1
|
Iizuka K, Takezawa H, Fujita M. Host-in-Host Complexation: Activating Classical Hosts through Complete Encapsulation within an M 9L 6 Coordination Cage. Angew Chem Int Ed Engl 2025; 64:e202422143. [PMID: 39635831 DOI: 10.1002/anie.202422143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
This study reports a method for enhancing the functions and properties of traditional organic macrocyclic hosts by fully encapsulating them within a large M9L6 cage to form host-in-host complexes. Within the cage host, the macrocyclic organic hosts with electron-rich aromatic rings, such as cyclotriveratrylene and calix[8]arene, adopt specific orientations enhancing their inherent molecular recognition abilities. Due to the high crystallinity of the M9L6 cage, the guest encapsulation behavior of the host-in-host complexes can be observed by X-ray structural analysis.
Collapse
Affiliation(s)
- Kenta Iizuka
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Hiroki Takezawa
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Makoto Fujita
- Tokyo Colledge, UT Institutes for Advanced Study, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
- Division of Advanced Molecular Science, Institute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| |
Collapse
|
2
|
Dong Q, Liu F, Wang J, Han E, Zhao H, Chen B, Li K, Yuan J, Jiang Z, Chen M, Li Y, Liu D, Lin Y, Wang P. Guest-Induced "Breathing-Helical" Dynamic System of a Porphyrinic Metallo-Organic Cage for Advanced Conformational Manipulation. Angew Chem Int Ed Engl 2025; 64:e202416327. [PMID: 39343746 DOI: 10.1002/anie.202416327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Host-guest dynamic systems in coordination-driven metallo-organic cages have gained significant attentions since their promising applications in chiral separation, drug delivery, and catalytical fields. To maximize guest-binding affinity, hosts adopting multiple conformations are widely investigated on their structural flexibility for guest accommodation. In this study, a novel metallo-organic cage S with breathing inner cavity and freely twisted side chains was proposed. Single-crystal X-ray diffraction analyses depicted a characteristic "breathing-helical" dynamic system on the semiflexible framework, which led to an unprecedent co-crystallisation of racemic and symmetric conformations via the encapsulation locking of C70 guests. By taking advantages of the high binding affinity, selective extraction of C70 was realized. This research provides new ideas for the modification on the helicities of metallo-organic cages, which could pave a new way for advanced conformational manipulation of supramolecular host systems.
Collapse
Affiliation(s)
- Qiangqiang Dong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Fengxue Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jun Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Ermeng Han
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - He Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Bangtang Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Kaixiu Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jie Yuan
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yiming Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Die Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yifan Lin
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan, Guangdong, 528300, China
| | - Pingshan Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
3
|
Iizuka K, Takezawa H, Fujita M. Template and Solid-State-Assisted Assembly of an M 9L 6 Expanded Coordination Cage for Medium-Sized Molecule Encapsulation. J Am Chem Soc 2024; 146:32311-32316. [PMID: 39555681 PMCID: PMC11613438 DOI: 10.1021/jacs.4c14509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
The M6L4 cage, self-assembling from six Pd(II) or Pt(II) 90-degree blocks and four triazine-cored triangular ligands, has an effective hydrophobic cavity of about 450 Å3 capable of encapsulating one or more small molecules. Here, from the same components, we successfully constructed an M9L6 cage with an internal volume expanded to 1540 Å3 via the self-assembly of an M8L6 precursor using pillar[5]arene as a template. This cage retains the high molecular recognition ability of the M6L4 cage while recognizing medium-sized guest molecules with molecular weights of up to ∼1600.
Collapse
Affiliation(s)
- Kenta Iizuka
- Department
of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Hiroki Takezawa
- Department
of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Makoto Fujita
- Department
of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
- Tokyo
College, UT Institutes for Advanced Study, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Division
of Advanced Molecular Science, Institute
for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
4
|
Wang H, Zhang Y, Ji G, Wei J, Zhao L, He C, Duan C. Reserving Electrons in Cofactor Decorated Coordination Capsules for Biomimetic Electrosynthesis of α-Hydroxy/amino Esters. J Am Chem Soc 2024; 146:29272-29277. [PMID: 39316512 DOI: 10.1021/jacs.4c08547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Sustainable electricity-to-chemical conversion via the utilization of artificial catalysts inspired by redox biological systems holds great significance for catalyzing synthesis. Herein, we develop a biomimetic electrosynthesis strategy mediated by a nicotinamide adenine dinucleotide (NADH) mimic-containing coordination capsule for efficiently producing α-hydroxy/amino esters. The coordination saturated metal centers worked as an electron relay to consecutively accept single electrons while donating two electrons to the NAD+ mimics simultaneously. The protonation of the intermediate generated active NADH mimics for biomimetic hydrogenation of the substrates via the conventional enzymatic manifold with or without the presence of natural enzymes. The pocket of the capsule encapsulated the substrate and enforced the close proximity between the substrate and the NADH mimics, forming a preorganized intermediate to shift the redox potential by 0.4 V anodically. The cobalt capsule gave methyl mandelate over a range of applied potentials, with an improved yield of 92% when operated at -1.2 V compared to that of Hantzsch ester or natural NADH. Kinetic experiments revealed a Michaelis-Menten mechanism with a Km of 7.5 mM and a Kcat of 1.1 × 10-2 s-1. This extended strategy in tandem with an enzyme exhibited a TON of 650 molE-1 with an initial TOF of 185 molE-1·h-1, outperforming relevant Rh-mediated enzymatic electrosynthesis systems and providing an attractive avenue toward advanced artificial electrosynthesis.
Collapse
Affiliation(s)
- Huali Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yu Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guanfeng Ji
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jianwei Wei
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
5
|
Huang B, Zhou M, Hong QY, Wu MX, Zhao XL, Xu L, Gao EQ, Yang HB, Shi X. A Redox-Active Phenothiazine-based Pd 2L 4-Type Coordination Cage and Its Isolable Crystalline Polyradical Cations. Angew Chem Int Ed Engl 2024; 63:e202407279. [PMID: 38872356 DOI: 10.1002/anie.202407279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Polyradical cages are of great interest because they show very fascinating physical and chemical properties, but many challenges remain, especially for their synthesis and characterization. Herein, we present the synthesis of a polyradical cation cage 14⋅+ through post-synthetic oxidation of a redox-active phenothiazine-based Pd2L4-type coordination cage 1. It's worth noting that 1 exhibits excellent reversible electrochemical and chemical redox activity due to the introduction of a bulky 3,5-di-tert-butyl-4-methoxyphenyl substituent. The generation of 14⋅+ through reversible electrochemical oxidation is investigated by in situ UV/Vis-NIR and EPR spectroelectrochemistry. Meanwhile, chemical oxidation of 1 can also produce 14⋅+ which can be reversibly reduced back to the original cage 1, and the process is monitored by EPR and NMR spectroscopies. Eventually, we succeed in the isolation and single crystal X-ray diffraction analysis of 14⋅+, whose electronic structure and conformation are distinct to original 1. The magnetic susceptibility measurements indicate the predominantly antiferromagnetic interactions between the four phenothiazine radical cations in 14⋅+. We believe that our study including the facile synthesis methodology and in situ spectroelectrochemistry will shed some light on the synthesis and characterization of novel polyradical systems, opening more perspectives for developing functional supramolecular cages.
Collapse
Affiliation(s)
- Bin Huang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Manfei Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Qiong-Yan Hong
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Meng-Xiang Wu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xiao-Li Zhao
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lin Xu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - En-Qing Gao
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xueliang Shi
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
6
|
Kovács B, Földes T, Szabó M, Dorkó É, Kótai B, Laczkó G, Holczbauer T, Domján A, Pápai I, Soós T. Illuminating the multiple Lewis acidity of triaryl-boranes via atropisomeric dative adducts. Chem Sci 2024:d4sc00925h. [PMID: 39257854 PMCID: PMC11382148 DOI: 10.1039/d4sc00925h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
Using the principle that constrained conformational spaces can generate novel and hidden molecular properties, we challenged the commonly held perception that a single-centered Lewis acid reacting with a single-centered Lewis base always forms a single Lewis adduct. Accordingly, the emergence of single-centered but multiple Lewis acidity among sterically hindered and non-symmetric triaryl-boranes is reported. These Lewis acids feature several diastereotopic faces providing multiple binding sites at the same Lewis acid center in the interaction with Lewis bases giving rise to adducts with diastereomeric structures. We demonstrate that with a proper choice of the base, atropisomeric adduct species can be formed that interconvert via the dissociative mechanism rather than conformational isomerism. The existence of this exotic and peculiar molecular phenomenon was experimentally confirmed by the formation of atropisomeric piperidine-borane adducts using state-of-the-art NMR techniques in combination with computational methods.
Collapse
Affiliation(s)
- Benjámin Kovács
- Centre for Structural Science, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| | - Tamás Földes
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| | - Márk Szabó
- Centre for Structural Science, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| | - Éva Dorkó
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| | - Bianka Kótai
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| | - Gergely Laczkó
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University P. O. Box 32 Budapest H-1518 Hungary
| | - Tamás Holczbauer
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| | - Attila Domján
- Centre for Structural Science, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| | - Imre Pápai
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| | - Tibor Soós
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences Magyar tudósok körútja 2 H-1117 Budapest Hungary
| |
Collapse
|
7
|
Chakraborty D, Pradhan S, Clegg JK, Mukherjee PS. Mechanically Interlocked Water-Soluble Pd 6 Host for the Selective Separation of Coal Tar-Based Planar Aromatic Molecules. Inorg Chem 2024; 63:14924-14932. [PMID: 39129449 DOI: 10.1021/acs.inorgchem.4c01376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Research on the synthesis of catenated cages has been a growing field of interest in the past few years. While multiple types of catenated cages with different structures have been synthesized, the application of such systems has been much less explored. Specifically, the use of catenated cages in the separation of industrially relevant molecules that are present in coal tar has not been explored before. Herein, we demonstrate the use of a newly synthesized interlocked cage 1 [C184H240N76O48Pd6] (M6L4), formed through the self-assembly of ligand L.HNO3 (tris(4-(1H-imidazole-1-yl)benzylidene)hydrazine-1-carbohydrazonhydrazide) with acceptor cis-[(tmchda)Pd(NO3)2] [tmchda = ±N,N,N',N'-tetramethylcyclohexane-1,2-diamine] (M). The interlocked cage 1 was able to separate the isomers (anthracene and phenanthrene) using a simple solvent extraction technique. Using the same technique, the much more difficult separation of structurally and physiochemically similar compounds acenaphthene and acenaphthylene was performed for the first time with 1 as the host. Other noninterlocked hexanuclear Pd6 cages having a wider cavity proved inefficient for such separation, demonstrating the uniqueness of the interlocked cage 1 for such challenging separation.
Collapse
Affiliation(s)
- Debsena Chakraborty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sailendra Pradhan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jack Kay Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
8
|
Huang YH, Lu YL, Cao ZM, Zhang XD, Liu CH, Xu HS, Su CY. Multipocket Cage Enables the Binding of High-Order Bulky and Drug Guests Uncovered by MS Methodology. J Am Chem Soc 2024; 146:21677-21688. [PMID: 39042557 DOI: 10.1021/jacs.4c05758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Achieving high guest loading and multiguest-binding capacity holds crucial significance for advancement in separation, catalysis, and drug delivery with synthetic receptors; however, it remains a challenging bottleneck in characterization of high-stoichiometry guest-binding events. Herein, we describe a large-sized coordination cage (MOC-70-Zn8Pd6) possessing 12 peripheral pockets capable of accommodating multiple guests and a high-resolution electrospray ionization mass spectrometry (HR-ESI-MS)-based method to understand the solution host-guest chemistry. A diverse range of bulky guests, varying from drug molecules to rigid fullerenes as well as flexible host molecules of crown ethers and calixarenes, could be loaded into open pockets with high capacities. Notably, these hollow cage pockets provide multisites to capture different guests, showing heteroguest coloading behavior to capture binary, ternary, or even quaternary guests. Moreover, a pair of commercially applied drugs for the combination therapy of chronic lymphocytic leukemia (CLL) has been tested, highlighting its potential in multidrug delivery for combined treatment.
Collapse
Affiliation(s)
- Yin-Hui Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Lin Lu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhong-Min Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Dong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chen-Hui Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hai-Sen Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Yong Su
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
9
|
DiNardi RG, Rasheed S, Capomolla SS, Chak MH, Middleton IA, Macreadie LK, Violi JP, Donald WA, Lusby PJ, Beves JE. Photoswitchable Catalysis by a Self-Assembled Molecular Cage. J Am Chem Soc 2024; 146:21196-21202. [PMID: 39051845 PMCID: PMC11311219 DOI: 10.1021/jacs.4c04846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
A heteroleptic [Pd2L2L'2]4+ coordination cage containing a photoswitchable azobenzene-derived ligand catalyzes the Michael addition reaction between methyl vinyl ketone and benzoyl nitromethane within its cavity. The corresponding homoleptic cages are catalytically inactive. The heteroleptic cage can be reversibly disassembled and reassembled using 530 and 405 nm light, respectively, allowing catalysis within the cage to be switched OFF and ON at will.
Collapse
Affiliation(s)
- Ray G. DiNardi
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Samina Rasheed
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | | | - Man Him Chak
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Isis A. Middleton
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | | | - Jake P. Violi
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - William A. Donald
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Paul J. Lusby
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, Scotland EH9 3FJ, U.K.
| | - Jonathon E. Beves
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| |
Collapse
|
10
|
Chaudhry MT, Newman JA, Lee AY. Formation, Selective Encapsulation, and Tautomerization Control of Isoindolone Utilizing Guanidinium Sulfonate Frameworks. Chemistry 2024; 30:e202400957. [PMID: 38608156 DOI: 10.1002/chem.202400957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Herein we report the use of tetrakis (guanidinium) pyrenetetrasulfonate (G4PYR) and bis (guanidinium) 1,5-napthalene disulfonate (G2NDS) to catalyze the cyclization of 2-cyanobenzamide (1) to isoindolone (2). Moreover, we demonstrate the remarkable selectivity of these guanidinium organosulfonate hosts in encapsulating 2 over 1. By thoroughly investigating the intramolecular cyclization reaction, we determined that guanidinium and the organosulfonate moiety acts as the catalyst in this process. Additionally, 2 is selectively encapsulated, even in mixtures of other structurally similar heterocycles like indole. Furthermore, the tautomeric state of 2 (amino isoindolone (2-A) and imino isoindolinone forms (2-I)) can be controlled by utilizing different guanidinium organosulfonate frameworks.
Collapse
Affiliation(s)
- Mohammad T Chaudhry
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey, 07065, United States
| | - Justin A Newman
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey, 07065, United States
| | - Alfred Y Lee
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey, 07065, United States
| |
Collapse
|
11
|
Takezawa H, Iizuka K, Fujita M. Selective Synthesis and Functionalization of an Acyclic Methylene-Bridged-Arene Trimer in a Cage. Angew Chem Int Ed Engl 2024; 63:e202319140. [PMID: 38116919 DOI: 10.1002/anie.202319140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Arene-formaldehyde condensation is a versatile reaction for producing various oligomeric/polymeric materials. However, the precise control of oligomerization degree is still challenging because the starting materials and intermediates have similar reactivities. Here, we demonstrate the selective synthesis of a methylene-bridged arene trimer using the confined cavity of a coordination cage. The limited space of the cavity prevents unregulated polymerization. The confinement effect for the kinetic protection is also demonstrated by the subsequent site-selective iodination of the trimer product within the cage.
Collapse
Affiliation(s)
- Hiroki Takezawa
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba, 227-0882, Japan
| | - Kenta Iizuka
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba, 227-0882, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba, 227-0882, Japan
- Division of Advanced Molecular Science, Insititute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
| |
Collapse
|