1
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Behairy MY, Eid RA, Otifi HM, Mohammed HM, Alshehri MA, Asiri A, Aldehri M, Zaki MSA, Darwish KM, Elhady SS, El-Shaer NH, Eldeen MA. Unraveling Extremely Damaging IRAK4 Variants and Their Potential Implications for IRAK4 Inhibitor Efficacy. J Pers Med 2023; 13:1648. [PMID: 38138875 PMCID: PMC10744719 DOI: 10.3390/jpm13121648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 12/24/2023] Open
Abstract
Interleukin-1-receptor-associated kinase 4 (IRAK4) possesses a crucial function in the toll-like receptor (TLR) signaling pathway, and the dysfunction of this molecule could lead to various infectious and immune-related diseases in addition to cancers. IRAK4 genetic variants have been linked to various types of diseases. Therefore, we conducted a comprehensive analysis to recognize the missense variants with the most damaging impacts on IRAK4 with the employment of diverse bioinformatics tools to study single-nucleotide polymorphisms' effects on function, stability, secondary structures, and 3D structure. The residues' location on the protein domain and their conservation status were investigated as well. Moreover, docking tools along with structural biology were engaged in analyzing the SNPs' effects on one of the developed IRAK4 inhibitors. By analyzing IRAK4 gene SNPs, the analysis distinguished ten variants as the most detrimental missense variants. All variants were situated in highly conserved positions on an important protein domain. L318S and L318F mutations were linked to changes in IRAK4 secondary structures. Eight SNPs were revealed to have a decreasing effect on the stability of IRAK4 via both I-Mutant 2.0 and Mu-Pro tools, while Mu-Pro tool identified a decreasing effect for the G198E SNP. In addition, detrimental effects on the 3D structure of IRAK4 were also discovered for the selected variants. Molecular modeling studies highlighted the detrimental impact of these identified SNP mutant residues on the druggability of the IRAK4 ATP-binding site towards the known target inhibitor, HG-12-6, as compared to the native protein. The loss of important ligand residue-wise contacts, altered protein global flexibility, increased steric clashes, and even electronic penalties at the ligand-binding site interfaces were all suggested to be associated with SNP models for hampering the HG-12-6 affinity towards IRAK4 target protein. This given model lays the foundation for the better prediction of various disorders relevant to IRAK4 malfunction and sheds light on the impact of deleterious IRAK4 variants on IRAK4 inhibitor efficacy.
Collapse
Affiliation(s)
- Mohammed Y. Behairy
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt;
| | - Refaat A. Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha P.O. Box 61421, Saudi Arabia; (R.A.E.); (H.M.O.)
| | - Hassan M. Otifi
- Department of Pathology, College of Medicine, King Khalid University, Abha P.O. Box 61421, Saudi Arabia; (R.A.E.); (H.M.O.)
| | - Heitham M. Mohammed
- Department of Anatomy, College of Medicine, King Khalid University, Abha P.O. Box 61421, Saudi Arabia; (H.M.M.); (M.A.); (M.S.A.Z.)
| | - Mohammed A. Alshehri
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia; (M.A.A.)
| | - Ashwag Asiri
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia; (M.A.A.)
| | - Majed Aldehri
- Department of Anatomy, College of Medicine, King Khalid University, Abha P.O. Box 61421, Saudi Arabia; (H.M.M.); (M.A.); (M.S.A.Z.)
| | - Mohamed Samir A. Zaki
- Department of Anatomy, College of Medicine, King Khalid University, Abha P.O. Box 61421, Saudi Arabia; (H.M.M.); (M.A.); (M.S.A.Z.)
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Nahla H. El-Shaer
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig 44511, Egypt;
| | - Muhammad Alaa Eldeen
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig 44511, Egypt;
| |
Collapse
|
3
|
Nakhaei-Rad S, Janatifard F, Dvorsky R, Ahmadian MR, Housaindokht MR. Molecular analyses of the C-terminal CRAF variants associated with cardiomyopathy reveal their opposing impacts on the active conformation of the kinase domain. J Biomol Struct Dyn 2023; 41:15328-15338. [PMID: 36927384 DOI: 10.1080/07391102.2023.2187221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
The germline mutations in the C-terminus of CRAF kinase, particularly L603, and S612T/L613V, are associated with congenital heart disorders, for example, dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). The experimental data suggest that genetic alternation at position 603 impairs, while those at positions 612/613 enhance the CRAF kinase activity. However, the underlying mechanistic details by which these mutations increase or decrease kinase activity remain elusive. Therefore, we applied molecular dynamic simulation to investigate the impacts of these point mutations on the conformation of the CRAF kinase domain. The results revealed that the substitution of Leucine 603 for proline transits the kinase domain to a state that exhibits the molecular hallmarks of an inactive kinase, for example, a closed activation loop, 'αC-helix out' conformation and a distorted regulatory hydrophobic spine. However, two HCM-associated variants (S612T and L613V) show features of an active conformation, such as an open activation loop conformation, 'αC-helix in', the assembly of the hydrophobic spine, and more surface-exposed catalytic residues of phosphoryl transfer reaction. Overall, our study provides a mechanistic basis for the contradictory effects of the CRAF variants associated with HCM and DCM.
Collapse
Affiliation(s)
- Saeideh Nakhaei-Rad
- Stem Cell Biology, and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Janatifard
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
4
|
Shams Ul Hassan S, Abbas SQ, Hassan M, Jin HZ. Computational Exploration of Anti-Cancer Potential of Guaiane Dimers from Xylopia vielana by Targeting B-Raf Kinase Using Chemo-Informatics, Molecular Docking and MD Simulation Studies. Anticancer Agents Med Chem 2021; 22:731-746. [PMID: 34645380 DOI: 10.2174/1871520621666211013115500] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Natural products from herbs are prolific to display robust anticancer activities. OBJECTIVES In the current study, B-Raf kinase protein (PDB: 3OG7), a potent target for melanoma, was tested against two guaiane-type sesquiterpene dimers, xylopin E-F, obtained from Xylopia vielana. METHODS In this work, a systematic in silico study using ADMET analysis, bioactivity score forecasts, molecular docking, and its simulations were conducted to understand compounds' pharmacological properties. RESULTS During ADMET predictions of both the compounds, Xylopin E-F has displayed a safer profile in hepatotoxicity, cytochrome inhibition, and only xylopin F displayed as non-cardiotoxic compared to FDA approved drug vemurafenib. Both the compounds were proceeded to molecular docking experiments using Autodock docking software and both the compounds Xylopin E-F have displayed higher binding potential with -11.5Kcal/mol energy compared to control vemurafenib -10.2 Kcal/mol. All the compounds were further evaluated for their MD simulations and their molecular interactions with the B-Raf kinase complex displayed precise interactions with the active gorge of the enzyme by hydrogen bonding. CONCLUSIONS Overall, xylopin F had a better profile relative to xylopin E and vemurafenib, and these findings indicated that this bio-molecule could be used as an anti-melanoma agent and as a possible anticancer drug in the future. Therefore, this is a systematic optimized in silico approach to creating an anticancer pathway for guaiane dimers against the backdrop of its potential for future drug development.
Collapse
Affiliation(s)
- Syed Shams Ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240. China
| | - Syed Qamar Abbas
- Department of Pharmacy, Sarhad University of Science and Technology, Peshawar. Pakistan
| | - Mubashir Hassan
- Institute of Molecular Biology and Biotechnology, The University of Lahore. Pakistan
| | - Hui-Zi Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240. China
| |
Collapse
|
5
|
Stepniewski TM, Mancini A, Ågren R, Torrens-Fontanals M, Semache M, Bouvier M, Sahlholm K, Breton B, Selent J. Mechanistic insights into dopaminergic and serotonergic neurotransmission - concerted interactions with helices 5 and 6 drive the functional outcome. Chem Sci 2021; 12:10990-11003. [PMID: 34522296 PMCID: PMC8386650 DOI: 10.1039/d1sc00749a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/15/2021] [Indexed: 01/14/2023] Open
Abstract
Brain functions rely on neurotransmitters that mediate communication between billions of neurons. Disruption of this communication can result in a plethora of psychiatric and neurological disorders. In this work, we combine molecular dynamics simulations, live-cell biosensor and electrophysiological assays to investigate the action of the neurotransmitter dopamine at the dopaminergic D2 receptor (D2R). The study of dopamine and closely related chemical probes reveals how neurotransmitter binding translates into the activation of distinct subsets of D2R effectors (i.e.: Gi2, GoB, Gz and β-arrestin 2). Ligand interactions with key residues in TM5 (S5.42) and TM6 (H6.55) in the D2R binding pocket yield a dopamine-like coupling signature, whereas exclusive TM5 interaction is typically linked to preferential G protein coupling (in particular GoB) over β-arrestin. Further experiments for serotonin receptors indicate that the reported molecular mechanism is shared by other monoaminergic neurotransmitter receptors. Ultimately, our study highlights how sequence variation in position 6.55 is used by nature to fine-tune β-arrestin recruitment and in turn receptor signaling and internalization of neurotransmitter receptors.
Collapse
Affiliation(s)
- Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) - Pompeu Fabra University (UPF) Dr Aiguader 88 Barcelona E-08003 Spain
- InterAx Biotech AG, PARK InnovAARE 5234 Villigen Switzerland
| | - Arturo Mancini
- Domain Therapeutics NA Inc 7171 Frederick-Banting Saint-Laurent (QC) H4S 1Z9 Canada
| | - Richard Ågren
- Department of Neuroscience, Karolinska Institute Stockholm Sweden
| | - Mariona Torrens-Fontanals
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) - Pompeu Fabra University (UPF) Dr Aiguader 88 Barcelona E-08003 Spain
| | - Meriem Semache
- Domain Therapeutics NA Inc 7171 Frederick-Banting Saint-Laurent (QC) H4S 1Z9 Canada
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Université de Montréal Montreal QC H3C 3J7 Canada
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal Montréal Québec H3T 1J4 Canada
| | - Kristoffer Sahlholm
- Department of Neuroscience, Karolinska Institute Stockholm Sweden
- Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University 90187 Umeå Sweden
| | - Billy Breton
- Domain Therapeutics NA Inc 7171 Frederick-Banting Saint-Laurent (QC) H4S 1Z9 Canada
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal Montréal Québec H3T 1J4 Canada
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) - Pompeu Fabra University (UPF) Dr Aiguader 88 Barcelona E-08003 Spain
| |
Collapse
|
6
|
Galdadas I, Carlino L, Ward RA, Hughes SJ, Haider S, Gervasio FL. Structural basis of the effect of activating mutations on the EGF receptor. eLife 2021; 10:e65824. [PMID: 34319231 PMCID: PMC8318590 DOI: 10.7554/elife.65824] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/05/2021] [Indexed: 01/03/2023] Open
Abstract
Mutations within the kinase domain of the epidermal growth factor receptor (EGFR) are common oncogenic driver events in non-small cell lung cancer. Although the activation of EGFR in normal cells is primarily driven by growth-factor-binding-induced dimerization, mutations on different exons of the kinase domain of the receptor have been found to affect the equilibrium between its active and inactive conformations giving rise to growth-factor-independent kinase activation. Using molecular dynamics simulations combined with enhanced sampling techniques, we compare here the conformational landscape of the monomers and homodimers of the wild-type and mutated forms of EGFR ΔELREA and L858R, as well as of two exon 20 insertions, D770-N771insNPG, and A763-Y764insFQEA. The differences in the conformational energy landscapes are consistent with multiple mechanisms of action including the regulation of the hinge motion, the stabilization of the dimeric interface, and local unfolding transitions. Overall, a combination of different effects is caused by the mutations and leads to the observed aberrant signaling.
Collapse
Affiliation(s)
- Ioannis Galdadas
- Department of Chemistry, University College LondonLondonUnited Kingdom
- Institute of Pharmaceutical Sciences of Western Switzerland, University of GenevaGenevaSwitzerland
| | - Luca Carlino
- Oncology R&D, AstraZenecaCambridgeUnited Kingdom
| | | | | | - Shozeb Haider
- UCL School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Francesco Luigi Gervasio
- Department of Chemistry, University College LondonLondonUnited Kingdom
- Institute of Pharmaceutical Sciences of Western Switzerland, University of GenevaGenevaSwitzerland
- Institute of Structural and Molecular Biology, University College LondonLondonUnited Kingdom
- Pharmaceutical Sciences, University of GenevaGenevaSwitzerland
| |
Collapse
|
7
|
Maloney RC, Zhang M, Jang H, Nussinov R. The mechanism of activation of monomeric B-Raf V600E. Comput Struct Biotechnol J 2021; 19:3349-3363. [PMID: 34188782 PMCID: PMC8215184 DOI: 10.1016/j.csbj.2021.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Oncogenic mutations in the serine/threonine kinase B-Raf, particularly the V600E mutation, are frequent in cancer, making it a major drug target. Although much is known about B-Raf's active and inactive states, questions remain about the mechanism by which the protein changes between these two states. Here, we utilize molecular dynamics to investigate both wild-type and V600E B-Raf to gain mechanistic insights into the impact of the Val to Glu mutation. The results show that the wild-type and mutant follow similar activation pathways involving an extension of the activation loop and an inward motion of the αC-helix. The V600E mutation, however, destabilizes the inactive state by disrupting hydrophobic interactions present in the wild-type structure while the active state is stabilized through the formation of a salt bridge between Glu600 and Lys507. Additionally, when the activation loop is extended, the αC-helix is able to move between an inward and outward orientation as long as the DFG motif adopts a specific orientation. In that orientation Phe595 rotates away from the αC-helix, allowing the formation of a salt bridge between Lys483 and Glu501. These mechanistic insights have implications for the development of new Raf inhibitors.
Collapse
Affiliation(s)
- Ryan C. Maloney
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Corresponding author at: Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
8
|
Papaleo E. Investigating Conformational Dynamics and Allostery in the p53 DNA-Binding Domain Using Molecular Simulations. Methods Mol Biol 2021; 2253:221-244. [PMID: 33315226 DOI: 10.1007/978-1-0716-1154-8_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The p53 tumor suppressor is a multifaceted context-dependent protein, which is involved in multiple cellular pathways, with the ability to either keep the cells alive or to kill them through mechanisms such as apoptosis. To complicate this picture, cancer cells that express mutant p53 becomes addicted to the mutant activity, so that the mutant variant features a myriad of gain-of-function activities, opening different venues for therapy. This makes essential to think outside the box and apply new approaches to the study of p53 structure-(mis)function relationship to find new critical components of its pathway or to understand how known parts are interconnected, compete, or cooperate. In this context, I will here illustrate how to integrate different computational methods to the identification of possible allosteric effects transmitted from the DNA binding interface of p53 to regions for cofactor recruitment. The protocol can be extended to any other cases of study. Indeed, it does not necessarily apply only to the study of DNA-induced effects, but more broadly to the investigation of long-range effects induced by a biological partner that binds to a biomolecule of interest.
Collapse
Affiliation(s)
- Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark.
| |
Collapse
|
9
|
Peng C, Wang J, Shi Y, Xu Z, Zhu W. Increasing the Sampling Efficiency of Protein Conformational Change by Combining a Modified Replica Exchange Molecular Dynamics and Normal Mode Analysis. J Chem Theory Comput 2020; 17:13-28. [PMID: 33351613 DOI: 10.1021/acs.jctc.0c00592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding conformational change at an atomic level is significant when determining a protein functional mechanism. Replica exchange molecular dynamics (REMD) is a widely used enhanced sampling method to explore protein conformational space. However, REMD with an explicit solvent model requires huge computational resources, immensely limiting its application. In this study, a variation of parallel tempering metadynamics (PTMetaD) with the omission of solvent-solvent interactions in exchange attempts and the use of low-frequency modes calculated by normal-mode analysis (NMA) as collective variables (CVs), namely ossPTMetaD, is proposed with the aim to accelerate MD simulations simultaneously in temperature and geometrical spaces. For testing the performance of ossPTMetaD, five protein systems with diverse biological functions and motion patterns were selected, including large-scale domain motion (AdK), flap movement (HIV-1 protease and BACE1), and DFG-motif flip in kinases (p38α and c-Abl). The simulation results showed that ossPTMetaD requires much fewer numbers of replicas than temperature REMD (T-REMD) with a reduction of ∼70% to achieve a similar exchange ratio. Although it does not obey the detailed balance condition, ossPTMetaD provides consistent results with T-REMD and experimental data. The high accessibility of the large conformational change of protein systems by ossPTMetaD, especially in simulating the very challenging DFG-motif flip of protein kinases, demonstrated its high efficiency and robustness in the characterization of the large-scale protein conformational change pathway and associated free energy profile.
Collapse
Affiliation(s)
- Cheng Peng
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Jinan Wang
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yulong Shi
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,Open Studio for Druggability Research of Marine Lead Compounds, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
10
|
Brummer T, McInnes C. RAF kinase dimerization: implications for drug discovery and clinical outcomes. Oncogene 2020; 39:4155-4169. [PMID: 32269299 DOI: 10.1038/s41388-020-1263-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022]
Abstract
The RAF kinases activated by RAS GTPases regulate cell growth and division by signal transduction through the ERK cascade and mutations leading to constitutive activity are key drivers of human tumors, as are upstream activators including RAS and receptor tyrosine kinases. The development of first-generation RAF inhibitors, including vemurafenib (VEM) and dabrafenib led to initial excitement due to high response rates and profound regression of malignant melanomas carrying BRAFV600E mutations. The excitement about these unprecedented response rates, however, was tempered by tumor unresponsiveness through both intrinsic and acquired drug-resistance mechanisms. In recent years much insight into the complexity of the RAS-RAF axis has been obtained and inactivation and signal transduction mechanisms indicate that RAF dimerization is a critical step in multiple cellular contexts and plays a key role in resistance. Both homo- and hetero-dimerization of BRAF and CRAF can modulate therapeutic response and disease progression in patients treated with ATP-competitive inhibitors and are therefore highly clinically significant. Ten years after the definition of the RAF dimer interface (DIF) by crystallography, this review focuses on the implications of RAF kinase dimerization in signal transduction and for drug development, both from a classical ATP-competitive standpoint and from the perspective of new therapeutic strategies including inhibiting dimer formation. A structural perspective of the DIF, how dimerization impacts inhibitor activation and the structure-based design of next-generation RAF kinase inhibitors with unique mechanisms of action is presented. We also discuss potential fields of application for DIF inhibitors, ranging from non-V600E oncoproteins and BRAF fusions to tumors driven by aberrant receptor tyrosine kinase or RAS signaling.
Collapse
Affiliation(s)
- Tilman Brummer
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan-Meier-Strasse 17, 79104, Freiburg im Breisgau, Germany.,German Cancer Consortium DKTK Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Centre Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | - Campbell McInnes
- Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
11
|
Nandi T, Desai A, Ainavarapu SRK. The unfolding transition state of ubiquitin with charged residues has higher energy than that with hydrophobic residues. Phys Chem Chem Phys 2020; 22:23158-23168. [DOI: 10.1039/d0cp03876h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The native-state structure and folding pathways of a protein are encoded in its amino acid sequence.
Collapse
Affiliation(s)
- Tathagata Nandi
- Department of Chemical Sciences
- Tata Institute of Fundamental Research
- Mumbai 400005
- India
| | - Amogh Desai
- Department of Chemical Sciences
- Tata Institute of Fundamental Research
- Mumbai 400005
- India
| | | |
Collapse
|
12
|
Provasi D. Ligand-Binding Calculations with Metadynamics. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2019; 2022:233-253. [PMID: 31396906 DOI: 10.1007/978-1-4939-9608-7_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
All-atom molecular dynamics simulations can capture the dynamic degrees of freedom that characterize molecular recognition, the knowledge of which constitutes the cornerstone of rational approaches to drug design and optimization. In particular, enhanced sampling algorithms, such as metadynamics, are powerful tools to dramatically reduce the computational cost required for a mechanistic description of the binding process. Here, we describe the essential details characterizing these simulation strategies, focusing on the critical step of identifying suitable reaction coordinates, as well as on the different analysis algorithms to estimate binding affinity and residence times. We conclude with a survey of published applications that provides explicit examples of successful simulations for several targets.
Collapse
Affiliation(s)
- Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
13
|
Man RJ, Zhang YL, Jiang AQ, Zhu HL. A patent review of RAF kinase inhibitors (2010–2018). Expert Opin Ther Pat 2019; 29:675-688. [DOI: 10.1080/13543776.2019.1651842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ruo-Jun Man
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, People’s Republic of China
- College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, People’s Republic of China
| | - Ya-Liang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, People’s Republic of China
| | - Ai-Qin Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, People’s Republic of China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
14
|
Zhang M, Jang H, Nussinov R. The structural basis for Ras activation of PI3Kα lipid kinase. Phys Chem Chem Phys 2019; 21:12021-12028. [PMID: 31135801 PMCID: PMC6556208 DOI: 10.1039/c9cp00101h] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PI3Kα is a principal Ras effector that phosphorylates PIP2 to PIP3 in the PI3K/Akt/mTOR pathway. How Ras activates PI3K has been unclear: is Ras' role confined to PI3K recruitment to the membrane or does Ras activation also involve allostery? Recently, we determined the mechanism of PI3Kα activation at the atomic level. We showed the vital role and significance of conformational change in PI3Kα activation. Here, by a 'best-match for hydrogen-bonding pair' (BMHP) computational protocol and molecular dynamics (MD) simulations, we model the atomic structure of KRas4B in complex with the Ras binding domain (RBD) of PI3Kα, striving to understand the mechanism of PI3Kα activation by Ras. Point mutations T208D, K210E, and K227E disrupt the KRas4B-RBD interface in the models, in line with the experiments. We identify allosteric signaling pathways connecting Ras to RBD in the p110α subunit. However, the observed weak allosteric signals coupled with the detailed mechanism of PI3Kα activation make us conclude that the dominant mechanistic role of Ras is likely to be recruitment and restriction of the PI3Kα population at the membrane. Thus, RTK recruits the PI3Kα to the membrane and activates it by relieving its autoinhibition exerted by the nSH2 domain, leading to exposure of the kinase domain, which permits PIP2 binding. Ras recruitment can shift the PI3Kα ensemble toward a population where the kinase domain surface and the active site position and orientation favor PIP2 insertion. This work helps elucidate Ras-mediated PI3K activation and explores the structural basis for Ras-PI3Kα drug discovery.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | | | | |
Collapse
|
15
|
Martin-Fernandez ML, Clarke DT, Roberts SK, Zanetti-Domingues LC, Gervasio FL. Structure and Dynamics of the EGF Receptor as Revealed by Experiments and Simulations and Its Relevance to Non-Small Cell Lung Cancer. Cells 2019; 8:E316. [PMID: 30959819 PMCID: PMC6523254 DOI: 10.3390/cells8040316] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/25/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is historically the prototypical receptor tyrosine kinase, being the first cloned and the first where the importance of ligand-induced dimer activation was ascertained. However, many years of structure determination has shown that EGFR is not completely understood. One challenge is that the many structure fragments stored at the PDB only provide a partial view because full-length proteins are flexible entities and dynamics play a key role in their functionality. Another challenge is the shortage of high-resolution data on functionally important higher-order complexes. Still, the interest in the structure/function relationships of EGFR remains unabated because of the crucial role played by oncogenic EGFR mutants in driving non-small cell lung cancer (NSCLC). Despite targeted therapies against EGFR setting a milestone in the treatment of this disease, ubiquitous drug resistance inevitably emerges after one year or so of treatment. The magnitude of the challenge has inspired novel strategies. Among these, the combination of multi-disciplinary experiments and molecular dynamic (MD) simulations have been pivotal in revealing the basic nature of EGFR monomers, dimers and multimers, and the structure-function relationships that underpin the mechanisms by which EGFR dysregulation contributes to the onset of NSCLC and resistance to treatment.
Collapse
Affiliation(s)
- Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | - David T Clarke
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | - Selene K Roberts
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | - Laura C Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | | |
Collapse
|
16
|
Bestgen B, Kufareva I, Seetoh W, Abell C, Hartmann RW, Abagyan R, Le Borgne M, Filhol O, Cochet C, Lomberget T, Engel M. 2-Aminothiazole Derivatives as Selective Allosteric Modulators of the Protein Kinase CK2. 2. Structure-Based Optimization and Investigation of Effects Specific to the Allosteric Mode of Action. J Med Chem 2019; 62:1817-1836. [PMID: 30689946 DOI: 10.1021/acs.jmedchem.8b01765] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein CK2 has gained much interest as an anticancer drug target in the past decade. We had previously described the identification of a new allosteric site on the catalytic α-subunit, along with first small molecule ligands based on the 4-(4-phenylthiazol-2-ylamino)benzoic acid scaffold. In the present work, structure optimizations guided by a binding model led to the identification of the lead compound 2-hydroxy-4-((4-(naphthalen-2-yl)thiazol-2-yl)amino)benzoic acid (27), showing a submicromolar potency against purified CK2α (IC50 = 0.6 μM). Furthermore, 27 induced apoptosis and cell death in 786-O renal cell carcinoma cells (EC50 = 5 μM) and inhibited STAT3 activation even more potently than the ATP-competitive drug candidate CX-4945 (EC50 of 1.6 μM vs 5.3 μM). Notably, the potencies of our allosteric ligands to inhibit CK2 varied depending on the individual substrate. Altogether, the novel allosteric pocket was proved a druggable site, offering an excellent perspective to develop efficient and selective allosteric CK2 inhibitors.
Collapse
Affiliation(s)
- Benoît Bestgen
- Université de Lyon, Université Lyon 1, Faculté de Pharmacie, ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453, INSERM US7, 69373 Lyon Cedex 8, France.,Pharmaceutical and Medicinal Chemistry , Saarland University , Campus C2.3, 66123 Saarbrücken , Germany.,Institut National de la Santé et de la Recherche Médicale , U1036, 38000 Grenoble , France.,Commissariat à l'Energie Atomique, Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, 38000 Grenoble , France.,Unité Mixte de Recherche-S1036 , University of Grenoble Alpes , 38000 Grenoble , France
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
| | - Weiguang Seetoh
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Chris Abell
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Rolf W Hartmann
- Department of Drug Design and Optimization , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus C2.3, 66123 Saarbrücken , Germany
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
| | - Marc Le Borgne
- Université de Lyon, Université Lyon 1, Faculté de Pharmacie, ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453, INSERM US7, 69373 Lyon Cedex 8, France
| | - Odile Filhol
- Institut National de la Santé et de la Recherche Médicale , U1036, 38000 Grenoble , France.,Commissariat à l'Energie Atomique, Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, 38000 Grenoble , France.,Unité Mixte de Recherche-S1036 , University of Grenoble Alpes , 38000 Grenoble , France
| | - Claude Cochet
- Institut National de la Santé et de la Recherche Médicale , U1036, 38000 Grenoble , France.,Commissariat à l'Energie Atomique, Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, 38000 Grenoble , France.,Unité Mixte de Recherche-S1036 , University of Grenoble Alpes , 38000 Grenoble , France
| | - Thierry Lomberget
- Université de Lyon, Université Lyon 1, Faculté de Pharmacie, ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453, INSERM US7, 69373 Lyon Cedex 8, France
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry , Saarland University , Campus C2.3, 66123 Saarbrücken , Germany
| |
Collapse
|
17
|
Leroux AE, Gross LZF, Sacerdoti M, Biondi RM. Allosteric Regulation of Protein Kinases Downstream of PI3-Kinase Signalling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:279-311. [PMID: 31707708 DOI: 10.1007/978-981-13-8719-7_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allostery is a basic principle that enables proteins to process and transmit cellular information. Protein kinases evolved allosteric mechanisms to transduce cellular signals to downstream signalling components or effector molecules. Protein kinases catalyse the transfer of the terminal phosphate from ATP to protein substrates upon specific stimuli. Protein kinases are targets for the development of small molecule inhibitors for the treatment of human diseases. Drug development has focussed on ATP-binding site, while there is increase interest in the development of drugs targeting alternative sites, i.e. allosteric sites. Here, we review the mechanism of regulation of protein kinases, which often involve the allosteric modulation of the ATP-binding site, enhancing or inhibiting activity. We exemplify the molecular mechanism of allostery in protein kinases downstream of PI3-kinase signalling with a focus on phosphoinositide-dependent protein kinase 1 (PDK1), a model kinase where small compounds can allosterically modulate the conformation of the kinase bidirectionally.
Collapse
Affiliation(s)
- Alejandro E Leroux
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Lissy Z F Gross
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Mariana Sacerdoti
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Ricardo M Biondi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Frankfurt, Germany.
- DKTK German Cancer Consortium (DKTK), Frankfurt, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
18
|
Leontiadou H, Galdadas I, Athanasiou C, Cournia Z. Insights into the mechanism of the PIK3CA E545K activating mutation using MD simulations. Sci Rep 2018; 8:15544. [PMID: 30341384 PMCID: PMC6195558 DOI: 10.1038/s41598-018-27044-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 05/04/2018] [Indexed: 12/19/2022] Open
Abstract
Phosphoinositide 3-kinase alpha (PI3Kα) is involved in fundamental cellular processes including cell proliferation and differentiation and is frequently mutated in human malignancies. One of the most common mutations is E545K, which results in an amino acid substitution of opposite charge. It has been recently proposed that in this oncogenic charge-reversal mutation, the interactions between the protein catalytic and regulatory subunits are abrogated, resulting in loss of regulation and constitutive PI3Kα activity, which can lead to oncogenesis. To assess the mechanism of the PI3Kα E545K activating mutation, extensive Molecular Dynamics simulations were performed to examine conformational changes differing between the wild type (WT) and mutant proteins as they occur in microsecond simulations. In the E545K mutant PI3Kα, we observe a spontaneous detachment of the nSH2 PI3Kα domain (regulatory subunit, p85α) from the helical domain (catalytic subunit, p110α) causing significant loss of communication between the regulatory and catalytic subunits. We examine the allosteric network of the two proteins and show that a cluster of residues around the mutation is important for delivering communication signals between the catalytic and regulatory subunits. Our results demonstrate the dynamical and structural effects induced by the p110α E545K mutation in atomic level detail and indicate a possible mechanism for the loss of regulation that E545K confers on PI3Kα.
Collapse
Affiliation(s)
- Hari Leontiadou
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527, Athens, Greece
| | - Ioannis Galdadas
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527, Athens, Greece
| | - Christina Athanasiou
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527, Athens, Greece
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527, Athens, Greece.
| |
Collapse
|
19
|
Liu T, Wang Z, Guo P, Ding N. Electrostatic mechanism of V600E mutation-induced B-Raf constitutive activation in colorectal cancer: molecular implications for the selectivity difference between type-I and type-II inhibitors. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 48:73-82. [DOI: 10.1007/s00249-018-1334-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/10/2018] [Accepted: 09/06/2018] [Indexed: 02/04/2023]
|
20
|
Comitani F, Gervasio FL. Exploring Cryptic Pockets Formation in Targets of Pharmaceutical Interest with SWISH. J Chem Theory Comput 2018; 14:3321-3331. [DOI: 10.1021/acs.jctc.8b00263] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Federico Comitani
- Department of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Francesco Luigi Gervasio
- Department of Chemistry, University College London, London WC1E 6BT, United Kingdom
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
21
|
Water-mediated conformational preselection mechanism in substrate binding cooperativity to protein kinase A. Proc Natl Acad Sci U S A 2018; 115:3852-3857. [PMID: 29581285 DOI: 10.1073/pnas.1720024115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Substrate binding cooperativity in protein kinase A (PKA) seems to involve allosteric coupling between the two binding sites. It received significant attention, but its molecular basis still remains not entirely clear. Based on long molecular dynamics of PKA and its complexes, we characterized an allosteric pathway that links ATP binding to the redistribution of states adopted by a protein substrate positioning segment in favor of those that warrant correct binding. We demonstrate that the cooperativity mechanism critically depends on the presence of water in two distinct, buried hydration sites. One holds just a single water molecule, which acts as a switchable hydrogen bond bridge along the allosteric pathway. The second, filled with partially disordered solvent, is essential for providing a smooth free energy landscape underlying conformational transitions of the peptide binding region. Our findings remain in agreement with experimental data, also concerning the cooperativity abolishing effect of the Y204A mutation, and indicate a plausible molecular mechanism contributing to experimentally observed binding cooperativity of the two substrates.
Collapse
|
22
|
A multistep docking and scoring protocol for congeneric series: Implementation on kinase DFG-out type II inhibitors. Future Med Chem 2018; 10:297-318. [PMID: 29338349 DOI: 10.4155/fmc-2017-0156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM Rescoring of docking-binding poses can significantly improve molecular docking results. Our aim was to evaluate postprocessing docking protocols in order to determine the most suitable methodology for the study of the binding of congeneric compounds to protein kinases. MATERIALS & METHODS Diverse ligand-receptor poses generated after docking were submitted to different relaxation protocols. The Molecular Mechanics Poisson-Boltzmann (Generalized Born) Surface Area approach was applied for the evaluation of the binding affinity of complexes obtained. The performance of various Molecular Mechanics Poisson-Boltzmann (Generalized Born) Surface Area methodologies was compared. RESULTS The inclusion of a postprocessing protocol after docking enhances the quality of the results, although the best methodology is system dependent. CONCLUSION An examination of the interactions established has allowed us to suggest useful modifications for the design of new type II inhibitors.
Collapse
|
23
|
Dong CL, Guo FC, Xue J. Computational insights into HER3 gatekeeper T768I resistance mutation to bosutinib in HER3-related breast cancer. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1901-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Kuzmanic A, Sutto L, Saladino G, Nebreda AR, Gervasio FL, Orozco M. Changes in the free-energy landscape of p38α MAP kinase through its canonical activation and binding events as studied by enhanced molecular dynamics simulations. eLife 2017; 6. [PMID: 28445123 PMCID: PMC5406204 DOI: 10.7554/elife.22175] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/06/2017] [Indexed: 01/03/2023] Open
Abstract
p38α is a Ser/Thr protein kinase involved in a variety of cellular processes and pathological conditions, which makes it a promising pharmacological target. Although the activity of the enzyme is highly regulated, its molecular mechanism of activation remains largely unexplained, even after decades of research. By using state-of-the-art molecular dynamics simulations, we decipher the key elements of the complex molecular mechanism refined by evolution to allow for a fine tuning of p38α kinase activity. Our study describes for the first time the molecular effects of different regulators of the enzymatic activity, and provides an integrative picture of the activation mechanism that explains the seemingly contradictory X-ray and NMR data. DOI:http://dx.doi.org/10.7554/eLife.22175.001
Collapse
Affiliation(s)
- Antonija Kuzmanic
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ludovico Sutto
- Department of Chemistry, University College London, London, United Kingdom
| | - Giorgio Saladino
- Department of Chemistry, University College London, London, United Kingdom
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | | | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Joint BSC-CRG-IRB Program in Computational Biology, Barcelona, Spain.,Department of Biochemistry, University of Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Perdios L, Lowe AR, Saladino G, Bunney TD, Thiyagarajan N, Alexandrov Y, Dunsby C, French PMW, Chin JW, Gervasio FL, Tate EW, Katan M. Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET. Sci Rep 2017; 7:39841. [PMID: 28045057 PMCID: PMC5206623 DOI: 10.1038/srep39841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/29/2016] [Indexed: 02/06/2023] Open
Abstract
Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur via a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis in vitro, combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications in vivo.
Collapse
Affiliation(s)
- Louis Perdios
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
- Department of Chemistry, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Alan R. Lowe
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
- London Centre for Nanotechnology, 17-19 Gower St, London, WC1H 0AH, UK
- Division of Biosciences, Birkbeck College, Malet St, London, WC1E 7HX, UK
| | - Giorgio Saladino
- Institute of Structural and Molecular Biology, Department of Chemistry, University College London, Gower St, London WC1E 6BT, UK
| | - Tom D. Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
| | - Nethaji Thiyagarajan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
| | - Yuriy Alexandrov
- Department of Physics, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Christopher Dunsby
- Department of Physics, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Paul M. W. French
- Department of Physics, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Jason W. Chin
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Francesco Luigi Gervasio
- Institute of Structural and Molecular Biology, Department of Chemistry, University College London, Gower St, London WC1E 6BT, UK
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
| |
Collapse
|
26
|
Exploring Molecular Mechanisms of Paradoxical Activation in the BRAF Kinase Dimers: Atomistic Simulations of Conformational Dynamics and Modeling of Allosteric Communication Networks and Signaling Pathways. PLoS One 2016; 11:e0166583. [PMID: 27861609 PMCID: PMC5115767 DOI: 10.1371/journal.pone.0166583] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/31/2016] [Indexed: 12/14/2022] Open
Abstract
The recent studies have revealed that most BRAF inhibitors can paradoxically induce kinase activation by promoting dimerization and enzyme transactivation. Despite rapidly growing number of structural and functional studies about the BRAF dimer complexes, the molecular basis of paradoxical activation phenomenon is poorly understood and remains largely hypothetical. In this work, we have explored the relationships between inhibitor binding, protein dynamics and allosteric signaling in the BRAF dimers using a network-centric approach. Using this theoretical framework, we have combined molecular dynamics simulations with coevolutionary analysis and modeling of the residue interaction networks to determine molecular determinants of paradoxical activation. We have investigated functional effects produced by paradox inducer inhibitors PLX4720, Dabrafenib, Vemurafenib and a paradox breaker inhibitor PLX7904. Functional dynamics and binding free energy analyses of the BRAF dimer complexes have suggested that negative cooperativity effect and dimer-promoting potential of the inhibitors could be important drivers of paradoxical activation. We have introduced a protein structure network model in which coevolutionary residue dependencies and dynamic maps of residue correlations are integrated in the construction and analysis of the residue interaction networks. The results have shown that coevolutionary residues in the BRAF structures could assemble into independent structural modules and form a global interaction network that may promote dimerization. We have also found that BRAF inhibitors could modulate centrality and communication propensities of global mediating centers in the residue interaction networks. By simulating allosteric communication pathways in the BRAF structures, we have determined that paradox inducer and breaker inhibitors may activate specific signaling routes that correlate with the extent of paradoxical activation. While paradox inducer inhibitors may facilitate a rapid and efficient communication via an optimal single pathway, the paradox breaker may induce a broader ensemble of suboptimal and less efficient communication routes. The central finding of our study is that paradox breaker PLX7904 could mimic structural, dynamic and network features of the inactive BRAF-WT monomer that may be required for evading paradoxical activation. The results of this study rationalize the existing structure-functional experiments by offering a network-centric rationale of the paradoxical activation phenomenon. We argue that BRAF inhibitors that amplify dynamic features of the inactive BRAF-WT monomer and intervene with the allosteric interaction networks may serve as effective paradox breakers in cellular environment.
Collapse
|
27
|
Mutational patterns in oncogenes and tumour suppressors. Biochem Soc Trans 2016; 44:925-31. [DOI: 10.1042/bst20160001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Indexed: 12/24/2022]
Abstract
All cancers depend upon mutations in critical genes, which confer a selective advantage to the tumour cell. Knowledge of these mutations is crucial to understanding the biology of cancer initiation and progression, and to the development of targeted therapeutic strategies. The key to understanding the contribution of a disease-associated mutation to the development and progression of cancer, comes from an understanding of the consequences of that mutation on the function of the affected protein, and the impact on the pathways in which that protein is involved. In this paper we examine the mutation patterns observed in oncogenes and tumour suppressors, and discuss different approaches that have been developed to identify driver mutations within cancers that contribute to the disease progress. We also discuss the MOKCa database where we have developed an automatic pipeline that structurally and functionally annotates all proteins from the human proteome that are mutated in cancer.
Collapse
|
28
|
Pucheta-Martínez E, Saladino G, Morando MA, Martinez-Torrecuadrada J, Lelli M, Sutto L, D’Amelio N, Gervasio FL. An Allosteric Cross-Talk Between the Activation Loop and the ATP Binding Site Regulates the Activation of Src Kinase. Sci Rep 2016; 6:24235. [PMID: 27063862 PMCID: PMC4827121 DOI: 10.1038/srep24235] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/22/2016] [Indexed: 11/09/2022] Open
Abstract
Phosphorylation of the activation loop is a fundamental step in the activation of most protein kinases. In the case of the Src tyrosine kinase, a prototypical kinase due to its role in cancer and its historic importance, phosphorylation of tyrosine 416 in the activation loop is known to rigidify the structure and contribute to the switch from the inactive to a fully active form. However, whether or not phosphorylation is able per-se to induce a fully active conformation, that efficiently binds ATP and phosphorylates the substrate, is less clear. Here we employ a combination of solution NMR and enhanced-sampling molecular dynamics simulations to fully map the effects of phosphorylation and ATP/ADP cofactor loading on the conformational landscape of Src tyrosine kinase. We find that both phosphorylation and cofactor binding are needed to induce a fully active conformation. What is more, we find a complex interplay between the A-loop and the hinge motion where the phosphorylation of the activation-loop has a significant allosteric effect on the dynamics of the C-lobe.
Collapse
Affiliation(s)
| | - Giorgio Saladino
- Department of Chemistry, University College London, London WC1E 6BT, United Kingdom
- Research Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | - Maria Agnese Morando
- Center of Technological Development in Health, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Jorge Martinez-Torrecuadrada
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Moreno Lelli
- Centre de RMN à Très Hauts Champs, Institut de Sciences Analytiques, (CNRS/ENS Lyon/Universitè CB Lyon 1), 69100 Villeurbanne, France
| | - Ludovico Sutto
- Research Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | - Nicola D’Amelio
- Department of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Francesco Luigi Gervasio
- Department of Chemistry, University College London, London WC1E 6BT, United Kingdom
- Research Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
29
|
Modeling the effect of pathogenic mutations on the conformational landscape of protein kinases. Curr Opin Struct Biol 2016; 37:108-14. [DOI: 10.1016/j.sbi.2016.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/13/2022]
|
30
|
Papaleo E, Saladino G, Lambrughi M, Lindorff-Larsen K, Gervasio FL, Nussinov R. The Role of Protein Loops and Linkers in Conformational Dynamics and Allostery. Chem Rev 2016; 116:6391-423. [DOI: 10.1021/acs.chemrev.5b00623] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Elena Papaleo
- Computational
Biology Laboratory, Unit of Statistics, Bioinformatics and Registry, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
- Structural
Biology and NMR Laboratory, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Giorgio Saladino
- Department
of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Matteo Lambrughi
- Department
of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| | - Kresten Lindorff-Larsen
- Structural
Biology and NMR Laboratory, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Ruth Nussinov
- Cancer
and Inflammation Program, Leidos Biomedical Research, Inc., Frederick
National Laboratory for Cancer Research, National Cancer Institute Frederick, Frederick, Maryland 21702, United States
- Sackler Institute
of Molecular Medicine, Department of Human Genetics and Molecular
Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
31
|
Jambrina PG, Rauch N, Pilkington R, Rybakova K, Nguyen LK, Kholodenko BN, Buchete NV, Kolch W, Rosta E. Phosphorylation of RAF Kinase Dimers Drives Conformational Changes that Facilitate Transactivation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Nora Rauch
- Systems Biology Ireland and Conway Institute; University College Dublin, Belfield; Dublin 4 Ireland
| | - Ruth Pilkington
- Systems Biology Ireland and Conway Institute; University College Dublin, Belfield; Dublin 4 Ireland
| | - Katja Rybakova
- Systems Biology Ireland and Conway Institute; University College Dublin, Belfield; Dublin 4 Ireland
| | - Lan K. Nguyen
- Systems Biology Ireland; University College Dublin, Belfield; Dublin 4 Ireland
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute; Monash University; Melbourne Victoria 3800 Australia
| | - Boris N. Kholodenko
- Systems Biology Ireland and Conway Institute; University College Dublin, Belfield; Dublin 4 Ireland
| | - Nicolae-Viorel Buchete
- School of Physics and Complex and Adaptative Systems Laboratory; University College Dublin, Belfield; Dublin 4 Ireland
| | - Walter Kolch
- Systems Biology Ireland and Conway Institute; University College Dublin, Belfield; Dublin 4 Ireland
- School of Medicine & Medical Sciences; University College Dublin, Belfield; Dublin 4 Ireland
| | - Edina Rosta
- Department of Chemistry; King's College London; London SE1 1DB UK
| |
Collapse
|
32
|
Kiel C, Benisty H, Lloréns-Rico V, Serrano L. The yin-yang of kinase activation and unfolding explains the peculiarity of Val600 in the activation segment of BRAF. eLife 2016; 5:e12814. [PMID: 26744778 PMCID: PMC4749552 DOI: 10.7554/elife.12814] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/07/2016] [Indexed: 01/17/2023] Open
Abstract
Many driver mutations in cancer are specific in that they occur at significantly higher rates than – presumably – functionally alternative mutations. For example, V600E in the BRAF hydrophobic activation segment (AS) pocket accounts for >95% of all kinase mutations. While many hypotheses tried to explain such significant mutation patterns, conclusive explanations are lacking. Here, we use experimental and in silico structure-energy statistical analyses, to elucidate why the V600E mutation, but no other mutation at this, or any other positions in BRAF’s hydrophobic pocket, is predominant. We find that BRAF mutation frequencies depend on the equilibrium between the destabilization of the hydrophobic pocket, the overall folding energy, the activation of the kinase and the number of bases required to change the corresponding amino acid. Using a random forest classifier, we quantitatively dissected the parameters contributing to BRAF AS cancer frequencies. These findings can be applied to genome-wide association studies and prediction models. DOI:http://dx.doi.org/10.7554/eLife.12814.001 Mutations in the gene that encodes a protein called BRAF are commonly found in certain cancers, such as melanomas. The same BRAF mutation is found in nearly all of these cancers. This mutation causes the 600th amino acid in the BRAF protein – an amino acid called a valine – to be replaced with another amino acid, a glutamate. BRAF is a type of enzyme called a kinase, and it transmits signals inside cells to promote cell growth. Kinases work by adding a phosphate group to other proteins to alter their activity. The structure of the BRAF kinase contains a pocket-like shape, and the valine at position 600 sits buried inside this pocket when the enzyme is inactive. The “valine-to-glutamate” mutation (often called V600E for short) disrupts the interactions that create this pocket. This in turn results in a permanently active form of BRAF and uncontrolled cell growth. However, it remains unclear why the valine-to-glutamate mutation is so much more common in cancer cells than any other mutation that could affect the pocket in BRAF. To address this question, Kiel et al. used a computational tool to generate three-dimensional models for all the different amino acid substitutions that could occur in BRAF’s pocket. Each mutation was then assessed to see how it might destabilize the structure of BRAF. Only the mutations that affected the 600th amino acid were predicted to be able to open the pocket without destabilizing the part of the enzyme that adds phosphate groups to other proteins. Kiel et al. validated their computational predictions by introducing normal or mutant versions of the BRAF-encoding gene into human cells grown in the laboratory. These experiments showed that a mutation that introduced an amino acid called histidine into position 600 could activate BRAF as much the valine-to-glutamate mutation. Kiel et al. suggest that this “valine-to-histidine” substitution is not found in cancers because it requires three changes to the DNA sequence of the BRAF gene, whereas the valine-to-glutamate substitution only requires one. The results underscore the importance of considering changes at both the DNA and protein level when attempting to understand why certain cancer-causing mutations are more common than others. DOI:http://dx.doi.org/10.7554/eLife.12814.002
Collapse
Affiliation(s)
- Christina Kiel
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Hannah Benisty
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Veronica Lloréns-Rico
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
33
|
Jambrina PG, Rauch N, Pilkington R, Rybakova K, Nguyen LK, Kholodenko BN, Buchete NV, Kolch W, Rosta E. Phosphorylation of RAF Kinase Dimers Drives Conformational Changes that Facilitate Transactivation. Angew Chem Int Ed Engl 2015; 55:983-6. [PMID: 26644280 PMCID: PMC4736688 DOI: 10.1002/anie.201509272] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Indexed: 12/19/2022]
Abstract
RAF kinases are key players in the MAPK signaling pathway and are important targets for personalized cancer therapy. RAF dimerization is part of the physiological activation mechanism, together with phosphorylation, and is known to convey resistance to RAF inhibitors. Herein, molecular dynamics simulations are used to show that phosphorylation of a key N-terminal acidic (NtA) motif facilitates RAF dimerization by introducing several interprotomer salt bridges between the αC-helix and charged residues upstream of the NtA motif. Additionally, we show that the R-spine of RAF interacts with a conserved Trp residue in the vicinity of the NtA motif, connecting the active sites of two protomers and thereby modulating the cooperative interactions in the RAF dimer. Our findings provide a first structure-based mechanism for the auto-transactivation of RAF and could be generally applicable to other kinases, opening new pathways for overcoming dimerization-related drug resistance.
Collapse
Affiliation(s)
- Pablo G Jambrina
- Department of Chemistry, King's College London, London, SE1 1DB, UK
| | - Nora Rauch
- Systems Biology Ireland and Conway Institute, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Ruth Pilkington
- Systems Biology Ireland and Conway Institute, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Katja Rybakova
- Systems Biology Ireland and Conway Institute, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Lan K Nguyen
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, 4, Ireland.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, 3800, Australia
| | - Boris N Kholodenko
- Systems Biology Ireland and Conway Institute, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Nicolae-Viorel Buchete
- School of Physics and Complex and Adaptative Systems Laboratory, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Walter Kolch
- Systems Biology Ireland and Conway Institute, University College Dublin, Belfield, Dublin, 4, Ireland. .,School of Medicine & Medical Sciences, University College Dublin, Belfield, Dublin, 4, Ireland.
| | - Edina Rosta
- Department of Chemistry, King's College London, London, SE1 1DB, UK.
| |
Collapse
|
34
|
Lovera S, Morando M, Pucheta-Martinez E, Martinez-Torrecuadrada JL, Saladino G, Gervasio FL. Towards a Molecular Understanding of the Link between Imatinib Resistance and Kinase Conformational Dynamics. PLoS Comput Biol 2015; 11:e1004578. [PMID: 26606374 PMCID: PMC4659586 DOI: 10.1371/journal.pcbi.1004578] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/01/2015] [Indexed: 11/18/2022] Open
Abstract
Due to its inhibition of the Abl kinase domain in the BCR-ABL fusion protein, imatinib is strikingly effective in the initial stage of chronic myeloid leukemia with more than 90% of the patients showing complete remission. However, as in the case of most targeted anti-cancer therapies, the emergence of drug resistance is a serious concern. Several drug-resistant mutations affecting the catalytic domain of Abl and other tyrosine kinases are now known. But, despite their importance and the adverse effect that they have on the prognosis of the cancer patients harboring them, the molecular mechanism of these mutations is still debated. Here by using long molecular dynamics simulations and large-scale free energy calculations complemented by in vitro mutagenesis and microcalorimetry experiments, we model the effect of several widespread drug-resistant mutations of Abl. By comparing the conformational free energy landscape of the mutants with those of the wild-type tyrosine kinases we clarify their mode of action. It involves significant and complex changes in the inactive-to-active dynamics and entropy/enthalpy balance of two functional elements: the activation-loop and the conserved DFG motif. What is more the T315I gatekeeper mutant has a significant impact on the binding mechanism itself and on the binding kinetics.
Collapse
MESH Headings
- Computational Biology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/physiology
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Imatinib Mesylate/chemistry
- Imatinib Mesylate/metabolism
- Imatinib Mesylate/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive
- Molecular Dynamics Simulation
- Mutagenesis, Site-Directed
- Thermodynamics
Collapse
Affiliation(s)
- Silvia Lovera
- Department of Chemistry, University College London, London, United Kingdom
| | - Maria Morando
- Center of Technological Development in Health, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | | | | | - Giorgio Saladino
- Department of Chemistry, University College London, London, United Kingdom
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
- * E-mail: (GS); (FLG)
| | - Francesco L. Gervasio
- Department of Chemistry, University College London, London, United Kingdom
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
- * E-mail: (GS); (FLG)
| |
Collapse
|
35
|
Lu HC, Chung SS, Fornili A, Fraternali F. Anatomy of protein disorder, flexibility and disease-related mutations. Front Mol Biosci 2015; 2:47. [PMID: 26322316 PMCID: PMC4532925 DOI: 10.3389/fmolb.2015.00047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/29/2015] [Indexed: 01/23/2023] Open
Abstract
Integration of protein structural information with human genetic variation and pathogenic mutations is essential to understand molecular mechanisms associated with the effects of polymorphisms on protein interactions and cellular processes. We investigate occurrences of non-synonymous SNPs in ordered and disordered protein regions by systematic mapping of common variants and disease-related SNPs onto these regions. We show that common variants accumulate in disordered regions; conversely pathogenic variants are significantly depleted in disordered regions. These different occurrences of pathogenic and common SNPs can be attributed to a negative selection on random mutations in structurally highly constrained regions. New approaches in the study of quantitative effects of pathogenic-related mutations should effectively account for all the possible contexts and relative functional constraints in which the sequence variation occurs.
Collapse
Affiliation(s)
- Hui-Chun Lu
- Randall Division of Cell and Molecular Biophysics, King's College London London, UK
| | - Sun Sook Chung
- Randall Division of Cell and Molecular Biophysics, King's College London London, UK ; Department of Haematological Medicine, King's College London London, UK
| | - Arianna Fornili
- Randall Division of Cell and Molecular Biophysics, King's College London London, UK ; School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Franca Fraternali
- Randall Division of Cell and Molecular Biophysics, King's College London London, UK
| |
Collapse
|
36
|
Paladino A, Morra G, Colombo G. Structural Stability and Flexibility Direct the Selection of Activating Mutations in Epidermal Growth Factor Receptor Kinase. J Chem Inf Model 2015; 55:1377-87. [PMID: 26121158 DOI: 10.1021/acs.jcim.5b00270] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein we investigate the potential of novel methods of molecular dynamics analysis to provide information on the key factors that underlie the preferential localization and the effects of mutations modulating protein activities. Epidermal growth factor receptor (EGFR) kinases are selected as a test case. The combined analysis of protein energetics and internal dynamics indicates a clear polarization in the native protein, whereby a highly stable and ordered scaffold in one domain, namely the C-lobe, is combined to a flexible and loosely stabilized domain, the N-lobe. The subdivision in two portions with different properties directs the presence of point mutations mainly to the N-lobe. This allows modulating protein flexibility so that the protein can more efficiently sample the conformations necessary for substrate recognition, while leaving the stability of the protein unperturbed. In this context, comparative simulations of EGFR in the wild type sequence and in the presence of the activating oncogenic mutation G719S reveal flexibility changes in several key regions, involving in particular the part of the kinase devoted to the regulation of substrate recognition (regulatory core) and an increase in the number of stabilizing interactions in the N-lobe for the activated mutant. Our approaches represent a promising and simple strategy toward rationalizing the effects of mutations in modulating enzymatic activities.
Collapse
Affiliation(s)
- Antonella Paladino
- Istituto di Chimica del Riconoscimento Molecolare, CNR Via Mario Bianco 9, 20131, Milano, Italy
| | - Giulia Morra
- Istituto di Chimica del Riconoscimento Molecolare, CNR Via Mario Bianco 9, 20131, Milano, Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR Via Mario Bianco 9, 20131, Milano, Italy
| |
Collapse
|