1
|
Qin Q, Zhang L, Wei J, Qiu X, Hao S, An XD, Jiao N. Direct oxygen insertion into C-C bond of styrenes with air. Nat Commun 2024; 15:9015. [PMID: 39424824 PMCID: PMC11489579 DOI: 10.1038/s41467-024-53266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Skeletal editing of single-atom insertion to basic chemicals has been demonstrated as an efficient strategy for the discovery of structurally diversified compounds. Previous endeavors in skeletal editing have successfully facilitated the insertion of boron, nitrogen, and carbon atoms. Given the prevalence of oxygen atoms in biologically active molecules, the direct oxygenation of C-C bonds through single-oxygen-atom insertion like Baeyer-Villiger reaction is of particular significance. Herein, we present an approach for the skeletal modification of styrenes using O2 via oxygen insertion, resulting in the formation of aryl ether frameworks under mild reaction conditions. The broad functional-group tolerance and the excellent chemo- and regioselectivity are demonstrated in this protocol. A preliminary mechanistic study indicates the potential involvement of 1,2-aryl radical migration in this reaction.
Collapse
Affiliation(s)
- Qixue Qin
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Chang Cheng Rd. 700, Qingdao, Shandong, China.
| | - Liang Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Chang Cheng Rd. 700, Qingdao, Shandong, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Chemical Biology Center, Peking University, Beijing, China
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Chemical Biology Center, Peking University, Beijing, China
| | - Shuanghong Hao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Chang Cheng Rd. 700, Qingdao, Shandong, China
| | - Xiao-De An
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Chang Cheng Rd. 700, Qingdao, Shandong, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Chemical Biology Center, Peking University, Beijing, China.
| |
Collapse
|
2
|
Kim D, You J, Lee DH, Hong H, Kim D, Park Y. Photocatalytic furan-to-pyrrole conversion. Science 2024; 386:99-105. [PMID: 39361748 DOI: 10.1126/science.adq6245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 10/05/2024]
Abstract
The identity of a heteroatom within an aromatic ring influences the chemical properties of that heterocyclic compound. Systematically evaluating the effect of a single atom, however, poses synthetic challenges, primarily as a result of thermodynamic mismatches in atomic exchange processes. We present a photocatalytic strategy that swaps an oxygen atom of furan with a nitrogen group, directly converting the furan into a pyrrole analog in a single intermolecular reaction. High compatibility was observed with various furan derivatives and nitrogen nucleophiles commonly used in drug discovery, and the late-stage functionalization furnished otherwise difficult-to-access pyrroles from naturally occurring furans of high molecular complexity. Mechanistic analysis suggested that polarity inversion through single electron transfer initiates the redox-neutral atom exchange processes at room temperature.
Collapse
Affiliation(s)
- Donghyeon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jaehyun You
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Da Hye Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hojin Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Republic of Korea
| | - Yoonsu Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Botlik BB, Weber M, Ruepp F, Kawanaka K, Finkelstein P, Morandi B. Streamlining the Synthesis of Pyridones through Oxidative Amination of Cyclopentenones. Angew Chem Int Ed Engl 2024; 63:e202408230. [PMID: 38934574 DOI: 10.1002/anie.202408230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Herein we report the development of an oxidative amination process for the streamlined synthesis of pyridones from cyclopentenones. Cyclopentenone building blocks can undergo in situ silyl enol ether formation, followed by the introduction of a nitrogen atom into the carbon skeleton with successive aromatisation to yield pyridones. The reaction sequence is operationally simple, rapid, and carried out in one pot. The reaction proceeds under mild conditions, exhibits broad functional group tolerance, complete regioselectivity, and is well scalable. The developed method provides facile access to the synthesis of 15N-labelled targets, industrially relevant pyridone products and their derivatives in a fast and efficient way.
Collapse
Affiliation(s)
- Bence B Botlik
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093, Zürich, Switzerland
| | - Micha Weber
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093, Zürich, Switzerland
| | - Florian Ruepp
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093, Zürich, Switzerland
| | - Kazuki Kawanaka
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093, Zürich, Switzerland
| | - Patrick Finkelstein
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093, Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093, Zürich, Switzerland
| |
Collapse
|
4
|
Li S, Tang J, Shi Y, Yan M, Fu Y, Su Z, Xu J, Xue W, Zheng X, Ge Y, Li R, Chen H, Fu H. C3 Selective chalcogenation and fluorination of pyridine using classic Zincke imine intermediates. Nat Commun 2024; 15:7420. [PMID: 39198410 PMCID: PMC11358504 DOI: 10.1038/s41467-024-51452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Regioselective C-H functionalization of pyridines remains a persistent challenge due to their inherent electronically deficient properties. In this report, we present a strategy for the selective pyridine C3-H thiolation, selenylation, and fluorination under mild conditions via classic N-2,4-dinitrophenyl Zincke imine intermediates. Radical inhibition and trapping experiments, as well as DFT theoretical calculations, indicated that the thiolation and selenylation proceeds through a radical addition-elimination pathway, whereas fluorination via a two-electron electrophilic substitution pathway. The pre-installed electron-deficient activating N-DNP group plays a crucial and positive role, with the additional benefit of recyclability. The practicability of this protocol was demonstrated in the gram-scale synthesis and the late-stage modification of pharmaceutically relevant pyridines.
Collapse
Affiliation(s)
- Shun Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Juan Tang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Yonglin Shi
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Meixin Yan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Yihua Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Jiaqi Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Weichao Xue
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Xueli Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Yicen Ge
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, PR China
| | - Ruixiang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Hua Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| |
Collapse
|
5
|
Qin S, Yang M, Xu M, Peng ZH, Cai J, Wang S, Gao H, Zhou Z, Hashmi ASK, Yi W, Zeng Z. Electrochemical meta-C-H sulfonylation of pyridines with nucleophilic sulfinates. Nat Commun 2024; 15:7428. [PMID: 39198391 PMCID: PMC11358150 DOI: 10.1038/s41467-024-50644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/17/2024] [Indexed: 09/01/2024] Open
Abstract
Considering the indispensable significance and utilities of meta-substituted pyridines in medicinal, chemical as well as materials science, a direct meta-selective C-H functionalization of pyridines is of paramount importance, but such reactions remain limited and highly challenging. In general, established methods for meta C-H functionalization of pyridines rely on the utilization of tailored electrophilic reagents to realize the intrinsic polarity match. Herein, we report a complementary electrochemical methodology; diverse nucleophilic sulfinates allow meta-sulfonylation of pyridines through a redox-neutral dearomatization-rearomatization strategy by a tandem dearomative cycloaddition/hydrogen-evolution electrooxidative C-H sulfonation of the resulting oxazino-pyridines/acid-promoted rearomatization sequence. Besides, several salient features, including exclusive regiocontrol, remarkable substrate/functional group compatibility, scale-up potential, and facile late-stage modification, have been demonstrated, which further contributes to the practicality and adaptability of this approach.
Collapse
Affiliation(s)
- Shi Qin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Mingkai Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Mingyao Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Zhi-Huan Peng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Jiating Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Shengdong Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Heidelberg, Germany.
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| | - Zhongyi Zeng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
6
|
Wu FP, Lenz M, Suresh A, Gogoi AR, Tyler JL, Daniliuc CG, Gutierrez O, Glorius F. Nitrogen-to-functionalized carbon atom transmutation of pyridine. Chem Sci 2024; 15:d4sc04413d. [PMID: 39246332 PMCID: PMC11372446 DOI: 10.1039/d4sc04413d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024] Open
Abstract
The targeted and selective replacement of a single atom in an aromatic system represents a powerful strategy for the rapid interconversion of molecular scaffolds. Herein, we report a pyridine-to-benzene transformation via nitrogen-to-carbon skeletal editing. This approach proceeds via a sequence of pyridine ring-opening, imine hydrolysis, olefination, electrocyclization, and aromatization to achieve the desired transmutation. The most notable features of this transformation are the ability to directly install a wide variety of versatile functional groups in the benzene scaffolding, including ester, ketone, amide, nitrile, and phosphate ester fragments, as well as the inclusion of meta-substituted pyridines which have thus far been elusive for related strategies.
Collapse
Affiliation(s)
- Fu-Peng Wu
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Madina Lenz
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Adhya Suresh
- Department of Chemistry, Texas A&M University 3255 TAMU, 580 Ross St 77843 College Station TX USA
| | - Achyut R Gogoi
- Department of Chemistry, Texas A&M University 3255 TAMU, 580 Ross St 77843 College Station TX USA
| | - Jasper L Tyler
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University 3255 TAMU, 580 Ross St 77843 College Station TX USA
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
7
|
Boswell BR, Zhao Z, Gonciarz RL, Pandya KM. Regioselective Pyridine to Benzene Edit Inspired by Water-Displacement. J Am Chem Soc 2024; 146:19660-19666. [PMID: 38996188 DOI: 10.1021/jacs.4c05999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Late-stage derivatization of drug-like functional groups can accelerate drug discovery efforts by swiftly exchanging hydrogen-bond donors with acceptors, or by modulating key physicochemical properties like logP, solubility, or polar surface area. A proven derivatization strategy to improve ligand potency is to extend the ligand to displace water molecules that are mediating the interactions with a receptor. Inspired by this application, we developed a method to regioselectively transmute the nitrogen atom from pyridine into carbon bearing an ester, a flexible functional group handle. We applied this method to a variety of substituted pyridines, as well as late-stage transformation of FDA-approved drugs.
Collapse
Affiliation(s)
- Benjamin R Boswell
- Discovery Chemistry, Exelixis Inc., Alameda, California 94502, United States
| | - Zhensheng Zhao
- Discovery Chemistry, Exelixis Inc., Alameda, California 94502, United States
| | - Ryan L Gonciarz
- Discovery Chemistry, Exelixis Inc., Alameda, California 94502, United States
| | - Keyur M Pandya
- Pharmaceutical Operations & Supply Chain, Exelixis Inc., Alameda, California 94502, United States
| |
Collapse
|
8
|
Ning J, Du B, Cao S, Liu X, Kong D. Combining Umpolung and Carbon Isotope Exchange Strategies for Accessing Isotopically Labeled α-Keto Acids. Org Lett 2024; 26:5966-5971. [PMID: 38958587 DOI: 10.1021/acs.orglett.4c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The integration of umpolung and carbon isotope exchange for accessing isotopically labeled α-keto acids through photoredox catalysis is elucidated. This process involves the carbonyl umpolung of C(sp2)-α-keto acids to yield C(sp3)-α-thioketal acids, followed by the carbon isotope exchange of C(sp3)-α-thioketal acids, and ultimately, deprotection to generate carbon-labeled α-keto acids.
Collapse
Affiliation(s)
- Jingran Ning
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Baoyang Du
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shilong Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xia Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Duanyang Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Feng M, Norlöff M, Guichard B, Kealey S, D'Anfray T, Thuéry P, Taran F, Gee A, Feuillastre S, Audisio D. Pyridine-based strategies towards nitrogen isotope exchange and multiple isotope incorporation. Nat Commun 2024; 15:6063. [PMID: 39025881 PMCID: PMC11258231 DOI: 10.1038/s41467-024-50139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Isotopic labeling is at the core of health and life science applications such as nuclear imaging, metabolomics and plays a central role in drug development. The rapid access to isotopically labeled organic molecules is a sine qua non condition to support these societally vital areas of research. Based on a rationally driven approach, this study presents an innovative solution to access labeled pyridines by a nitrogen isotope exchange reaction based on a Zincke activation strategy. The technology conceptualizes an opportunity in the field of isotope labeling. 15N-labeling of pyridines and other relevant heterocycles such as pyrimidines and isoquinolines showcases on a large set of derivatives, including pharmaceuticals. Finally, we explore a nitrogen-to-carbon exchange strategy in order to access 13C-labeled phenyl derivatives and deuterium labeling of mono-substituted benzene from pyridine-2H5. These results open alternative avenues for multiple isotope labeling on aromatic cores.
Collapse
Affiliation(s)
- Minghao Feng
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Maylis Norlöff
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Benoit Guichard
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Steven Kealey
- King's College London, School of Biomedical Engineering and Imaging Sciences, Department of Imaging Chemistry and Biology, 4th Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK
| | - Timothée D'Anfray
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France
| | - Frédéric Taran
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Antony Gee
- King's College London, School of Biomedical Engineering and Imaging Sciences, Department of Imaging Chemistry and Biology, 4th Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK
| | - Sophie Feuillastre
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France.
| | - Davide Audisio
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France.
| |
Collapse
|
10
|
Abstract
A practical method for the synthesis of 15N-labeled azines with a high degree of isotopic enrichment is described. Activation of azine heterocycles with an electron-deficient arene allows for the facile substitution of the nitrogen atom with a specifically designed 15N-labeled reagent that undergoes a canonical ANRORC-type mechanism. A wide range of azines can be converted to their corresponding 15N isotopologs using this method, and it also allows for dearomative access to reduced heterocyclic congeners. A short dearomative formal synthesis of 15N-solifenacin is accomplished as well to demonstrate a practical application of this method for generating labeled pharmaceuticals.
Collapse
Affiliation(s)
- Zachary A Tolchin
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Joel M Smith
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|