1
|
Ding Z, Wang Z, Wang Y, Wang X, Xue Y, Xu M, Zhang H, Xu L, Li P. Regio- and Diastereoselective Synthesis of Polysubstituted Piperidines Enabled by Boronyl Radical-Catalyzed (4+2) Cycloaddition. Angew Chem Int Ed Engl 2024; 63:e202406612. [PMID: 38924325 DOI: 10.1002/anie.202406612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Piperidines are widely present in small molecule drugs and natural products. Despite many methods have been developed for their synthesis, new approaches to polysubstituted piperidines are highly desirable. This work presents a radical (4+2) cycloaddition reaction for synthesis of piperidines featuring dense substituents at 3,4,5-positions that are not readily accessible by known methods. Using commercially available diboron(4) compounds and 4-phenylpyridine as the catalyst precursors, the boronyl radical-catalyzed cycloaddition between 3-aroyl azetidines and various alkenes, including previously unreactive 1,2-di-, tri-, and tetrasubstituted alkenes, has delivered the polysubstituted piperidines in generally high yield and diastereoselectivity. The reaction also features high modularity, atom economy, broad substrate scope, metal-free conditions, simple catalysts and operation. The utilization of the products has been demonstrated by selective transformations. A plausible mechanism, with the ring-opening of azetidine as the rate-limiting step, has been proposed based on the experimental and computational results.
Collapse
Affiliation(s)
- Zhengwei Ding
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhijun Wang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Yingying Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Xicheng Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yuanji Xue
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Ming Xu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Hailong Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Karmakar H, Kumar GS, Pal K, Chandrasekhar V, Panda TK. Tri-coordinated zinc alkyl complexes with N^ S/ Se coordination of imino-phosphanamidinate chalcogenide ligands as precursors for efficient hydroboration of nitriles and esters. Dalton Trans 2024; 53:10592-10602. [PMID: 38855964 DOI: 10.1039/d4dt00840e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A series of tri-coordinated zinc alkyl complexes with the general molecular formula [κ2NE-{NHIRP(Ph)(E)N-Dipp}ZnEt] [R = Dipp (2,6-diisopropylphenyl), E = S (3a), Se (3b) and R = tBu (tert-butyl), E = S (4a), Se (4b)] bearing imino-phosphanamidinate chalcogenide ligands were prepared in good yields from the reaction between the protic imino-phosphanamidinate chalcogenide ligand [NHIRP(Ph)(E)NH-Dipp] [R = Dipp, E = S (1a), Se (1b) and R = tBu, E = S (2a), Se (2b)] and diethylzinc at room temperature. The molecular structures of all the zinc complexes were established by single-crystal X-ray diffraction analysis. In the solid state, all complexes exhibited a distorted trigonal planar geometry around the zinc ion. Metal-chalcogenide (Zn-S/Se) interactions were observed in the coordination sphere. These zinc alkyl complexes were employed as pre-catalysts in the hydroboration reaction of nitriles and esters to obtain the corresponding N,N-diborylamines and boronate esters, respectively, under ambient conditions. A wide substrate scope of nitriles and esters is presented.
Collapse
Affiliation(s)
- Himadri Karmakar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Gobbilla Sai Kumar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Kuntal Pal
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, 500107, Hyderabad, India.
- Department of Chemistry, IIT Kanpur, Kanpur 208016, India.
| | - Tarun K Panda
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| |
Collapse
|
3
|
Sun T, Jin X, Zhang X, Lu X, Xu H, Cui J, Yang X, Liu X, Zhang L, Ling Y. Rational design and identification of novel thiosemicarbazide derivatives as laccase inhibitors. PEST MANAGEMENT SCIENCE 2023; 79:3773-3784. [PMID: 37203559 DOI: 10.1002/ps.7562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Laccase is a key enzyme in the fungal 1,8-dihydroxynaphthalene (DHN) melanin biosynthesis pathway, which is a potential target for the control of pathogenic fungi. In our previous work, compound a2 was found with higher inhibition activity against laccase and antifungal activity than laccase inhibitor PMDD-5Y. The introduction of hydrogen-bonded receptors in the amino part was found to be beneficial in improving laccase inhibitory activity by target-based-biological rational design. In this work, the hydrogen-bonded receptors morpholine and piperazine were introduced for structure optimization to enhancing biological activity. RESULTS Enzyme activity tests indicated that all target compounds had inhibitory activity against laccase, and some compounds exhibited better activity against laccase than a2, it was further verified that the introduction of hydrogen-bonded receptors in the amino portion could enhance the laccase inhibitory activity of target compounds. Most compounds showed excellent antifungal activities in vitro. Compound m14 displayed good activity against Magnaporthe oryzae both in vitro and in vivo. The scanning electron microscopy (SEM) analysis showed that the mycelium of M. oryzae treated with m14 were destroyed. Molecular docking revealed the binding mode between laccase and target compounds. CONCLUSION Thirty-eight compounds were synthesized and showed good inhibitory activity against laccase, the introduction of morpholine and piperazine in the amino part was beneficial to improve antifungal activity and laccase activity. Further validation of laccase as a potential target for rice blast control, while m14 can be used as a candidate compound for the control of rice blast. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tengda Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xiaoyu Jin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xiaoming Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xingxing Lu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Huan Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Jialin Cui
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xinling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Li Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yun Ling
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Jia X, Tian X, Zhuang D, Wan Z, Gu J, Li Z. Copper-Catalyzed Intermolecular Cross-dehydrogenative C-N Coupling at Room Temperature via Remote Activating Group Enabled Radical Relay Strategy. Org Lett 2023; 25:2012-2017. [PMID: 36944029 DOI: 10.1021/acs.orglett.3c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Employing N-fluorobenzenesulfonimide (NFSI) as a nitrogen-centered radical (NCR) precursor, an intermolecular C(sp2)-N coupling on heteroarenes or substituted benzenes with remote activated aniline derivatives via copper catalyzed N-N radical relay strategy at room temperature is developed. Good to excellent yields are acquired, and no ligand or additive is required. Reaction scope investigation and preliminary mechanistic studies demonstrate that the remote activating strategy and delicate control on the reactivities of active NCR species are essential to guarantee satisfactory chemo- and site-selectivity.
Collapse
Affiliation(s)
- Xiaoqi Jia
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Xiangmin Tian
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Dailin Zhuang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Zhenyang Wan
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Jiahao Gu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
5
|
Wang L, Gao F, Zhang X, Peng T, Xu Y, Wang R, Yang D. Concerted Enantioselective [2+2] Cycloaddition Reaction of Imines Mediated by a Magnesium Catalyst. J Am Chem Soc 2023; 145:610-625. [PMID: 36538490 DOI: 10.1021/jacs.2c11284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Enantioselective [2 + 2] cyclization between an imine and a carbon-carbon double bond is a versatile strategy to build chiral azetidines. However, α-branched allenoates have never been successfully applied in [2 + 2] cyclization reactions with imines, as they always undergo Kwon's [4 + 2] annulation in previous catalytic methods. Herein, a simple in situ generated magnesium catalyst was employed to successfully achieve the enantioselective [2 + 2] cyclization reaction of DPP-imines and α-branched allenoates for the first time. Insightful experiments including KIE experiments, controlled experiments, Hammett plot analysis, and 31P NMR studies of initial intermediates indicate that the current [2 + 2] cyclization of imine most likely involves an asynchronous concerted transition state. Further mechanistic investigations by combining kinetic studies, ESI experiments, 31P NMR studies of coordination complexes, and controlled experiments on reaction rates under different catalyst loading amounts provided the coordination details for this [2 + 2] cyclization reaction between DPP-imines and α-branched allenoates. This new approach was applied to the synthesis of various chiral aza-heterocycles, including the enantioselective synthesis of the key intermediate of a lipid-lowering agent Ezetimibe.
Collapse
Affiliation(s)
- Linqing Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| | - Feiyun Gao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| | - Xiaoyong Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China
| | - Tianyu Peng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| | - Yingfan Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| | - Dongxu Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| |
Collapse
|
6
|
Sun T, Jin X, Zhang X, Lu X, Wang C, Cui J, Xu H, Yang X, Liu X, Zhang L, Ling Y. Design, Synthesis, and Biological Activity of Novel Laccase Inhibitors as Fungicides against Rice Blast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14367-14376. [PMID: 36318476 DOI: 10.1021/acs.jafc.2c05144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Laccase is a potential target for novel agricultural fungicide discovery. PMDD-5Y was the first agent reported with high activity against laccase to control phytopathogenic fungi. Thirty-two novel agents containing cinnamaldehyde thiosemicarbazide were synthesized with PMDD-5Y as the lead compound, with most of the target compounds exhibiting excellent activity in vitro. Compound a2 (EC50 = 9.71 μg/mL) exhibited greater potency against Magnaporthe oryzae than the commercial fungicide isoprothiolane (EC50 = 18.62 μg/mL). The curative and protective effects of a2 against M. oryzae on rice were more than those of PMDD-5Y. Scanning electron microscopy indicated that a2 could cause mycelial growth atrophy and malformation. Furthermore, a2 (IC50 = 0.18 mmol/L) showed higher activity against laccase than PMDD-5Y (IC50 = 0.33 mmol/L) and cysteine (IC50 = 0.30 mmol/L). Molecular docking analysis revealed the nature of interaction between these compounds and laccase. This research identified a novel laccase inhibitor a2 as a fungicide candidate to control rice blast in agriculture.
Collapse
Affiliation(s)
- Tengda Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Jin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoming Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xingxing Lu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Changkai Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jialin Cui
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Huan Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xinling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shanxi 712110, China
| | - Li Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yun Ling
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Guo R, Xiao H, Li S, Luo Y, Bai J, Zhang M, Guo Y, Qi X, Zhang G. Photoinduced Copper‐Catalyzed Asymmetric C(sp
3
)−H Alkynylation of Cyclic Amines by Intramolecular 1,5‐Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2022; 61:e202208232. [DOI: 10.1002/anie.202208232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Indexed: 01/22/2023]
Affiliation(s)
- Rui Guo
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Haijing Xiao
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Sijia Li
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Yixin Luo
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Jiahui Bai
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Mengzhen Zhang
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Guozhu Zhang
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
8
|
Guo R, Xiao H, Li S, Luo Y, Bai J, Zhang M, Qi X, Guo Y, Zhang G. Photoinduced Copper‐Catalyzed Asymmetric C(sp3)‐H Alkynylation of Cyclic Amines by Intramolecular 1,5‐Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rui Guo
- Shanghai Institute of Organic Chemistry State Key Laborary of Organometallic Chemistry CHINA
| | - Haijing Xiao
- Central China Normal University Department of Chemistry CHINA
| | - Sijia Li
- Central China Normal University Department of Chemistry CHINA
| | - Yixin Luo
- Wuhan University Department of Chemistry CHINA
| | - Jiahui Bai
- Shanghai Institute of Organic Chemistry State Key Laborary of Organometallic Chemistry CHINA
| | - Mengzhen Zhang
- Central China Normal University Department of Chemistry CHINA
| | - Xiaotian Qi
- Wuhan University Department of Chemistry CHINA
| | - Yinlong Guo
- Shanghai Institute of Organic Chemistry State Key Laborary of Organometallic Chemistry CHINA
| | - Guozhu Zhang
- Shanghai Institute of Organic Chemistry Chemistry 345 Lingling Rd 200032 Shanghai CHINA
| |
Collapse
|
9
|
Ni C, Yu H, Liu L, Yan B, Zhang B, Ma X, Zhang X, Yang Z. An efficient catalytic method for the borohydride reaction of esters using diethylzinc as precatalyst. NEW J CHEM 2022. [DOI: 10.1039/d2nj03136a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cheap and easily available ZnEt2 is an effective precatalyst, which can be used for the hydroboration reaction of various organic carbonates and esters with HBpin.
Collapse
Affiliation(s)
- Congjian Ni
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Hailong Yu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Ling Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Ben Yan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Bingyi Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Xiaoli Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Xiuhui Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Zhi Yang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| |
Collapse
|
10
|
|
11
|
Das S, Goswami G, Halder S, Ghorai MK. Domino imino-aldol-aza-Michael and imino-aldol-aza-Michael-imino-aldol reactions: Diastereoselective synthesis of highly functionalized 2,6-disubstituted piperidines. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Chen Y, Huang Z, Jiang Y, Shu S, Yang S, Shi DQ, Zhao Y. Direct para-Selective C-H Amination of Iodobenzenes: Highly Efficient Approach for the Synthesis of Diarylamines. J Org Chem 2021; 86:8226-8235. [PMID: 34080879 DOI: 10.1021/acs.joc.1c00681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iodine(III)-mediated synthesis of 4-iodo-N-phenylaniline from iodobenzene has been achieved, and the reaction can proceed under mild conditions. A variety of functional groups were well tolerated, providing the corresponding products in moderate to good yields. The remaining iodine group provides an effective platform for converting the products into several valuable asymmetric diphenylamines. Most importantly, this reaction can be easily scaled up to the ten-gram scale, highlighting its synthetic utility. The mechanistic study revealed that the in situ generated aryl hypervalent iodine intermediate is the key factor to realize this para-selective C-H amination reaction.
Collapse
Affiliation(s)
- Yujie Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yaqiqi Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Sai Shu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Shan Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Da-Qing Shi
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Henan 453007, China
| |
Collapse
|
13
|
Abstract
This review collects for the first time enantioselective one-pot processes promoted
by green chiral zinc catalysts. It illustrates how much these cheap, non-toxic and environmentally
benign catalysts allow unprecedented asymmetric domino and tandem reactions of many
types to be achieved, allowing direct access to a wide variety of very complex chiral molecules.
Collapse
Affiliation(s)
- Hélène Pellissier
- Aix-Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| |
Collapse
|
14
|
Vinogradov MG, Turova OV, Zlotin SG. Catalytic Asymmetric Aza‐Diels‐Alder Reaction: Pivotal Milestones and Recent Applications to Synthesis of Nitrogen‐Containing Heterocycles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001307] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maxim G. Vinogradov
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
| | - Olga V. Turova
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
| | - Sergei G. Zlotin
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
| |
Collapse
|
15
|
Eshon J, Nicastri KA, Schmid SC, Raskopf WT, Guzei IA, Fernández I, Schomaker JM. Intermolecular [3+3] ring expansion of aziridines to dehydropiperi-dines through the intermediacy of aziridinium ylides. Nat Commun 2020; 11:1273. [PMID: 32152321 PMCID: PMC7062875 DOI: 10.1038/s41467-020-15134-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/21/2020] [Indexed: 01/07/2023] Open
Abstract
The importance of N-heterocycles in drugs has stimulated diverse methods for their efficient syntheses. Methods that introduce significant stereochemical complexity are attractive for identifying new bioactive amine chemical space. Here, we report a [3 + 3] ring expansion of bicyclic aziridines and rhodium-bound vinyl carbenes to form complex dehydropiperidines in a highly stereocontrolled rearrangement. Mechanistic studies and DFT computations indicate that the reaction proceeds through formation of a vinyl aziridinium ylide; this reactive intermediate undergoes a pseudo-[1,4]-sigmatropic rearrangement to directly furnish heterocyclic products with net retention at the new C-C bond. In combination with asymmetric silver-catalyzed aziridination, enantioenriched scaffolds with up to three contiguous stereocenters are rapidly delivered. The mild reaction conditions, functional group tolerance, and high stereospecificity of this method are well-suited for appending piperidine motifs to natural product and complex molecules. Ultimately, our work establishes the value of underutilized aziridinium ylides as key intermediates for converting small, strained rings to larger N-heterocycles.
Collapse
Affiliation(s)
- Josephine Eshon
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI, 53706, USA
| | - Kate A Nicastri
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI, 53706, USA
| | - Steven C Schmid
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI, 53706, USA
| | - William T Raskopf
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI, 53706, USA
| | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI, 53706, USA
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avazanda (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Jennifer M Schomaker
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI, 53706, USA.
| |
Collapse
|
16
|
Lei G, Zhang H, Chen B, Xu M, Zhang G. Copper-catalyzed enantioselective arylalkynylation of alkenes. Chem Sci 2020; 11:1623-1628. [PMID: 32206280 PMCID: PMC7069229 DOI: 10.1039/c9sc04029c] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022] Open
Abstract
Enantioselective aryl and alkynylation of activated/nonactivated alkenes.
A copper-catalyzed enantioselective arylalkynylation of alkenes with diaryliodonium salt and a monosubstituted alkyne is reported. The three-component coupling reactions proceed under mild reaction conditions with a broad substrate scope, leading to synthetically valuable 1,2-diaryl-3-butynes. The key to the success of this chemistry is the employment of the chiral bisoxazoline-phenylaniline (BOPA) ligand. A novel reaction pathway involving the phenyl radical generation under thermal copper catalysis is proposed according to mechanistic studies.
Collapse
Affiliation(s)
- Guangyue Lei
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Center for Excellence in Molecular Synthesis , University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , P. R. China .
| | - Hanwen Zhang
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Center for Excellence in Molecular Synthesis , University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , P. R. China .
| | - Bin Chen
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Center for Excellence in Molecular Synthesis , University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , P. R. China .
| | - Meichen Xu
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Center for Excellence in Molecular Synthesis , University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , P. R. China .
| | - Guozhu Zhang
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Center for Excellence in Molecular Synthesis , University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , P. R. China .
| |
Collapse
|
17
|
Yang WJ, Fang HL, Sun J, Yan CG. Construction of Dispiro-Indenone Scaffolds via Domino Cycloaddition Reactions of α,β-Unsaturated Aldimines with 2-Arylidene-1,3-indenediones and 2,2'-(Arylmethylene)bis(1,3-indenediones). ACS OMEGA 2019; 4:13553-13569. [PMID: 31460485 PMCID: PMC6705284 DOI: 10.1021/acsomega.9b01960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
The catalyst-free domino reaction of α,β-unsaturated N-alkyl or N-arylaldimines with two molecules of 2-arylidene-1,3-indanediones in dry acetonitrile resulted in polysubstituted spiro[indene-2,3'-indeno[2',1':5,6]pyrano[2,3-b]pyridines] in moderate to good yields and with high diastereoselectivity. The reaction mechanism included sequential aza/oxa-Diels-Alder reactions via both endo-transition states. On the other hand, the catalyst-free domino reaction of α,β-unsaturated N-arylaldimines with 2,2'-(arylmethylene)bis(1,3-indenediones) afforded the mixed diastereoisomeric dispiro[indene-2,1'-cyclohexane-3',2″-indene] derivatives in satisfactory yields. The reaction mechanism of this formal [3 + 3] cycloaddition was believed to proceed with sequential nucleophilic 1,4-/1,2-additions.
Collapse
Affiliation(s)
- Wen-Juan Yang
- College of Chemistry & Chemical
Engineering, Yangzhou University, Yangzhou 225002, China
| | - Hui-Lin Fang
- College of Chemistry & Chemical
Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry & Chemical
Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry & Chemical
Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
18
|
Combee LA, Johnson SL, Laudenschlager JE, Hilinski MK. Rh(II)-Catalyzed Nitrene-Transfer [5 + 1] Cycloadditions of Aryl-Substituted Vinylcyclopropanes. Org Lett 2019; 21:2307-2311. [PMID: 30907595 DOI: 10.1021/acs.orglett.9b00594] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formal [5 + 1] cycloadditions between aryl-substituted vinylcyclopropanes and nitrenoid precursors are reported. The method, which employs Rh2(esp)2 as a catalyst, leads to the highly regioselective formation of substituted tetrahydropyridines. Preliminary mechanistic studies support a stepwise, polar mechanism enabled by the previously observed Lewis acidity of Rh-nitrenoids. Overall, this work expands the application of nitrene-transfer cycloaddition, a relatively underexplored approach to heterocycle synthesis, to the formation of six-membered rings.
Collapse
Affiliation(s)
- Logan A Combee
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904-4319 , United States
| | - Shea L Johnson
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904-4319 , United States
| | - Julie E Laudenschlager
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904-4319 , United States
| | - Michael K Hilinski
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904-4319 , United States
| |
Collapse
|
19
|
Zhang J, Liu X, Guo S, He C, Xiao W, Lin L, Feng X. Enantioselective Formal [4 + 2] Annulation of ortho-Quinone Methides with ortho-Hydroxyphenyl α,β-Unsaturated Compounds. J Org Chem 2018; 83:10175-10185. [DOI: 10.1021/acs.joc.8b01425] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jianlin Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Songsong Guo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Changqiang He
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Wanlong Xiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, People’s Republic of China
| |
Collapse
|
20
|
Wang YF, Shao JJ, Wang B, Chu MM, Qi SS, Du XH, Xu DQ. Asymmetric Brominative Dearomatization of Naphthols Catalyzed by Chiral Copper Complexes. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yi-Feng Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; Hangzhou 310014 People's Republic of China
| | - Juan-Juan Shao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; Hangzhou 310014 People's Republic of China
| | - Biao Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; Hangzhou 310014 People's Republic of China
| | - Ming-Ming Chu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; Hangzhou 310014 People's Republic of China
| | - Suo-Suo Qi
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; Hangzhou 310014 People's Republic of China
| | - Xiao-Hua Du
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; Hangzhou 310014 People's Republic of China
| | - Dan-Qian Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; Hangzhou 310014 People's Republic of China
| |
Collapse
|
21
|
Roscales S, Csákÿ AG. Synthesis of Di(hetero)arylamines from Nitrosoarenes and Boronic Acids: A General, Mild, and Transition-Metal-Free Coupling. Org Lett 2018; 20:1667-1671. [DOI: 10.1021/acs.orglett.8b00473] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Silvia Roscales
- Instituto Pluridisciplinar, Universidad Complutense, Campus de Excelencia Internacional Moncloa, Paseo de Juan XXIII, 1, 28040 Madrid, Spain
| | - Aurelio G. Csákÿ
- Instituto Pluridisciplinar, Universidad Complutense, Campus de Excelencia Internacional Moncloa, Paseo de Juan XXIII, 1, 28040 Madrid, Spain
| |
Collapse
|
22
|
Yue DF, Zhao JQ, Chen YZ, Zhang XM, Xu XY, Yuan WC. Zinc-Catalyzed Enantioselective Dearomative [3+2] Cycloaddition Reaction of 3-Nitrobenzothiophenes and 3-Nitrothieno[2,3-b]yridine with 3-Isothiocyanato Oxindoles. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701557] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Deng-Feng Yue
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Jian-Qiang Zhao
- Institute for Advanced Study; Chengdu University; Chengdu 610106 People's Republic of China
| | - Yong-Zheng Chen
- School of Pharmacy; Zunyi Medical University; Zunyi 563000 People's Republic of China
| | - Xiao-Mei Zhang
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 People's Republic of China
| | - Xiao-Ying Xu
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 People's Republic of China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 People's Republic of China
| |
Collapse
|
23
|
Zhao JQ, Zhou XJ, Zhou Y, Xu XY, Zhang XM, Yuan WC. Diastereo- and Enantioselective Dearomative [3 + 2] Cycloaddition Reaction of 2-Nitrobenzofurans with 3-Isothiocyanato Oxindoles. Org Lett 2018; 20:909-912. [PMID: 29384383 DOI: 10.1021/acs.orglett.7b03667] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Enantioselective dearomative [3 + 2] cycloaddition reaction of 2-nitrobenzofurans with 3-isothiocyanato oxindoles was developed. The reaction employs a chiral bis(oxazoline)/Zn(OTf)2 catalyst, allowing a practical, straightforward access to structurally diverse spirooxindoles containing a 2,3-dihydrobenzofuran motif and three contiguous stereocenters with excellent diastereo- and enantioselectivities. The synthetic potentials of the method have been demonstrated by the scale-up experiment and transformations of the products. The preliminary mechanism was investigated with experimental observations, nonlinear effects studies, and MS experiments.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University , Chengdu 610106, China
| | - Xiao-Jian Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences , Chengdu 610041, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yan Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences , Chengdu 610041, China
| | - Xiao-Ying Xu
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences , Chengdu 610041, China
| | - Xiao-Mei Zhang
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences , Chengdu 610041, China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences , Chengdu 610041, China
| |
Collapse
|
24
|
Yang WJ, Sun Q, Sun J, Yan CG. Domino aza/oxa-hetero-Diels–Alder reaction for construction of novel spiro[pyrido[3′,2′:5,6]pyrano[2,3-d]pyrimidine-7,5′-pyrimidine]. Org Chem Front 2018. [DOI: 10.1039/c8qo00784e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unprecedented reaction of α,β-unsaturated N-arylaldimines with two molecular 5-arylidene-1,3-dimethylbarbituric acids in methylene dichloride at room temperature afforded unique spiro[pyrido[3′,2′:5,6]pyrano[2,3-d]pyrimidine-7,5′-pyrimidines] in moderate to good yields and with high diastereoselectivity.
Collapse
Affiliation(s)
- Wen-Juan Yang
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Qiu Sun
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Jing Sun
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| |
Collapse
|
25
|
Costil R, Dale HJA, Fey N, Whitcombe G, Matlock JV, Clayden J. Heavily Substituted Atropisomeric Diarylamines by Unactivated Smiles Rearrangement of
N
‐Aryl Anthranilamides. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706341] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Romain Costil
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Harvey J. A. Dale
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Natalie Fey
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - George Whitcombe
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | | - Jonathan Clayden
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
26
|
Costil R, Dale HJA, Fey N, Whitcombe G, Matlock JV, Clayden J. Heavily Substituted Atropisomeric Diarylamines by Unactivated Smiles Rearrangement of
N
‐Aryl Anthranilamides. Angew Chem Int Ed Engl 2017; 56:12533-12537. [DOI: 10.1002/anie.201706341] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/16/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Romain Costil
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Harvey J. A. Dale
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Natalie Fey
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - George Whitcombe
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | | - Jonathan Clayden
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
27
|
Stukalov A, Sokolov VV, Suslonov VV, Kuznetsov MA. Pyrazoles and C
-Imidoylaziridines through [4+1] Annulation and [2+1] Cycloaddition of 1-Azabuta-1,3-dienes with a Synthetic Equivalent of Phthalimidonitrene. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Aleksandr Stukalov
- Institute of Chemistry; Saint Petersburg State University; Universitetskii pr. 26 198504 Saint Petersburg Russia
| | - Viktor V. Sokolov
- Institute of Chemistry; Saint Petersburg State University; Universitetskii pr. 26 198504 Saint Petersburg Russia
| | - Vitalii V. Suslonov
- Center for X-ray Diffraction Studies; Saint Petersburg State University; Universitetskii pr. 26 198504 Saint Petersburg Russia
| | - Mikhail A. Kuznetsov
- Institute of Chemistry; Saint Petersburg State University; Universitetskii pr. 26 198504 Saint Petersburg Russia
| |
Collapse
|
28
|
Nebe M, Opatz T. Synthesis of Piperidines and Dehydropiperidines. ADVANCES IN HETEROCYCLIC CHEMISTRY 2017. [DOI: 10.1016/bs.aihch.2016.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Luescher MU, Bode JW. SnAP-eX Reagents for the Synthesis of Exocyclic 3-Amino- and 3-Alkoxypyrrolidines and Piperidines from Aldehydes. Org Lett 2016; 18:2652-5. [DOI: 10.1021/acs.orglett.6b01099] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael U. Luescher
- Laboratorium
für Organische
Chemie, ETH Zürich, HCI F 315, Vladimir Prelog Weg 3, 8093 Zürich, Switzerland
| | - Jeffrey W. Bode
- Laboratorium
für Organische
Chemie, ETH Zürich, HCI F 315, Vladimir Prelog Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
30
|
Zhao MN, Yu L, Hui RR, Ren ZH, Wang YY, Guan ZH. Iron-Catalyzed Dehydrogenative [4 + 2] Cycloaddition of Tertiary Anilines and Enamides for the Synthesis of Tetrahydroquinolines with Amido-Substituted Quaternary Carbon Centers. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00849] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mi-Na Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Le Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Rong-Rong Hui
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Zhi-Hui Ren
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
31
|
Mukhina OA, Kutateladze AG. Oxazolines as Dual-Function Traceless Chromophores and Chiral Auxiliaries: Enantioselective Photoassisted Synthesis of Polyheterocyclic Ketones. J Am Chem Soc 2016; 138:2110-3. [PMID: 26866604 PMCID: PMC5578731 DOI: 10.1021/jacs.5b12690] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
2-(o-Amidophenyl)oxa- and -thiazolines undergo excited-state intramolecular proton transfer (ESIPT), generating aza-o-xylylenes capable of intramolecular [4+2] and [4+4] cycloadditions with tethered unsaturated pendants. Facile hydrolysis of the primary photoproducts, spiro-oxazolidines and thiazolidines, under mild conditions unmasks a phenone functionality. Variations in linkers allow for access to diverse core scaffolds in the primary photoproducts, rendering the approach compatible with the philosophy of diversity-oriented synthesis. Chiral oxazolines, readily available from the corresponding amino alcohols, yield enantioenriched keto-polyheterocycles of complex topologies with enantiomeric excess values up to 90%.
Collapse
Affiliation(s)
- Olga A. Mukhina
- Department of Chemistry and Biochemistry, University of Denver, 2190 E. Iliff Ave. Denver, CO 80208-2436 (USA)
| | - Andrei G. Kutateladze
- Department of Chemistry and Biochemistry, University of Denver, 2190 E. Iliff Ave. Denver, CO 80208-2436 (USA)
| |
Collapse
|
32
|
Xu GQ, Li CG, Liu MQ, Cao J, Luo YC, Xu PF. Dual C–H functionalization of N-aryl tetrahydroisoquinolines: a highly diastereoselective synthesis of dibenzo[a,f]quinolizines via visible-light induced oxidation and inverse electron-demand aza-Diels–Alder reaction. Chem Commun (Camb) 2016; 52:1190-3. [DOI: 10.1039/c5cc08833j] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dual C–H functionalization of amines with high diastereoselectivity is developedviavisible-light photocatalysis and inverse electron-demand aza-Diels–Alder reaction.
Collapse
Affiliation(s)
- Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Chen-Guang Li
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Ming-Qian Liu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Jian Cao
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yong-Chun Luo
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|