1
|
Jayaweera NP, Havenridge S, Bielinski AR, Kim K, Thompson NB, Hoffman JM, Wheaton AM, Sarkar P, Pathak R, Elam JW, Liu C, Mulfort KL, Martinson ABF. Sequential Infiltration Synthesis of Cadmium Sulfide Discrete Atom Clusters. Angew Chem Int Ed Engl 2025; 64:e202421259. [PMID: 39803756 DOI: 10.1002/anie.202421259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Indexed: 03/05/2025]
Abstract
Exposure of soft material templates to alternating volatile chemical precursors can produce inorganic deposition within the permeable template (e.g. a polymer thin film) in a process akin to atomic layer deposition (ALD). While such sequential infiltration synthesis (SIS) processes have now been demonstrated for many metal oxides, we report an SIS process for a transition metal sulfide - CdS. Gas phase dimethyl cadmium and hydrogen sulfide precursors infiltrated into poly(4-vinylpyridine) thin films result in the 3D-nucleation of clusters consistent with a cubane-type Cd4S4 core that are variably terminated with methyl, thiol and hydroxy capping ligands. First principles models and simulation of few-atom Cd-based clusters are consistent with electronic and vibrational spectroscopy and grazing-incidence total X-ray scattering measurements of 3D-cluster-arrays synthesized at 80 °C. The direct synthesis of few-atom transition metal sulfide clusters within polymer thin films will provide a versatile new route to precision architectures for light-absorbing materials including solar energy harvesting and conversion applications.
Collapse
Affiliation(s)
- Nuwanthaka P Jayaweera
- Material Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, United States
| | - Shana Havenridge
- Chemical Science and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, United States
| | - Ashley R Bielinski
- Material Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, United States
| | - Kihoon Kim
- Material Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, United States
| | - Niklas B Thompson
- Chemical Science and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, United States
| | - Justin M Hoffman
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, United States
| | - Amelia M Wheaton
- Chemical Science and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, United States
| | - Prasenjit Sarkar
- Chemical Science and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, United States
| | - Rajesh Pathak
- Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, United States
| | - Jeffrey W Elam
- Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, United States
| | - Cong Liu
- Chemical Science and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, United States
| | - Karen L Mulfort
- Chemical Science and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, United States
| | - Alex B F Martinson
- Material Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, United States
| |
Collapse
|
2
|
Yu J, Wang Z, Wang S, Zhang C, Luan C, Sapelkin A, Chen X, Yu K. Formation of CdTeS Prenucleation Clusters at Elevated Temperatures and Transformation to Magic-Size Clusters at Room Temperature. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410293. [PMID: 39916518 DOI: 10.1002/smll.202410293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/15/2024] [Indexed: 03/05/2025]
Abstract
The synthesis of colloidal semiconductor magic-size clusters (MSCs) of ternary II-VI metal chalcogenide (ME1E2) remains challenging. Using CdTeS as a model system, it is shown that CdTeS MSC-381 (displaying sharp optical absorption peaking at 381 nm) develops at room temperature from prenucleation-stage samples of reactions of Cd(OAc)2/OLA (cadmium acetate in oleylamine), TeTOP (tri-n-octylphosphine telluride), and S (sulfur). It is proposed that the three precursors experience physical co-self-assembly followed by the formation of Te-Cd-S covalent bonds inside each assembly. Chemical self-assembly results in the occurrence of prenucleation clusters (PNCs), which are the precursor compound (PC-381) of MSC-381. High feed concentrations and Cd-to-E molar ratios promote the co-self-assembly, which is participated more by the precursor molecule of Te than by that of S. With compelling evidence for the formation of ternary PNCs at elevated temperatures and for the PC-to-MSC transformation at room temperature, these findings suggest that chemical self-assembly occurs generally in reactions.
Collapse
Affiliation(s)
- Jiali Yu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Zhe Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Shasha Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Chunchun Zhang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Chaoran Luan
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Andrei Sapelkin
- Department of Physics and Astronomy, Queen Mary, University of London, 327 Mile End Road, London, E1 4NS, UK
| | - Xiaoqin Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Kui Yu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| |
Collapse
|
3
|
Zhang B, Xiao J, Xie Z, Jiang M, Song H, Toso S, Zang S, Manna L, Lu S. CsPbBr 3 Superstructures with Circularly Polarized Photolumines-Cence Obtained by the Self-Assembly and Annealing of Nanoclusters. Angew Chem Int Ed Engl 2025:e202423272. [PMID: 39776230 DOI: 10.1002/anie.202423272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
We report a two-step approach to fabricate CsPbBr3 superstructures with strongly circularly polarized photoluminescence by self-assembly of nanoclusters on a substrate, followed by their annealing. In the first step, the nanoclusters self-assemble upon solvent evaporation, a process that forms mesoscopic superstructures whose geometrical arrangement at the μm-scale confers them optical chirality. In the second step, mild annealing of such superstructures induces the coalescence of the nanoclusters, accompanied by a continuous red shift of the photoluminescence up to 530 nm, with preservation of the μm-scale wires bundles and the chiral properties of the sample (glum=0.1). The successful chirality transfer from the initial nanoclusters assemblies to these final CsPbBr3 superstructures provides a convenient way to obtain circularly polarized emitters.
Collapse
Affiliation(s)
- Baowei Zhang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450000, China
| | - Jian Xiao
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450000, China
| | - Zhengkun Xie
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450000, China
| | - Maowei Jiang
- Key Laboratory for Special Functional Materials, Ministry of Education of China), School of Nanoscience and Material Engineering, Henan Univeristy, Kaifeng, 475004, China
| | - Haoqiang Song
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450000, China
| | - Stefano Toso
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Shuangquan Zang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450000, China
| | - Liberato Manna
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Siyu Lu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450000, China
| |
Collapse
|
4
|
Xue J, Wang S, Wang Z, Luan C, Li Y, Chen X, Yu K. Pathway of Room-Temperature Formation of CdSeS Magic-Size Clusters from Mixtures of CdSe and CdS Samples. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402121. [PMID: 38634202 DOI: 10.1002/smll.202402121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Indexed: 04/19/2024]
Abstract
The synthetic application of prenucleation-stage samples of colloidal semiconductor quantum dots (QDs) is in its infancy. It is shown that when two prenucleation-stage samples of binary CdSe and CdS are mixed, ternary CdSeS magic-size clusters (MSCs) grow at room temperature in dispersion. As the amount of the CdS sample increases, the optical absorption of the CdSeS MSCs blueshifts from ≈380 to ≈360 nm. It is proposed that the cluster in the CdSe sample reacts with the CdS monomer from the CdS sample. The monomer substitution reaction of CdSe by CdS can proceed continuously; thus, CdSeS MSCs with tunable compositions are obtained. The present study provides compelling evidence that clusters formed in the prenucleation stage of QDs. The clusters are precursor compounds (PCs) of MSCs, transforming at room temperature with the thermoneutrality principle of isodesmic reactions. The nucleation and growth of QDs follows a multi-step non-classical instead of one-step classical nucleation model.
Collapse
Affiliation(s)
- Jiawei Xue
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Shasha Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Zhe Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Chaoran Luan
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Yang Li
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Xiaoqin Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Kui Yu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| |
Collapse
|
5
|
Hu J, Yang Y, Shen Q, Wang S, Chen X, Luan C, Yu K. Room-Temperature Formation of CdTeSe Magic-Size Clusters from Oleate-Capped CdTe Precursor Compounds via CdSe Monomer Substitution. Inorg Chem 2024; 63:11487-11493. [PMID: 38833379 DOI: 10.1021/acs.inorgchem.4c01775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
We report the first room-temperature synthesis of ternary CdTeSe magic-size clusters (MSCs) that have mainly the surface ligand oleate (OA). The MSCs display sharp optical absorption peaking at ∼399 nm and are thus referred to as MSC-399. They are made from prenucleation-stage samples of binary CdTe and CdSe, which are prepared by two reactions in 1-octadecene (ODE) of cadmium oleate (Cd(OA)2) and tri-n-octylphosphine chalcogenide (ETOP, E = Te and Se) at 25 °C for 120 min and 80 °C for 15 min, respectively. When the two binary samples are mixed at room temperature and dispersed in a mixture of toluene (Tol) and octylamine (OTA), the CdTeSe MSC-399 develops. Also, when the CdSe sample is added to CdTe MSC-371 in a dispersion, the transformation from CdTe MSC-371 to CdTeSe MSC-399 is seen. We propose that the MSCs develop from their precursor compounds (PCs) that are relatively transparent in optical absorption, such as CdTeSe MSC-399 from CdTeSe PC-399 and CdTe MSC-371 from CdTe PC-371. The formation of CdTeSe PC-399 undergoes monomer substitution and not anion exchange, which is the reaction of CdTe PC-371 and the CdSe monomer to produce CdTeSe PC-399 and the CdTe monomer. Our study provides evidence of monomer substitution for the transformation from binary CdTe to ternary CdTeSe PCs.
Collapse
Affiliation(s)
- Jie Hu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Yusha Yang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Qiu Shen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Shasha Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Xiaoqin Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Chaoran Luan
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Kui Yu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|
6
|
Sandeno S, Krajewski SM, Beck RA, Kaminsky W, Li X, Cossairt BM. Synthesis and Single Crystal X-ray Diffraction Structure of an Indium Arsenide Nanocluster. ACS CENTRAL SCIENCE 2024; 10:744-751. [PMID: 38559306 PMCID: PMC10979481 DOI: 10.1021/acscentsci.3c01451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 04/04/2024]
Abstract
The discovery of magic-sized clusters as intermediates in the synthesis of colloidal quantum dots has allowed for insight into formation pathways and provided atomically precise molecular platforms for studying the structure and surface chemistry of those materials. The synthesis of monodisperse InAs quantum dots has been developed through the use of indium carboxylate and As(SiMe3)3 as precursors and documented to proceed through the formation of magic-sized intermediates. Herein, we report the synthesis, isolation, and single-crystal X-ray diffraction structure of an InAs nanocluster that is ubiquitous across reports of InAs quantum dot synthesis. The structure, In26As18(O2CR)24(PR'3)3, differs substantially from previously reported semiconductor nanocluster structures even within the III-V family. However, it can be structurally linked to III-V and II-VI cluster structures through the anion sublattice. Further analysis using variable temperature absorbance spectroscopy and support from computation deepen our understanding of the reported structure and InAs nanomaterials as a whole.
Collapse
Affiliation(s)
- Soren
F. Sandeno
- Department of Chemistry, University
of Washington, Box 351700, Seattle, Washington 98195-1700, United
States
| | - Sebastian M. Krajewski
- Department of Chemistry, University
of Washington, Box 351700, Seattle, Washington 98195-1700, United
States
| | - Ryan A. Beck
- Department of Chemistry, University
of Washington, Box 351700, Seattle, Washington 98195-1700, United
States
| | - Werner Kaminsky
- Department of Chemistry, University
of Washington, Box 351700, Seattle, Washington 98195-1700, United
States
| | - Xiaosong Li
- Department of Chemistry, University
of Washington, Box 351700, Seattle, Washington 98195-1700, United
States
| | - Brandi M. Cossairt
- Department of Chemistry, University
of Washington, Box 351700, Seattle, Washington 98195-1700, United
States
| |
Collapse
|
7
|
Kong X, Deng Y, Zou Y, Ge J, Wang Y. Anion Exchange in Semiconductor Magic-Size Clusters. J Am Chem Soc 2024; 146:5445-5454. [PMID: 38304982 DOI: 10.1021/jacs.3c12853] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Ion exchange is an effective postsynthesis strategy for the design of colloidal nanomaterials with unique structures and properties. In contrast to the rapid development of cation exchange (CE), the study of anion exchange is still in its infancy and requires an in-depth understanding. Magic-size clusters (MSCs) are important reaction intermediates in quantum dot (QD) synthesis, and studying the ion exchange processes can provide valuable insights into the transformations of QDs. Here, we achieved anion exchange in Cd-based MSCs and elucidated the reaction pathways. We demonstrated that the anion exchange was a stepwise intermolecular transition mediated by covalent inorganic complexes (CICs). We proposed that this transition involved three essential steps: the disassembly of CdE1-MSCs into CdE1-CICs (step 1), an anion exchange reaction from CdE1-CICs to CdE2-CICs (step 2), and assembly of CdE2-CICs to CdE2-MSCs (step 3). Step 3 was the rate-determining step and followed first-order reaction kinetics (kobs = 0.01 min-1; from CdSe-MSCs to CdS-MSCs). Further studies revealed that the activity of foreign anions only affected the reaction kinetics without altering the reaction pathway. The present study provides a deeper insight into the anion exchange mechanisms of MSCs and will further shed light on the synthesis of QDs.
Collapse
Affiliation(s)
- Xinke Kong
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yalei Deng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yihao Zou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Junjun Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yuanyuan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
8
|
Sandeno SF, Schnitzenbaumer KJ, Krajewski SM, Beck RA, Ladd DM, Levine KR, Dayton D, Toney MF, Kaminsky W, Li X, Cossairt BM. Ligand Steric Profile Tunes the Reactivity of Indium Phosphide Clusters. J Am Chem Soc 2024; 146:3102-3113. [PMID: 38254269 DOI: 10.1021/jacs.3c10203] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Indium phosphide quantum dots have become an industrially relevant material for solid-state lighting and wide color gamut displays. The synthesis of indium phosphide quantum dots from indium carboxylates and tris(trimethylsilyl)phosphine (P(SiMe3)3) is understood to proceed through the formation of magic-sized clusters, with In37P20(O2CR)51 being the key isolable intermediate. The reactivity of the In37P20(O2CR)51 cluster is a vital parameter in controlling the conversion to quantum dots. Herein, we report structural perturbations of In37P20(O2CR)51 clusters induced by tuning the steric properties of a series of substituted phenylacetate ligands. This approach allows for control over reactivity with P(SiMe3)3, where meta-substituents enhance the susceptibility to ligand displacement, and para-substituents hinder phosphine diffusion to the core. Thermolysis studies show that with complete cluster dissolution, steric profile can modulate the nucleation period, resulting in a nanocrystal size dependence on ligand steric profile. The enhanced stability from ligand engineering also allows for the isolation and structural characterization by single-crystal X-ray diffraction of a new III-V magic-sized cluster with the formula In26P13(O2CR)39. This intermediate precedes the In37P20(O2CR)51 cluster on the InP QD reaction coordinate. The physical and electronic structure of this cluster are analyzed, providing new insight into previously unrecognized relationships between II-VI and III-V materials and the discrete growth of III-V cluster intermediates.
Collapse
Affiliation(s)
- Soren F Sandeno
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Kyle J Schnitzenbaumer
- Division of Natural Sciences and Mathematics, Transylvania University, Lexington, Kentucky 40508-1797, United States
| | - Sebastian M Krajewski
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Ryan A Beck
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Dylan M Ladd
- Department of Materials Science and Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Kelsey R Levine
- Department of Materials Science and Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Damara Dayton
- Department of Materials Science and Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Michael F Toney
- Department of Materials Science and Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Department of Chemical and Biological Engineering, Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|