1
|
Lu J, Wei W, Zheng D. Fusobacterium nucleatum in Colorectal Cancer: Ally Mechanism and Targeted Therapy Strategies. RESEARCH (WASHINGTON, D.C.) 2025; 8:0640. [PMID: 40207017 PMCID: PMC11979337 DOI: 10.34133/research.0640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 04/11/2025]
Abstract
Fusobacterium nucleatum (Fn), an oral anaerobic commensal, has recently been identified as a crucial oncogenic contributor to colorectal cancer pathogenesis through its ectopic colonization in the gastrointestinal tract. Accumulating evidence reveals its multifaceted involvement in colorectal cancer initiation, progression, metastasis, and therapeutic resistance to conventional treatments, including chemotherapy, radiotherapy, and immunotherapy. This perspective highlights recent advances in anti-Fn strategies, including small-molecule inhibitors, nanomedicines, and biopharmaceuticals, while critically analyzing the translational barriers in developing targeted antimicrobial interventions. We further propose potential strategies to overcome current challenges in Fn modulation, aiming to pave the way for more effective therapeutic interventions and better clinical outcomes.
Collapse
Affiliation(s)
- Junna Lu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery,
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Wei
- State Key Laboratory of Biopharmaceutical Preparation and Delivery,
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diwei Zheng
- State Key Laboratory of Biopharmaceutical Preparation and Delivery,
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Qin Y, Xu Y, Lin F, Qiu Y, Luo Y, Lv X, Liu T, Li Y, Liu Z, Yang S. Reactive oxygen species-responsive nano gel as a carrier, combined with photothermal therapy and photodynamic therapy for the treatment of brucellosis. J Biomater Appl 2025; 39:748-761. [PMID: 39440835 DOI: 10.1177/08853282241279340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Brucellosis is an intracellular infectious disease that is primarily treated with antibacterial therapy. However, most antibacterial drugs struggle to penetrate the cell membrane and may be excluded or inactivated within the cell. In a recent study, researchers developed a nanogel coated with polydopamine (PDA) that responds to reactive oxygen species (ROS) and has enhanced adhesion properties. This nanogel encapsulates photosensitized zinc phthalocyanine (ZnPc) and an antibacterial drug, and is further modified with folic acid (FA) for active targeting. The resulting ROS-responsive nanogel, termed PDA@PMAA@ZnPc@DH-FA, can reach temperatures up to 50°C under near-infrared light, leading to a 72.1% improvement in drug release through increased ROS production. Cell staining confirmed a cell survival rate above 75%, with a low hemolysis rate of only 4.633%, indicating excellent biocompatibility. Furthermore, the study's results showed that the nanogel exhibited stronger killing effects against Brucella compared to administering the drug alone. Under near-infrared irradiation, the nanogel achieved a bacteriostatic rate of 99.8%. The combined approach of photothermal therapy and photodynamic therapy offers valuable insights for treating Brucella.
Collapse
Affiliation(s)
- Yuchang Qin
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Yuanyuan Xu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Fuli Lin
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Yinwei Qiu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Yujie Luo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Xuan Lv
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Tianyu Liu
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Yongsheng Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Shengchao Yang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| |
Collapse
|
3
|
Yang X, Tang X, Yi S, Guo T, Liao Y, Wang Y, Zhang X. Maltodextrin-derived nanoparticles resensitize intracellular dormant Staphylococcus aureus to rifampicin. Carbohydr Polym 2025; 348:122843. [PMID: 39562116 DOI: 10.1016/j.carbpol.2024.122843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 11/21/2024]
Abstract
Intracellular bacteria are recognized as a crucial factor in the persistence and recurrence of infections. The efficacy of current antibiotic treatments faces substantial challenges due to the dormant state formation of intracellular bacteria. In this study, we devised a strategy aimed at reverting intracellular dormant bacteria to a metabolically active state, thereby increasing their vulnerability to antibiotics. We found that oligosaccharides, especially maltodextrin (MD), can be absorbed by dormant S. aureus, leading to their revival and restoration of sensitivity to rifampicin (Rif). We then synthesized a reactive oxygen species (ROS)-responsive MD-prodrug by covalently binding MD with 4-(hydroxymethyl) phenylboronic acid pinacol ester (MD-PBAP) and prepared a ROS-responsive nanoparticles (MDNP) using a nanoprecipitation and self-assembly method. Once internalized by host cells, MDNP was degraded to MD, reactivating dormant S. aureus, and enhancing their susceptibility to Rif. More importantly, MDNP treatment restored the sensitivity of intracellular persistent S. aureus to Rif in both a reservoir transfer model and whole-body infection model. Additionally, MDNP have demonstrated excellent biocompatibility in both in vitro and in vivo settings. These results offer a promising therapeutic avenue for managing persistent intracellular bacterial infections by reviving and resensitizing intracellular dormant bacteria to conventional antibiotics.
Collapse
Affiliation(s)
- Xiaodi Yang
- College of Pharmacy, Chongqing Medical University, 400016 Chongqing, China
| | - Xiyu Tang
- College of Pharmacy, Chongqing Medical University, 400016 Chongqing, China
| | - Sisi Yi
- College of Pharmacy, Chongqing Medical University, 400016 Chongqing, China
| | - Tao Guo
- College of Pharmacy, Chongqing Medical University, 400016 Chongqing, China
| | - Yue Liao
- College of Pharmacy, Chongqing Medical University, 400016 Chongqing, China
| | - Yan Wang
- College of Pharmacy, Chongqing Medical University, 400016 Chongqing, China
| | - Xiangjun Zhang
- College of Pharmacy, Chongqing Medical University, 400016 Chongqing, China.
| |
Collapse
|
4
|
Du Y, Xiong Y, Sha Z, Guo D, Fu B, Lin X, Wu H. Cell-Penetrating Peptides in infection and immunization. Microbiol Res 2025; 290:127963. [PMID: 39522201 DOI: 10.1016/j.micres.2024.127963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/18/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Bacteria and viruses pose significant threats to human health, as drug molecules and therapeutic agents are often hindered by cell membranes and tissue barriers from reaching intracellular targets. Cell-penetrating peptides (CPPs), composed of 5-30 amino acids, function as molecular shuttles that facilitate the translocation of therapeutic agents across biological barriers. Despite their therapeutic potential, CPPs exhibit limitations, such as insufficient cell specificity, low in vivo stability, reduced delivery efficiency, and limited tolerance under serum conditions. However, intelligent design and chemical modifications can enhance their cell penetration, stability, and selectivity. These advancements could significantly improve CPP-based drug delivery strategies, facilitating both infection treatment and immunization against bacterial and viral diseases. This review provides an overview of the applications of CPPs in various infections and immune diseases, summarizing their mechanisms and the challenges encountered during their application.
Collapse
Affiliation(s)
- Yongliang Du
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Beibei Fu
- College of Pharmacy and Medical Laboratory, Medical Laboratory, Army Medical University, Chongqing 400038, China
| | - Xiaoyuan Lin
- College of Pharmacy and Medical Laboratory, Medical Laboratory, Army Medical University, Chongqing 400038, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
5
|
Wu X, Borjihan Q, Su Y, Bai H, Hu X, Wang X, Kang J, Dong A, Yang YW. Supramolecular Switching-Enabled Quorum Sensing Trap for Pathogen-Specific Recognition and Eradication to Treat Enteritis. J Am Chem Soc 2024; 146:35402-35415. [PMID: 39665393 DOI: 10.1021/jacs.4c14424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Intestinal bacterial infections have become a significant threat to human health. However, the current typical antibiotic-based therapies not only contribute to drug resistance but also disrupt gut microbiota balance, resulting in additional adverse effects on life activities. There is an urgent need to develop new antibacterial materials that selectively eliminate pathogenic bacteria without disrupting beneficial bacterial communities or promoting drug resistance. Herein, we utilize bacterial quorum sensing (QS), a universal mechanism for regulating community behavior, to develop a supramolecular QS trap by encapsulating cucurbit[7]uril (CB[7]) on 1-vinyl-3-pentylimidazolium bromide ([VPIM]Br) to form a supramolecular switch ([VPIM]Br⊂CB[7]) through host-guest interactions followed by grafting it onto bacterial cell surfaces using atom transfer radical polymerization. Subsequently, the matched pathogens are recognized and aggregated through interbacterial QS signals. Furthermore, the addition of amantadine (AD) facilitates the release of [VPIM]Br by competitive binding of CB[7] on [VPIM]Br⊂CB[7] for sterilization. This QS trap specifically triggers the self-aggregation and efficient elimination of matched bacteria. The [VPIM]Br⊂CB[7]-based trap can increase the diversity and abundance of intestinal microorganisms in mice, effectively treating Escherichia coli K88-induced intestinal damage without perturbing gut microbiota balance. This supramolecular-switched QS trap opens up a promising avenue to specifically recognize and eradicate pathogens for the antibiotic-free treatment of intestinal bacterial infections and other inflammatory diseases.
Collapse
Affiliation(s)
- Xiaojie Wu
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Road, Hohhot 010021, P. R. China
| | - Qinggele Borjihan
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, Inner Mongolia, P. R. China
| | - Yueying Su
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Road, Hohhot 010021, P. R. China
| | - Haoran Bai
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Road, Hohhot 010021, P. R. China
| | - Xinshang Hu
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Road, Hohhot 010021, P. R. China
| | - Xin Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Road, Hohhot 010021, P. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Road, Hohhot 010021, P. R. China
| | - Ying-Wei Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
6
|
Wang ZJ, Zhu YY, Bai LY, Tang DM, Zhou ZS, Wei MZ, He JB, Yu-Duan, Luo XD. A new therapeutic strategy for infectious diseases against intracellular multidrug-resistant bacteria. J Control Release 2024; 375:467-477. [PMID: 39293527 DOI: 10.1016/j.jconrel.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/09/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Bacterial infections result in 7,700,000 deaths per year globally, with intracellular bacteria causing repeated and resistant infection. No drug is currently licenced for the treatment of intracellular bacteria. A new screening platform mimicking the host milieu has been established to explore phytochemical antibiotic adjuvants. Previously neglected isoprenylated flavonoids were found to be effective against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). Specifically, the synergistic effect between glabrol and streptomycin against intracellular bacteria was observed for the first time. The glabrol-streptomycin combination targets bacterial inner membrane phospholipids, disrupts arginine biosynthesis, inhibits cell wall proteins and biofilm formation genes (agrA/B/C/D), and promotes ROS production, causing subsequent membrane and wall damage. To enhance the selective uptake of combination drug into infected cells, hyaluronic acid-streptomycin-lipoic acid-glabrol nanoparticles (HSLGS-S) were designed and synthesized to trigger the intracellular delivery of the glabrol-streptomycin combination. Thus, the treatment can be transported into the infected intracellular region and selectively release the glabrol-streptomycin combination to the bacterial at site. The bioactivity of HSLGS-S in clearing intracellular bacteria was 20-fold higher than that of the glabrol-streptomycin combination alone in vitro and 2- to 10-fold higher in vivo.
Collapse
Affiliation(s)
- Zhao-Jie Wang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Yan-Yan Zhu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Li-Yu Bai
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Dong-Mei Tang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Zhong-Shun Zhou
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Mei-Zhen Wei
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Jin-Biao He
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Yu-Duan
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China.
| |
Collapse
|
7
|
Liu J, Cao Y, Xu C, Li R, Xiong Y, Wei Y, Meng X, Dan W, Lu C, Dai J. Quaternized antimicrobial peptide mimics based on harmane as potent anti-MRSA agents by multi-target mechanism covering cell wall, cell membrane and intracellular targets. Eur J Med Chem 2024; 276:116657. [PMID: 39032402 DOI: 10.1016/j.ejmech.2024.116657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024]
Abstract
Infectious disease caused by methicillin-resistant Staphylococcus aureus (MRSA) seriously threatens public health. The design of antimicrobial peptide mimics (AMPMs) based on natural products (NPs) is a new strategy to kill MRSA and slow the development of drug resistance recently. Here, we reported the design and synthesis of novel AMPMs based on harmane skeleton. Notably, compound 9b exhibited comparable or even better anti-MRSA activity in vitro and in vivo with minimum inhibitory concentration (MIC) of 0.5-2 μg/mL than the positive drug vancomycin. The highly active compound 9b not only showed low cytotoxicity, no obvious hemolysis and good plasma stability, but also presented low tendency of developing resistance. Anti-MRSA mechanism revealed that compound 9b could destroy cell wall structure by interacting with lipoteichoic acid and peptidoglycan, cause membrane damage by depolarization, increased permeability and destructed integrity, reduce cell metabolic activity by binding to lactate dehydrogenase (LDH), interfere cellular redox homeostasis, and bind to DNA. Overall, compound 9b killed the MRSA by multi-target mechanism, which provide a promising light for combating the growing MRSA resistance.
Collapse
Affiliation(s)
- Jinyi Liu
- School of Life Science and Technology, Shandong Second Medical University, Shandong, China
| | - Yidan Cao
- School of Life Science and Technology, Shandong Second Medical University, Shandong, China
| | - Chenggong Xu
- School of Life Science and Technology, Shandong Second Medical University, Shandong, China
| | - Runchu Li
- School of Life Science and Technology, Shandong Second Medical University, Shandong, China
| | - Yingyan Xiong
- School of Life Science and Technology, Shandong Second Medical University, Shandong, China
| | - Yi Wei
- School of Life Science and Technology, Shandong Second Medical University, Shandong, China
| | - Xianghui Meng
- School of Life Science and Technology, Shandong Second Medical University, Shandong, China
| | - Wenjia Dan
- School of Life Science and Technology, Shandong Second Medical University, Shandong, China.
| | - Chunbo Lu
- School of Life Science and Technology, Shandong Second Medical University, Shandong, China.
| | - Jiangkun Dai
- School of Life Science and Technology, Shandong Second Medical University, Shandong, China.
| |
Collapse
|
8
|
Chen Y, Jiang Y, Xue T, Cheng J. Strategies for the eradication of intracellular bacterial pathogens. Biomater Sci 2024; 12:1115-1130. [PMID: 38284808 DOI: 10.1039/d3bm01498c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Intracellular pathogens affect a significant portion of world population and cause millions of deaths each year. They can invade host cells and survive inside them and are extremely resistant to immune systems and antibiotics. Current treatments have limitations, and therefore, new effective therapies are needed to combat this ongoing health challenge. Active research efforts have been made to develop many new strategies to eradicate these intracellular pathogens. In this review, we focus on the intracellular bacterial pathogens and first introduce several representative intracellular bacteria and the diseases they cause. We then discuss the challenges in eradicating these bacteria and summarize the current therapeutics for intracellular bacteria. Finally, recent advances in intracellular bacteria eradication are highlighted.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Yunjiang Jiang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518071, China
| | - Tianrui Xue
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Biomaterials and Drug Delivery Laboratory, School of Engineering, Westlake University, Hangzhou 310024, China
| |
Collapse
|
9
|
Goormaghtigh F, Van Bambeke F. Understanding Staphylococcus aureus internalisation and induction of antimicrobial tolerance. Expert Rev Anti Infect Ther 2024; 22:87-101. [PMID: 38180805 DOI: 10.1080/14787210.2024.2303018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Staphylococcus aureus, a human commensal, is also one of the most common and serious pathogens for humans. In recent years, its capacity to survive and replicate in phagocytic and non-phagocytic cells has been largely demonstrated. In these intracellular niches, bacteria are shielded from the immune response and antibiotics, turning host cells into long-term infectious reservoirs. Moreover, neutrophils carry intracellular bacteria in the bloodstream, leading to systemic spreading of the disease. Despite the serious threat posed by intracellular S. aureus to human health, the molecular mechanisms behind its intracellular survival and subsequent antibiotic treatment failure remain elusive. AREA COVERED We give an overview of the killing mechanisms of phagocytes and of the impressive arsenal of virulence factors, toxins and stress responses deployed by S. aureus as a response. We then discuss the different barriers to antibiotic activity in this intracellular niche and finally describe innovative strategies to target intracellular persisting reservoirs. EXPERT OPINION Intracellular niches represent a challenge in terms of diagnostic and treatment. Further research using ad-hoc in-vivo models and single cell approaches are needed to better understand the molecular mechanisms underlying intracellular survival and tolerance to antibiotics in order to identify strategies to eliminate these persistent bacteria.
Collapse
Affiliation(s)
- Frédéric Goormaghtigh
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|