1
|
Song JL, Chen C, Li X, Jiang Y, Peng Z, Wang XQ, Yang HB, Wang W. Boosting the circularly polarized luminescence of pyrene-tiaraed pillararenes through mechanically locking. Nat Commun 2024; 15:10531. [PMID: 39627256 PMCID: PMC11615231 DOI: 10.1038/s41467-024-54961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Attributed to their unique dynamic planar chirality, pillar[n]arenes, particularly pillar[5]arenes, have evolved as promising platforms for diverse applications such as circularly polarized luminescence (CPL) emitters. However, due to the unit flipping and swing, the achievement of excellent CPL performances of pillar[5]arenes in solution state remains a formidable challenge. To deal with this key issue, a mechanically locking approach has been successfully developed, leading to boosted dissymmetry factor (glum) values of pyrene-tiaraed pillar[5]arenes up to 0.015 through the formation of corresponding [2]rotaxanes. More importantly, taking advantage of the stably locked co-conformers, these resultant [2]rotaxanes maintain excellent CPL performances in diverse solvents and wide range of concentrations, making them promising candidates for practical applications. According to this proof-of-concept study, we have not only successfully developed a powerful strategy for the rational design of chiral luminescent materials with desired CPL performances but also contributed a promising platform for the construction of smart chiral materials.
Collapse
Affiliation(s)
- Jing-Lin Song
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Chao Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xue Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yefei Jiang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Zhiyong Peng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xu-Qing Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Hai-Bo Yang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, China
| | - Wei Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| |
Collapse
|
2
|
Yin HQ, Chen J, Xue YW, Ren J, Wang XH, Fan HR, Wei SY, Sun B, Zhang ZM. Loading Dyes into Chiral Cd/Zn-Metal-Organic Frameworks for Efficient Full-Color Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2024; 63:e202407596. [PMID: 39363761 DOI: 10.1002/anie.202407596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/13/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
Host-guest chemistry of chiral metal-organic frameworks (MOFs) has endowed them with circularly polarized luminescence (CPL), it is still limited for MOFs to systematically tune full-color CPL emissions and sizes. This work directionally assembles the chiral ligands, metal sites and organic dyes to prepare a series of crystalline enantiomeric D/L-Cd/Zn-n MOFs (n=1~5, representing the adding amount of dyes), where D/L-Cd/Zn with the formula of Cd2(D/L-Cam)2(TPyPE) and Zn2(D/L-Cam)2(TPyPE) (D/L-Cam=D/L-camphoric acid, TPyPE=4,4',4'',4'''-(1,2-henediidenetetra-4,1-phenylene)tetrakis[pyridine]) were used as the chiral platforms. The framework-dye-enabled emission and through-space chirality transfer facilitate D/L-Cd/Zn-n bright full-color CPL activity. The ideal yellow CPL of D-Cd-5 and D-Zn-4, with |glum| as 4.9 × 10-3 and 1.3×10-3 and relatively high photoluminescence quantum yield of 40.79 % and 45.40 %, are further assembled into a white CPL light-emitting diode. The crystal sizes of D/L-Cd/Zn-n were found to be strongly correlated to the types and additional amounts of organic dyes, that the positive organic dyes allow for the preparation of > 7 mm bulks and negative dyes account for sub-20 μm particles. This work opens a new avenue to fabricate full-color emissive CPL composites and provides a potentially universal method for controlling the size of optical platforms.
Collapse
Affiliation(s)
- Hua-Qing Yin
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Jia Chen
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Yu-Wei Xue
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Jing Ren
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Xin-Hui Wang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Heng-Rui Fan
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Shu-Yan Wei
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Bo Sun
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| |
Collapse
|
3
|
Lu W, Yan W, Guo R, Zheng J, Bian Z, Liu Z. Upconversion Luminescence in a Photostable Ion-Paired Yb-Eu Heteronuclear Complex. Angew Chem Int Ed Engl 2024; 63:e202413069. [PMID: 39045802 DOI: 10.1002/anie.202413069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
Lanthanide-based upconversion molecular complexes have potential application in diverse fields and attracted considerable research interest in recent years. However, the similar coordination reactivity of lanthanide ions has constrained the designability of target molecule with well-defined structure, and many attempts obtained statistical mixtures. Herein, an ion-paired Yb-Eu heteronuclear complex [Eu(TpPy)2][Yb(ND)4] (TpPy=tris[3-(2-pyridyl)pyrazolyl]hydroborate, ND=3-cyano-2-methyl-1,5-naphthyridin-4-olate) was designed and synthesized. Thanks to the radius difference between Eu3+ (1.07 Å) and Yb3+ (0.98 Å) ions, the hexadentate TpPy ligand was selected to coordinate with Eu3+ and the Yb3+ with a smaller radius was chelated by bidentate ND ligand. As a result, the sites of Eu3+ and Yb3+ in the complex can be clarified by high-resolution mass spectrometry and single-crystal structure analysis. Upon the excitation of Yb3+ at 980 nm, the upconversion emission of Eu3+ was realized through a cooperative sensitization process. Furthermore, [Eu(TpPy)2][Yb(ND)4] demonstrated excellent photostability during continuous high-power density 980 nm laser irradiation, with a LT95 (the time to 95 % of the initial emission intensity) of 420 minutes. This work provides the first example of a pure ion-paired Yb-Eu heteronuclear complex upconversion system and may bring insights into rational design of lanthanide-based upconversion molecular complexes.
Collapse
Affiliation(s)
- Wen Lu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wenchao Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ruoyao Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiayin Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zuqiang Bian
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
4
|
Liu J, Song W, Niu H, Lu Y, Yang H, Li W, Zhao YZ, Miao Z. Superior Circularly Polarized Luminescence Brightness Achieved with Chiral Heteroleptic Nine-Coordinate Coumarin-Based Tb 3+ Complexes. Inorg Chem 2024; 63:18429-18437. [PMID: 39270127 DOI: 10.1021/acs.inorgchem.4c02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
In order to facilitate the practical application of circularly polarized luminescence (CPL) active molecules, the CPL brightness (BCPL) must be optimized. We have applied a binary modular strategy to synthesize two chiral organo-Tb3+ complexes, [Tb(Coum)3(1R,2R-Ph-PyBox)] (2) and [Tb(Coum)3(1S,2S-Ph-PyBox)] (5), combining 3-acetyl-4-hydroxy-coumarin (Coum) and enantiopure 2,6-bis(4-phenyl-2-oxazolin-2-yl) pyridine (1R,2R/1S,2S-Ph-PyBox). The photophysical properties of these novel complexes have been fully characterized. The combined point-chiral induction capability of chiral bis(oxazoline) derivatives and the outstanding photophysical properties of the coumarin-derived ligand have resulted in an intense excited-state chiroptical activity (|glum| = 0.097-0.103) for both Tb3+ enantiomers, with a bright Tb3+-centered high-purity green emission (ΦPL = 74%) and enhanced antenna-centered absorption behavior (ε320 nm = 47820-47940 M-1 cm-1). A superior BCPL (1132.7-1205.8 M-1 cm-1 at 5D4 → 7F5) has been established for complexes 2 and 5. The strategy adopted in this work provides a new route to chiroptical organo-Tb3+ luminophores with outstanding comprehensive performance.
Collapse
Affiliation(s)
- Jiaxiang Liu
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, PR China
| | - Wenqi Song
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, PR China
| | - Huizhe Niu
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, PR China
| | - Ying Lu
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, PR China
| | - Haiyan Yang
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, PR China
| | - Wentao Li
- College of Big Data and Information Engineering, Institute of Advanced Optoelectronic Materials and Technology, Guizhou University, Guiyang 550025, PR China
| | - Yu-Zhen Zhao
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, PR China
| | - Zongcheng Miao
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, PR China
| |
Collapse
|
5
|
Huang H, Zheng Q, Yu B, Yang Y, Li Y, Li Y, Ji Y, Liao Q, Fu H. Shape-Dependent Optical Waveguides and Low-Threshold Lasers from Polymorphic Two-Dimensional Organic Single Crystals. J Phys Chem Lett 2024:4890-4897. [PMID: 38682878 DOI: 10.1021/acs.jpclett.4c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Organic single crystals (OSCs) with uniform morphologies and highly ordered molecular aggregations are promising for high-performance optoelectronic devices, such as organic solid-state lasers (OSSLs), organic light-emitting transistors (OLETs), and organic light-emitting diodes (OLEDs). However, manipulating OSC morphologies and aggregation is challenging. In this study, we synthesized two-dimensional (2D) OSCs of 4,4'-bis[(N-carbazole)styryl]biphenyl (BSBCz) in hexagonal and parallelogram microplate (H-MP and P-MP) forms. Both types exhibit H-aggregation in the 2D plate plane but with different molecular transition dipole moment (TDM) orientations. This leads to different photon coupling modes with H-MP and P-MP microcavities. H-MPs enable isotropic 2D-waveguiding, forming whispering gallery mode (WGM) resonators, while P-MPs create unidirectional waveguiding, forming Fabry-Pérot mode (FP) resonators. These resonators can generate low-threshold laser emissions at 467 and 473 nm, respectively, and exhibit superior lasing stability with a half-life exceeding 2 h. Our BSBCz microplate OSCs are attractive candidates to combine controlled organic microcavities with photon transporting for realizing future integrated optoelectronic devices.
Collapse
Affiliation(s)
- Han Huang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Qian Zheng
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Boyang Yu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yong Yang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yuan Li
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yunfei Li
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Ying Ji
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
6
|
Huang S, Wen Y, Wang X, Cheng Y, Yuan Y, Zhang H. General Strategy to Prepare Nondoped Circularly Polarized Luminescent Liquid Crystal Materials with Tunable Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9323-9332. [PMID: 38334091 DOI: 10.1021/acsami.3c18617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Chiral luminescent liquid crystals have attracted widespread attention from researchers due to their unique advantages in constructing circularly polarized luminescent (CPL) materials with large luminescent asymmetry factor (glum) values. However, how to effectively prepare nondoped CPL chiral liquid crystals remains a challenge. In this article, we developed an effective and universal method to prepare nondoped CPL chiral liquid crystal materials. To achieve our strategy, we copolymerized chiral monomer M0Mt with α-cyanostilbene-based luminescent monomers MmPVPCN (m = 6, 8, 10) bearing different flexible spacer lengths to obtain a series of CPL chiral liquid crystal copolymers poly(MmPVPCN(x)-co-M0Mt(y)). Under the induction of the chiral component, the α-cyanostilbene component assembles to form chiral liquid crystals. Meanwhile, α-cyanostilbene also exhibits aggregation-induced emission enhancement characteristics. Therefore, with the help of the selective reflection effect of chiral liquid crystals, the copolymer films can emit efficient CPL. For poly(M8PVPCN(0.85)-co-M0Mt(0.15)), the glum and solid luminescence quantum yield can achieve -2.61 × 10-2 and 25.04%, respectively. In addition, by altering the chemical structure of the copolymers, the phase structure of the copolymers can be effectively controlled, thereby regulating their CPL properties.
Collapse
Affiliation(s)
- Sha Huang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Organic Functional Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yahan Wen
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Organic Functional Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Xincan Wang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Organic Functional Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yuan Cheng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Instrumentation and Service Center for Molecular Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Yongjie Yuan
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Organic Functional Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Hailiang Zhang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Organic Functional Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|