution : 31.82 %), is used to prepare novel photoresponsive elastomer in combination with thermally activated liquid crystal elastomer. The resultant material displays robust response to near-infrared (NIR) laser and the capability of completely reforming the shape and reversible actuation, paving the way for the application of half-sandwich organometallic units in photo-responsive smart materials.
Collapse
Affiliation(s)
- Li-Long Dang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
| | - Jie Zheng
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
- College of materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, P. R. China
| | - Ju-Zhong Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Tian Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
| | - Yin-Hang Chai
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
| | - Hong-Ru Fu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
| | - Francisco Aznarez
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200438, P. R. China
| | - Shui-Ren Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Dong-Sheng Li
- College of materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
| |
Collapse
|
5
|
Yang XD, Lv H, Dong W, Wen Y, Fu M, Zhang Q, Zhou L, Xuan X. Recycling Organic Dyes within the Metal-Organic Framework for Photothermal Conversion. Inorg Chem 2024; 63:13714-13723. [PMID: 38965790 DOI: 10.1021/acs.inorgchem.4c02004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The pursuit of a straightforward method to recycle organic dyes from effluents and repurpose them into valuable materials represents a highly sought-after yet huge challenge within the realms of chemistry, environment, and materials science. In this context, we employ a host-guest strategy that leverages the recycling of the rhodamine B molecule within the porous structure of a metal-organic framework to facilitate photothermal conversion. This achievement is realized through the electrostatic interaction, which then gives rise to remarkable selectivity and unparalleled uptake capacity for the cationic rhodamine B molecule. Capitalizing on this approach, the application of a columnar device and membrane technology for efficiently trapping rhodamine B molecules becomes feasible. On account of the aggregation effect resulting from the confined pore structure of the host matrix, the fluorescence emission of the encapsulated RhB molecules is significantly reduced, which consequently enhances the photothermal performance of the hybrid material through nonradiative transition. Moreover, the photothermal conversion achieved showcases a myriad of high-performance applications, including bacterial inhibition against Escherichia coli and seawater desalination.
Collapse
Affiliation(s)
- Xiao-Dong Yang
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Haijing Lv
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wenjing Dong
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yaping Wen
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Miaomiao Fu
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qiqi Zhang
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lian Zhou
- Faculty of Energy and Electric Engineering, Qinghai University, Xining 810016, China
| | - Xiaopeng Xuan
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- Faculty of Energy and Electric Engineering, Qinghai University, Xining 810016, China
| |
Collapse
|
6
|
Lu X, Zhang K, Niu X, Ren DD, Zhou Z, Dang LL, Fu HR, Tan C, Ma L, Zang SQ. Encapsulation engineering of porous crystalline frameworks for delayed luminescence and circularly polarized luminescence. Chem Soc Rev 2024; 53:6694-6734. [PMID: 38747082 DOI: 10.1039/d3cs01026k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Delayed luminescence (DF), including phosphorescence and thermally activated delayed fluorescence (TADF), and circularly polarized luminescence (CPL) exhibit common and broad application prospects in optoelectronic displays, biological imaging, and encryption. Thus, the combination of delayed luminescence and circularly polarized luminescence is attracting increasing attention. The encapsulation of guest emitters in various host matrices to form host-guest systems has been demonstrated to be an appealing strategy to further enhance and/or modulate their delayed luminescence and circularly polarized luminescence. Compared with conventional liquid crystals, polymers, and supramolecular matrices, porous crystalline frameworks (PCFs) including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), zeolites and hydrogen-bonded organic frameworks (HOFs) can not only overcome shortcomings such as flexibility and disorder but also achieve the ordered encapsulation of guests and long-term stability of chiral structures, providing new promising host platforms for the development of DF and CPL. In this review, we provide a comprehensive and critical summary of the recent progress in host-guest photochemistry via the encapsulation engineering of guest emitters in PCFs, particularly focusing on delayed luminescence and circularly polarized luminescence. Initially, the general principle of phosphorescence, TADF and CPL, the combination of DF and CPL, and energy transfer processes between host and guests are introduced. Subsequently, we comprehensively discuss the critical factors affecting the encapsulation engineering of guest emitters in PCFs, such as pore structures, the confinement effect, charge and energy transfer between the host and guest, conformational dynamics, and aggregation model of guest emitters. Thereafter, we summarize the effective methods for the preparation of host-guest systems, especially single-crystal-to-single-crystal (SC-SC) transformation and epitaxial growth, which are distinct from conventional methods based on amorphous materials. Then, the recent advancements in host-guest systems based on PCFs for delayed luminescence and circularly polarized luminescence are highlighted. Finally, we present our personal insights into the challenges and future opportunities in this promising field.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Kun Zhang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Xinkai Niu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology, College of Science, Shihezi University, Shihezi 832003, P. R. China
| | - Dan-Dan Ren
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Hong-Ru Fu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Chaoliang Tan
- Department Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
7
|
Li Y, Jiang H, Zhang W, Zhao X, Sun M, Cui Y, Liu Y. Hetero- and Homointerlocked Metal-Organic Cages. J Am Chem Soc 2024; 146:3147-3159. [PMID: 38279915 DOI: 10.1021/jacs.3c10734] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Interlocked molecular assemblies constitute a captivating ensemble of chemical topologies, comprising two or more separate components that exhibit remarkably intricate structures. The interlocked molecular assemblies are typically identical, and heterointerlocked systems that comprise structurally distinct assemblies remain unexplored. Here, we demonstrate that metal-templated synthesis can be exploited to afford not only a homointerlocked cage but also a heterointerlocked cage. Treatment of a carboxylated 2,9-dimethyl-1,10-phenanthroline (dmp) or Cu(I) bis-dmp linker with a Ni4-p-tert-butylsulfonylcalix[4]arene cluster affords noninterlocked octahedron and quadruply interlocked double cages consisting of two identical tetragonal pyramids, respectively. In contrast, when a mixture of dmp and Cu(I) bis-dmp linkers is used, a quadruply heterointerlocked cage is produced, consisting of a tetragonal pyramid and an octahedron. With photoredox-active [Cu(dmp)2]+ in the structures, both interlocked cages exhibit remarkable performance as photocatalysts for atom transfer radical addition (ATRA) reactions of trifluoromethanesulfonyl chloride with alkenes or oxo-azidations of vinyl arenes. These interlocked structures serve the dual purpose of stabilizing photocatalytically active components against deactivation and encapsulating substrates within the cavity, resulting in yields comparable to or even surpassing those of their molecular counterparts. This work thus provides a new strategy that combines metal templating and nontemplating approaches to design new types of interlocked assemblies with intriguing architectures and properties.
Collapse
Affiliation(s)
- Yingguo Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenqiang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangxiang Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meng Sun
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Lu X, Huang JJ, Chen T, Zheng J, Liu M, Wang XY, Li YX, Niu X, Dang LL. A Coordination-Driven Self-Assembly and NIR Photothermal Conversion Study of Organometallic Handcuffs. Molecules 2023; 28:6826. [PMID: 37836669 PMCID: PMC10574444 DOI: 10.3390/molecules28196826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Due to their fascinating topological structures and application prospects, coordination supramolecular complexes have continuously been studied by scientists. However, the controlled construction and property study of organometallic handcuffs remains a significant and challenging research subject in the area of supramolecular chemistry. Hence, a series of tetranuclear organometallic and heterometallic handcuffs bearing different size and metal types were rationally designed and successfully synthesized by utilizing a quadridentate pyridyl ligand (tetra-(3-pyridylphenyl)ethylene) based on three Cp*Rh (Cp* = η5-C5Me5) fragments bearing specific longitudinal dimensions and conjugated planes. These results were determined with single-crystal X-ray diffraction analysis technology, ESI-MS NMR spectroscopy, etc. Importantly, the photoquenching effect of Cp* groups and the discrepancy of intermolecular π-π stacking interactions between building block and half-sandwich fragments promote markedly different photothermal conversion results. These results will further push the synthesis of topological structures and the development of photothermal conversion materials.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Jing-Jing Huang
- Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Tian Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Jie Zheng
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| | - Ming Liu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Xin-Yi Wang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Yu-Xin Li
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Xinkai Niu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
- College of Science, Shihezi University, Shihezi 832003, China
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|