1
|
Xu W, Yamakawa T, Huang M, Tian P, Jiang Z, Xu MH. Conformational Locking Induced Enantioselective Diarylcarbene Insertion into B-H and O-H Bonds Using a Cationic Rh(I)/Diene Catalyst. Angew Chem Int Ed Engl 2024; 63:e202412193. [PMID: 39022851 DOI: 10.1002/anie.202412193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Transition-metal-catalyzed enantioselective transformations of aryl/aryl carbene are inherently challenging due to the difficulty in distinguishing between two arene rings in the reaction process thus remain largely less explored. The few successful examples reported so far, without exception, have all been catalyzed by Rh(II)-complexes. Herein, we describe our successful development of a novel cationic Rh(I)/chiral diene catalytic system capable of efficient enantioselective B-H and O-H insertions with diaryl diazomethanes, allowing the access to a broad range of gem-diarylmethine boranes and gem-diarylmethine ethers in good yields with high enantioselectivities. Notably, previously unattainable asymmetric diarylcarbene insertion into the O-H bond was achieved for the first time. A remarkable feature of this newly designed Rh(I)/diene catalyst bearing two ortho-amidophenyl substitutents is that it can distinguish between two arene rings of the diaryl carbene through a stereochemically selective control of π-π stacking interactions. DFT calculations indicate that the rotation-restricted conformation of Rh(I)/diene complex played an important role in the highly enantioselective carbene transformations. This work provides an interesting and unprecedented stereocontrol mode in diaryl metal carbene transformations.
Collapse
Affiliation(s)
- Weici Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Takeshi Yamakawa
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Meiling Huang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Peilin Tian
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhigen Jiang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ming-Hua Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
2
|
Yu XL, Hu JW, Cao J, Xu LW. Intramolecular Hosomi-Sakurai Reaction for the Synthesis of Benzoxasiloles. J Org Chem 2024; 89:9027-9030. [PMID: 38815156 DOI: 10.1021/acs.joc.3c02925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
A Lewis acid-catalyzed intramolecular Hosomi-Sakurai reaction of o-(allylsilyl)benzaldehyde/ketone has been developed. The reaction proceeds through simultaneous C-Si bond cleavage and C-C bond reconstruction. This protocol provides a rapid approach for the synthesis of allyl-substituted benzoxasiloles under mild conditions.
Collapse
Affiliation(s)
- Xin-Long Yu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Jia-Wei Hu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Jian Cao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Li-Wen Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, P. R. China
| |
Collapse
|
3
|
Li Y, Liu G, Zhou L, Ma L, He Y, Gao J, Jiang Y, Ren L, Liu Y. Resin-Immobilized Palladium Acetate and Alcohol Dehydrogenase for Chemoenzymatic Enantioselective Synthesis of Chiral Diarylmethanols. J Org Chem 2024; 89:4818-4825. [PMID: 38536102 DOI: 10.1021/acs.joc.4c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The enantioselective synthesis of chiral diarylmethanols is highly desirable in synthetic chemistry and the pharmaceutical industry, but it remains challenging, especially in terms of green and sustainable production. Herein, a resin-immobilized palladium acetate catalyst was fabricated with high activity, stability, and reusability in Suzuki cross-coupling reaction of acyl halides with boronic acids, and the coimmobilization of alcohol dehydrogenase and glucose dehydrogenase on resin supports was also conducted for asymmetric bioreduction of diaryl ketones. Experimental results revealed that the physicochemical properties of the resins and the immobilization modes played important roles in affecting their catalytic performances. These two catalysts enabled the construction of a chemoenzymatic cascade for the enantioselective synthesis of a series of chiral diarylmethanols in high yields (83-90%) and enantioselectivities (87-98% ee). In addition, the asymmetric synthesis of the antihistaminic and anticholinergic drugs (S)-neobenodine and (S)-carbinoxamine was also achieved from the chiral diarylmethanol precursors, demonstrating the synthetic utility of the chemoenzymatic cascade.
Collapse
Affiliation(s)
- Yanyan Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Guanhua Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Liya Zhou
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Li Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Ying He
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jing Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Limei Ren
- Department of Chemical Engineering, Shijiazhuang University, Shijiazhuang, Hebei 050035, China
| | - Yunting Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
4
|
Yamamoto Y, Tadano R, Yasui T. Enantioselective Desymmetrization of Trifluoromethylated Tertiary Benzhydrols via Hydrogen-Acceptor-Free Ir-Catalyzed Dehydrogenative C-H Silylation: Decisive Role of the Trifluoromethyl Group. JACS AU 2024; 4:807-815. [PMID: 38425931 PMCID: PMC10900501 DOI: 10.1021/jacsau.3c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Although the trifluoromethyl (CF3) group is one of the most important fluorinated groups owing to its significant ability to modulate pharmacological properties, constructing trifluoromethylated stereogenic centers in an enantioselective manner has been a formidable challenge. Herein, we report the development of the enantioselective desymmetrization of trifluoromethylated benzhydrols via intramolecular dehydrogenative silylation using Ir catalysts with chiral pyridine-oxazoline (PyOX) ligands. The produced benzoxasilol was transformed into several unsymmetrical benzhydrols via iododesilylation and subsequent transition-metal-catalyzed cross-coupling reactions. Moreover, the same Ir catalyst system was used for the kinetic resolution of unsymmetrical trifluoromethylated benzhydrols.
Collapse
Affiliation(s)
- Yoshihiko Yamamoto
- Department of Basic Medicinal
Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Ryu Tadano
- Department of Basic Medicinal
Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Takeshi Yasui
- Department of Basic Medicinal
Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
5
|
Gan WE, Wu YS, Wu B, Fang CY, Cao J, Xu Z, Xu LW. Copper-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic Benzoxasiloles. Angew Chem Int Ed Engl 2024; 63:e202317973. [PMID: 38179840 DOI: 10.1002/anie.202317973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
A Cu-catalyzed asymmetric synthesis of silicon-stereogenic benzoxasiloles has been realized via intramolecular Si-O coupling of [2-(hydroxymethyl)phenyl]silanes. Cu(I)/difluorphos is found to be an efficient catalytic system for enantioselective Si-C bond cleavage and Si-O bond formation. In addition, kinetic resolution of racemic substituted [2-(hydroxymethyl)phenyl]silanes using Cu(I)/ PyrOx (pyridine-oxazoline ligands) as the catalytic system is developed to afford carbon- and silicon-stereogenic benzoxasiloles. Ring-opening reactions of chiral benzoxasiloles with organolithiums and Grignard reagents yield various enantioenriched functionalized tetraorganosilanes.
Collapse
Affiliation(s)
- Wan-Er Gan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Yong-Shun Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Bin Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Chun-Yuan Fang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Jian Cao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Zheng Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Li-Wen Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, P. R. China
| |
Collapse
|
6
|
Shen B, Pan D, Xie W, Li XX, Yu S, Huang G, Li X. Rhodium-Catalyzed Enantioselective Formal [4+1] Cyclization of Benzyl Alcohols and Benzaldimines: Facile Access to Silicon-Stereogenic Heterocycles. Angew Chem Int Ed Engl 2024; 63:e202315230. [PMID: 37938113 DOI: 10.1002/anie.202315230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
The carbon-to-silicon switch in formation of bioactive sila-heterocycles with a silicon-stereogenic center has garnered significant interest in drug discovery. However, metal-catalyzed synthesis of such scaffolds is still in its infancy. Herein, a rhodium-catalyzed enantioselective formal [4+1] cyclization of benzyl alcohols and benzaldimines has been realized by enantioselective difunctionalization of a secondary silane reagent, affording chiral-at-silicon cyclic silyl ethers and sila-isoindolines, respectively. Mechanistic studies reveal a dual role of the rhodium-hydride catalyst. The coupling system proceeds via rhodium-catalyzed enantio-determining dehydrogenative OH silylation of the benzyl alcohol or hydrosilylation of the imine to give an enantioenriched silyl ether or silazane intermediate, respectively. The same rhodium catalyst also enables subsequent intramolecular cyclative C-H silylation directed by the pendent Si-H group. Experimental and DFT studies have been conducted to explore the mechanism of the OH bond silylation of benzyl alcohol, where the Si-O reductive elimination from a Rh(III) hydride intermediate has been established as the enantiodetermining step.
Collapse
Affiliation(s)
- Bingxue Shen
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Deng Pan
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Wanying Xie
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Xiao-Xi Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Songjie Yu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Xingwei Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| |
Collapse
|
7
|
Huang Z, Lin Q, Li J, Xu S, Lv S, Xie F, Wang J, Li B. Ruthenium-Catalyzed Dehydrogenative Intermolecular O-H/Si-H/C-H Silylation: Synthesis of ( E)-Alkenyl Silyl-Ether and Silyl-Ether Heterocycle. Molecules 2023; 28:7186. [PMID: 37894665 PMCID: PMC10609488 DOI: 10.3390/molecules28207186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Selective dehydrogenative silylation is one of the most valuable tools for synthesizing organosilicon compounds. In this study, a regio- and stereoselective ruthenium-catalyzed dehydrogenative intermolecular silylation was firstly developed to access (E)-alkenyl silyl-ether derivatives and silyl-ether heterocycles with good functional group tolerance. Furthermore, two pathways for RuH2(CO)(PPh3)3/NBE-catalyzed dehydrogenative intermolecular silylation of alcohols and alkenes as well as intermolecular silylation of naphthol derivatives were investigated with H2SiEt2 as the hydrosilane reagent.
Collapse
Affiliation(s)
- Ziwei Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
- Guangdong Wamo New Material Technology Co., Ltd., Jiangmen 529020, China
| | - Qiao Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
| | - Jiefang Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
| | - Shanshan Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
| | - Shaohuan Lv
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
| | - Jun Wang
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China;
| | - Bin Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
8
|
Morack T, Myers TE, Karas LJ, Hardy MA, Mercado BQ, Sigman MS, Miller SJ. An Asymmetric Aromatic Finkelstein Reaction: A Platform for Remote Diarylmethane Desymmetrization. J Am Chem Soc 2023; 145:22322-22328. [PMID: 37788150 PMCID: PMC10591928 DOI: 10.1021/jacs.3c08727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A first-of-its-kind enantioselective aromatic Finkelstein reaction is disclosed for the remote desymmetrization of diarylmethanes. The reaction operates through a copper-catalyzed C-I bond-forming event, and high levels of enantioselectivity are achieved through the deployment of a tailored guanidinylated peptide ligand. Strategic use of transition-metal-mediated reactions enables the chemoselective modification of the aryl iodide products; thus, the synthesis of a diverse set of otherwise difficult-to-access diarylmethanes with excellent levels of selectivity is realized from a common intermediate. A mixed experimental/computational analysis of steric parameters and substrate conformations identifies the importance of remote conformational effects as a key to achieving high enantioselectivity in this desymmetrization reaction.
Collapse
Affiliation(s)
- Tobias Morack
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Tyler E. Myers
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Lucas J. Karas
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Melissa A. Hardy
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
9
|
Yang B, Gao J, Tan X, Ge Y, He C. Chiral PSiSi-Ligand Enabled Iridium-Catalyzed Atroposelective Intermolecular C-H Silylation. Angew Chem Int Ed Engl 2023; 62:e202307812. [PMID: 37462125 DOI: 10.1002/anie.202307812] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Catalytic enantioselective intermolecular C-H silylation offers an efficient approach for the rapid construction of chiral organosilicon compounds, but remains a significant challenge. Herein, a new type of chiral silyl ligand is developed, which enables the first iridium-catalyzed atroposelective intermolecular C-H silylation reaction of 2-arylisoquinolines. This protocol features mild reaction conditions, high atom economy, and remarkable yield with excellent stereoselectivity (up to 99 % yield, 99 % ee), delivering enantioenriched axially chiral silane platform molecules with facile convertibility. Key to the success of this unprecedented transformation relies on a novel chiral PSiSi-ligand, which facilitates the intermolecular C-H silylation process with perfect chem-, regio- and stereo-control via a multi-coordinated silyl iridium complex.
Collapse
Affiliation(s)
- Bo Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jihui Gao
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xingfa Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yicong Ge
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
10
|
Liu CX, Yin SY, Zhao F, Yang H, Feng Z, Gu Q, You SL. Rhodium-Catalyzed Asymmetric C-H Functionalization Reactions. Chem Rev 2023; 123:10079-10134. [PMID: 37527349 DOI: 10.1021/acs.chemrev.3c00149] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
This review summarizes the advancements in rhodium-catalyzed asymmetric C-H functionalization reactions during the last two decades. Parallel to the rapidly developed palladium catalysis, rhodium catalysis has attracted extensive attention because of its unique reactivity and selectivity in asymmetric C-H functionalization reactions. In recent years, Rh-catalyzed asymmetric C-H functionalization reactions have been significantly developed in many respects, including catalyst design, reaction development, mechanistic investigation, and application in the synthesis of complex functional molecules. This review presents an explicit outline of catalysts and ligands, mechanism, the scope of coupling reagents, and applications.
Collapse
Affiliation(s)
- Chen-Xu Liu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Si-Yong Yin
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Fangnuo Zhao
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Hui Yang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Zuolijun Feng
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Qing Gu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
11
|
Coordination Versatility of NHC-metal Topologies in Asymmetric Catalysis: Synthetic Insights and Recent Trends. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Lu M, Xu W, Ye M. Phosphine Oxide-Promoted Rh(I)-Catalyzed C-H Cyclization of Benzimidazoles with Alkenes. Molecules 2023; 28:736. [PMID: 36677791 PMCID: PMC9864171 DOI: 10.3390/molecules28020736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Ligands play a critical role in promoting transition-metal-catalyzed C-H activation reactions. However, owing to high sensitivity of the reactivity of C-H activation to metal catalysts, the development of effective ligands has been a formidable challenge in the field. Rh(I)-catalyzed C-H cyclization of benzimidazoles with alkenes has been faced with low reactivity, often requiring very harsh conditions. To address this challenge, a phosphine oxide-enabled Rh(I)-Al bimetallic catalyst was developed for the reaction, significantly promoting the reactivity and allowing the reaction to run at 120 °C with up to 97% yield.
Collapse
Affiliation(s)
- Mingzhen Lu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
| | - Weiwei Xu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
| | - Mengchun Ye
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
13
|
Yang C, Shi L, Wang F, Su Y, Xia JB, Li F. Rhodium-Catalyzed Asymmetric (3 + 2 + 2) Annulation via N–H/C–H Dual Activation and Internal Alkyne Insertion toward N-Fused 5/7 Bicycles. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chao Yang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Lijun Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fang Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yijin Su
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ji-Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fuwei Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
14
|
Kong Y, Mu D. Recent Progress in Transition Metal-Catalyzed Hydrosilanes-Mediated C-H Silylation. Chem Asian J 2022; 17:e202200104. [PMID: 35315977 DOI: 10.1002/asia.202200104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/15/2022] [Indexed: 11/09/2022]
Abstract
Organosilicon compounds are widely used in materials science, medicinal chemistry and synthetic chemistry. Recently, significant progress has been achieved in transition metal-catalyzed dehydrogenative C-H silylation. Particularly, recently developed monohydrosilane and dihydrosilane mediated C-H silylation have emerged as powerful tools in constructing C-Si bonds. Besides, dihydrosilane-mediated enantioselective asymmetric C-H silylation has successfully achieved the construction of central and helical silicon chirality. In addition, chiral organosilicon compounds have exhibited excellent photoelectric material properties and broad application prospects. Furthermore, organosilicon compounds could under a series of functional group transformations to enrich the diversity of silicon chemistry. This review will present a comprehensive picture of the development of transition metal-catalyzed hydrosilanes-mediated intramolecular C(sp 2 )-H and C(sp 3 )-H silylation organized by their reaction types and mechanisms. In addition, dihydrosilane-mediated enantioselective asymmetric C-H silylation to construct central and helical silicon chirality will also be highlighted in the review.
Collapse
Affiliation(s)
- Yuanfang Kong
- Henan University of Chinese Medicine, School of Pharmacy, CHINA
| | - Delong Mu
- Shenzhen Bay Laboratory, Chemistry, Shenzhen 518000, 518000, Shenzhen, CHINA
| |
Collapse
|
15
|
Su B, Hartwig JF. Development of Chiral Ligands for the Transition-Metal-Catalyzed Enantioselective Silylation and Borylation of C-H Bonds. Angew Chem Int Ed Engl 2022; 61:e202113343. [PMID: 34729899 PMCID: PMC9135162 DOI: 10.1002/anie.202113343] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 11/06/2022]
Abstract
Enantioselective reactions that install functional groups at the positions of unactivated C-H bonds can be envisioned to produce intermediates for the synthesis of the active ingredients in pharmaceuticals and agrochemicals directly from simple feedstocks. Among these C-H bond functionalization reactions, those that form carbon-silicon (C-Si) and carbon-boron (C-B) bonds have been pursued because the products of these reactions can be converted to those containing a wide range of functional groups and because compounds containing silicon and boron possess unique properties that can be valuable for medicinal and materials chemistry. Although the silylation and borylation of C-H bonds have undergone extensive development during the past two decades, enantioselective versions of these reactions were not known until a few years ago. In this Minireview, we present the rapid development of enantioselective silylation and borylation of C-H bonds, with an emphasis on the design and development of the types of chiral ligands needed to achieve these reactions and an intention to inspire an expansion of these types of transformations.
Collapse
Affiliation(s)
- Bo Su
- State Key Laboratory of Medical Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350 (P. R. China)
| | - John F. Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
| |
Collapse
|
16
|
Su B, Hartwig JF. Development of Chiral Ligands for the Transition‐Metal‐Catalyzed Enantioselective Silylation and Borylation of C−H Bonds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bo Su
- State Key Laboratory of Medical Chemical Biology College of Pharmacy Nankai University 38 Tongyan Road, Jinnan District Tianjin 300350 P. R. China
| | - John F. Hartwig
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
17
|
Yu X, Zhang ZZ, Niu JL, Shi BF. Coordination-assisted, transition-metal-catalyzed enantioselective desymmetric C–H functionalization. Org Chem Front 2022. [DOI: 10.1039/d1qo01884a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances in transition-metal-catalyzed enantioselective desymmetric C–H functionalization are summarized.
Collapse
Affiliation(s)
- Xin Yu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhuo-Zhuo Zhang
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Jun-Long Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
18
|
Murai M. Silylative Cyclization with Dehydrogenation Leading to Benzosilole‐Fused Azulenes Showing Unique Stimuli‐Responsive Fluorescence. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Masahito Murai
- Department of Chemistry Graduate School of Science Nagoya University Furo, Chikusa 464-8602 Nagoya Japan
| |
Collapse
|
19
|
Zhang Q, Wu LS, Shi BF. Forging C−heteroatom bonds by transition metal-catalyzed enantioselective C–H functionalization. Chem 2021. [DOI: 10.1016/j.chempr.2021.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Mukherjee K, Grimblat N, Sau S, Ghosh K, Shankar M, Gandon V, Sahoo AK. Kinetic resolution of sulfur-stereogenic sulfoximines by Pd(ii)-MPAA catalyzed C-H arylation and olefination. Chem Sci 2021; 12:14863-14870. [PMID: 34820102 PMCID: PMC8597855 DOI: 10.1039/d1sc04299h] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/20/2021] [Indexed: 01/01/2023] Open
Abstract
A direct Pd(ii)-catalyzed kinetic resolution of heteroaryl-enabled sulfoximines through an ortho-C-H alkenylation/arylation of arenes has been developed. The coordination of the sulfoximine pyridyl-motif and the chiral amino acid MPAA ligand to the Pd(ii)-catalyst controls the enantio-discriminating C(aryl)-H activation. This method provides access to a wide range of enantiomerically enriched unreacted aryl-pyridyl-sulfoximine precursors and C(aryl)-H alkenylation/arylation products in good yields with high enantioselectivity (up to >99% ee), and selectivity factor up to >200. The coordination preference of the directing group, ligand effect, geometry constraints, and the transient six-membered concerted-metalation-deprotonation species dictate the stereoselectivity; DFT studies validate this hypothesis.
Collapse
Affiliation(s)
- Kallol Mukherjee
- School of Chemistry, University of Hyderabad Hyderabad 500046 India
| | - Nicolas Grimblat
- Nicolas Grimblat and Prof. Vincent Gandon, Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay Bâtiment 420 91405 Orsay Cedex France
| | - Somratan Sau
- School of Chemistry, University of Hyderabad Hyderabad 500046 India
| | - Koushik Ghosh
- School of Chemistry, University of Hyderabad Hyderabad 500046 India
| | - Majji Shankar
- School of Chemistry, University of Hyderabad Hyderabad 500046 India
| | - Vincent Gandon
- Nicolas Grimblat and Prof. Vincent Gandon, Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay Bâtiment 420 91405 Orsay Cedex France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay 91128 Palaiseau Cedex France
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad Hyderabad 500046 India
| |
Collapse
|
21
|
Zheng L, Nie X, Wu Y, Wang P. Construction of Si‐Stereogenic Silanes through C−H Activation Approach. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101084] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Long Zheng
- School of Chemistry and Material Sciences Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Xiao‐Xue Nie
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Yichen Wu
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Peng Wang
- School of Chemistry and Material Sciences Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
22
|
Zhang M, Gao S, Tang J, Chen L, Liu A, Sheng S, Zhang AQ. Asymmetric synthesis of chiral organosilicon compounds via transition metal-catalyzed stereoselective C-H activation and silylation. Chem Commun (Camb) 2021; 57:8250-8263. [PMID: 34323898 DOI: 10.1039/d1cc02839a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This feature article details the progress of transition metal-catalyzed stereoselective sp2 and sp3 C-H activation and silylation in the synthesis of chiral organosilicon compounds, and the asymmetric C-H silylation includes intramolecular cyclizing silylation and intermolecular silylation. The silylating reagents include monohydrosilanes, dihydrosilanes, silacylcobutanes and disilanes. In general, catalytic systems include a transition metal salt as the catalyst and a chiral ligand. No external chiral ligand is required in some cases where the chiral substrates act as the source of chirality. Many kinds of silylated compounds with central, axial, planar, or helical chirality have been constructed via C-H activation by asymmetric rhodium, iridium or palladium catalysis. Some pharmacophores and material building blocks were successfully introduced into the target molecules. Some silylated products proved to be useful in medicinal chemistry, synthetic organic chemistry, and materials science. Besides reaction development, mechanisms for stereoselective C-H activation and silylation are also discussed.
Collapse
Affiliation(s)
- Ming Zhang
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University (Yaohu Campus), 99 Ziyangdadao Avenue, Nanchang, Jiangxi 330022, China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhang H, Zhao D. Synthesis of Silicon-Stereogenic Silanols Involving Iridium-Catalyzed Enantioselective C–H Silylation Leading to a New Ligand Scaffold. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03112] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hongpeng Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
24
|
You L, Yuan W, He C. Intermolecular Dehydrogenative C−H/Si−H Cross‐Coupling for the Synthesis of Arylbenzyl Bis(silanes). European J Org Chem 2021. [DOI: 10.1002/ejoc.202100474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lijun You
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology 518055 Shenzhen Guangdong China
| | - Wei Yuan
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology 518055 Shenzhen Guangdong China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology 518055 Shenzhen Guangdong China
| |
Collapse
|
25
|
Lin Q, Lin Z, Pan M, Zheng Q, Li H, Chen X, Darcel C, Dixneuf PH, Li B. Alkenes as hydrogen trappers to control the regio-selective ruthenium(ii) catalyzed ortho C–H silylation of amides and anilides. Org Chem Front 2021. [DOI: 10.1039/d0qo01031f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A convenient and practical pathway to versatile silylated amides and anilides is described via efficient and selective ruthenium(ii) catalyzed ortho C–H silylation with different alkenes as the hydrogen acceptors.
Collapse
Affiliation(s)
- Qiao Lin
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P.R. China
| | - Zirui Lin
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P.R. China
| | - Mingxing Pan
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P.R. China
| | - Qiaojin Zheng
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P.R. China
| | - Hui Li
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P.R. China
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P.R. China
| | - Christophe Darcel
- Univ. Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes)
- F-35000 Rennes
- France
| | - Pierre H. Dixneuf
- Univ. Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes)
- F-35000 Rennes
- France
| | - Bin Li
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P.R. China
- Univ. Rennes
| |
Collapse
|
26
|
Yang Y, Chen L, Xu S. Iridium‐Catalyzed Enantioselective Unbiased Methylene C(sp
3
)–H Borylation of Acyclic Amides. Angew Chem Int Ed Engl 2020; 60:3524-3528. [DOI: 10.1002/anie.202013568] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/02/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Yuhuan Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lili Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 311121 China
| |
Collapse
|
27
|
Yang Y, Chen L, Xu S. Iridium‐Catalyzed Enantioselective Unbiased Methylene C(sp
3
)–H Borylation of Acyclic Amides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuhuan Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lili Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 311121 China
| |
Collapse
|
28
|
Achar TK, Maiti S, Jana S, Maiti D. Transition Metal Catalyzed Enantioselective C(sp2)–H Bond Functionalization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03743] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tapas Kumar Achar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sadhan Jana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
29
|
Yang B, Yang W, Guo Y, You L, He C. Enantioselective Silylation of Aliphatic C−H Bonds for the Synthesis of Silicon‐Stereogenic Dihydrobenzosiloles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009912] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Bo Yang
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong China
| | - Wu Yang
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong China
| | - Yonghong Guo
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong China
| | - Lijun You
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong China
| |
Collapse
|
30
|
Yang B, Yang W, Guo Y, You L, He C. Enantioselective Silylation of Aliphatic C-H Bonds for the Synthesis of Silicon-Stereogenic Dihydrobenzosiloles. Angew Chem Int Ed Engl 2020; 59:22217-22222. [PMID: 32841459 DOI: 10.1002/anie.202009912] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/15/2020] [Indexed: 01/01/2023]
Abstract
A rhodium(I)-catalyzed enantioselective silylation of aliphatic C-H bonds for the synthesis of silicon-stereogenic dihydrobenzosiloles is demonstrated. This reaction involves a highly enantioselective intramolecular C(sp3 )-H silylation of dihydrosilanes, followed by a stereospecific intermolecular alkene hydrosilylation leading to the asymmetrically tetrasubstituted silanes. A wide range of dihydrosilanes and alkenes displaying various functional groups are compatible with this process, giving access to a variety of highly functionalized silicon-stereogenic dihydrobenzosiloles in good to excellent yields and enantioselectivities.
Collapse
Affiliation(s)
- Bo Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Wu Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Yonghong Guo
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Lijun You
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| |
Collapse
|
31
|
Woźniak Ł, Tan JF, Nguyen QH, Madron du Vigné A, Smal V, Cao YX, Cramer N. Catalytic Enantioselective Functionalizations of C–H Bonds by Chiral Iridium Complexes. Chem Rev 2020; 120:10516-10543. [DOI: 10.1021/acs.chemrev.0c00559] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Łukasz Woźniak
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jin-Fay Tan
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Qui-Hien Nguyen
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Adrien Madron du Vigné
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Vitalii Smal
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Yi-Xuan Cao
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
32
|
Smith LB, Armstrong RJ, Matheau-Raven D, Donohoe TJ. Chemo- and Regioselective Synthesis of Acyl-Cyclohexenes by a Tandem Acceptorless Dehydrogenation-[1,5]-Hydride Shift Cascade. J Am Chem Soc 2020; 142:2514-2523. [PMID: 31967814 PMCID: PMC7145340 DOI: 10.1021/jacs.9b12296] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
An
atom-economical methodology to access substituted acyl-cyclohexenes
from pentamethylacetophenone and 1,5-diols is described. This process is catalyzed by an
iridium(I) catalyst in conjunction with a bulky electron rich phosphine
ligand (CataCXium A) which favors acceptorless dehydrogenation over
conjugate reduction to the corresponding cyclohexane. The reaction
produces water and hydrogen gas as the sole byproducts and a wide
range of functionalized acyl-cyclohexene products can be synthesized
using this method in very high yields. A series of control experiments
were carried out, which revealed that the process is initiated by
acceptorless dehydrogenation of the diol followed by a redox-neutral
cascade process, which is independent of the iridium catalyst. Deuterium
labeling studies established that the key step of this cascade involves
a novel base-mediated [1,5]-hydride shift. The cyclohexenyl ketone
products could readily be cleaved under mildly acidic conditions to
access a range of valuable substituted cyclohexene derivatives.
Collapse
Affiliation(s)
- Lewis B Smith
- Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Roly J Armstrong
- Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Daniel Matheau-Raven
- Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Timothy J Donohoe
- Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford OX1 3TA , United Kingdom
| |
Collapse
|
33
|
|
34
|
Liu S, Lin Q, Liao C, Chen J, Zhang K, Liu Q, Li B. Ruthenium(ii)/acetate catalyzed intermolecular dehydrogenative ortho C-H silylation of 2-aryl N-containing heterocycles. Org Biomol Chem 2019; 17:4115-4120. [PMID: 30968915 DOI: 10.1039/c9ob00609e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The first application of a RuHCl(CO)(PPh3)3-OAc catalytic system on the selective intermolecular mono C-H silylation of 2-aryl N-heterocycles using HSiEt3 as the silylating reagent has been described. This protocol features good functional group tolerance and high regioselectivity, and has potential for gram scale-up, which provides a convenient and practical pathway for the synthesis of versatile organosilane compounds. This catalytic system can also be applied to the silylation of challenging sp3 C-H bonds.
Collapse
Affiliation(s)
- Shun Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The functionalization of primary C-H bonds has been a longstanding challenge in catalysis. Our group has developed a series of silylations of primary C-H bonds that occur with site selectivity and diastereoselectivity resulting from an approach to run the reactions as intramolecular processes. These reactions have become practical by using an alcohol or amine as a docking site for a hydrosilyl group, thereby leading to intramolecular silylations of C-H bonds at positions dictated by the presence common functional groups in the reactants. Oxidation of the C-Si bond leads to the introduction of alcohol functionality at the position of the primary C-H bond of the reactant. The development, scope, and applications of these functionalization reactions is described in this minireview.
Collapse
Affiliation(s)
- John F Hartwig
- Department of Chemistry, University of California, Berkeley CA 94720
| | - Erik A Romero
- Department of Chemistry, University of California, Berkeley CA 94720
| |
Collapse
|
36
|
Brauns M, Cramer N. Efficient Kinetic Resolution of Sulfur‐Stereogenic Sulfoximines by Exploiting Cp
X
Rh
III
‐Catalyzed C−H Functionalization. Angew Chem Int Ed Engl 2019; 58:8902-8906. [DOI: 10.1002/anie.201904543] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Marcus Brauns
- Laboratory of Asymmetric Catalysis and SynthesisEPFL SB ISIC LCSA, BCH 4305 1015 Lausanne Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and SynthesisEPFL SB ISIC LCSA, BCH 4305 1015 Lausanne Switzerland
| |
Collapse
|
37
|
Brauns M, Cramer N. Efficient Kinetic Resolution of Sulfur‐Stereogenic Sulfoximines by Exploiting Cp
X
Rh
III
‐Catalyzed C−H Functionalization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904543] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Marcus Brauns
- Laboratory of Asymmetric Catalysis and SynthesisEPFL SB ISIC LCSA, BCH 4305 1015 Lausanne Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and SynthesisEPFL SB ISIC LCSA, BCH 4305 1015 Lausanne Switzerland
| |
Collapse
|
38
|
Zou X, Zhao H, Li Y, Gao Q, Ke Z, Senmiao Xu. Chiral Bidentate Boryl Ligand Enabled Iridium-Catalyzed Asymmetric C(sp2)–H Borylation of Diarylmethylamines. J Am Chem Soc 2019; 141:5334-5342. [DOI: 10.1021/jacs.8b13756] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xiaoliang Zou
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 73000, China
| | - Haonan Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 73000, China
| | - Yinwu Li
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Qian Gao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 73000, China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 73000, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
39
|
Zhang M, Liang J, Huang G. Mechanism and Origins of Enantioselectivity of Iridium-Catalyzed Intramolecular Silylation of Unactivated C(sp 3)-H Bonds. J Org Chem 2019; 84:2372-2376. [PMID: 30668096 DOI: 10.1021/acs.joc.9b00117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Density functional theory calculations were performed to investigate the iridium-catalyzed intramolecular silylation of unactivated C(sp3)-H bonds. The computations show that the in situ generated iridium(III) silyl dihydride species is the active catalyst, from which the followed migratory insertion and the transmetalation would generate the iridium(III) disilyl hydride species. The reaction was found to take place through an Ir(III)/Ir(V) catalytic cycle, and the C(sp3)-H bond oxidative addition constitutes the rate- and enantioselectivity-determining step. The steric repulsion and C-H···π interaction were found to account for the experimentally observed enantioselectivity.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Jiaqi Liang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences , Tianjin University , Tianjin 300072 , People's Republic of China
| |
Collapse
|
40
|
Liu S, Zhang S, Lin Q, Huang Y, Li B. Ruthenium(II) Acetate Catalyzed Synthesis of Silylated Oxazoles via C-H Silylation and Dehalogenation. Org Lett 2019; 21:1134-1138. [PMID: 30707034 DOI: 10.1021/acs.orglett.9b00085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient ruthenium(II)-catalyzed intermolecular selective ortho C-H silylation of 2-aryloxazoles has been described for the first time, which provides a convenient and practical pathway for the synthesis of versatile organosilane compounds with good functional group tolerance and regioselectivity. This catalytic system could be also applied to the dehalogenation of Cl or Br group.
Collapse
Affiliation(s)
- Shun Liu
- School of Biotechnology and Health Sciences , Wuyi University , 22 Dongchengcun , Jiangmen 529020 , P.R. China
| | - Shiling Zhang
- School of Biotechnology and Health Sciences , Wuyi University , 22 Dongchengcun , Jiangmen 529020 , P.R. China
| | - Qiao Lin
- School of Biotechnology and Health Sciences , Wuyi University , 22 Dongchengcun , Jiangmen 529020 , P.R. China
| | - Yiqi Huang
- School of Biotechnology and Health Sciences , Wuyi University , 22 Dongchengcun , Jiangmen 529020 , P.R. China
| | - Bin Li
- School of Biotechnology and Health Sciences , Wuyi University , 22 Dongchengcun , Jiangmen 529020 , P.R. China
| |
Collapse
|
41
|
Yabushita K, Yuasa A, Nagao K, Ohmiya H. Asymmetric Catalysis Using Aromatic Aldehydes as Chiral α-Alkoxyalkyl Anions. J Am Chem Soc 2018; 141:113-117. [PMID: 30561196 DOI: 10.1021/jacs.8b11495] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed a new umpolung strategy for catalytically forming a chiral α-alkoxyalkyl anion from an aromatic aldehyde for use in asymmetric synthesis. The reaction between aromatic aldehydes and aryl or allyl electrophiles with a silylboronate utilizing a chiral copper-N-heterocyclic carbene catalyst and a palladium-bisphosphine catalyst in a synergistic manner occurred with high enantioselectivities to deliver the three-component coupling products, chiral silyl-protected secondary alcohol derivatives. Our method features the catalytic generation of enantioenriched chiral α-alkoxyalkylcopper(I) intermediates from aldehydes and their subsequent palladium-catalyzed stereospecific cross-coupling.
Collapse
Affiliation(s)
- Kenya Yabushita
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences , Kanazawa University , Kakuma-machi, Kanazawa 920-1192 , Japan
| | - Akihiro Yuasa
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences , Kanazawa University , Kakuma-machi, Kanazawa 920-1192 , Japan
| | - Kazunori Nagao
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences , Kanazawa University , Kakuma-machi, Kanazawa 920-1192 , Japan
| | - Hirohisa Ohmiya
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences , Kanazawa University , Kakuma-machi, Kanazawa 920-1192 , Japan
| |
Collapse
|
42
|
Su B, Lee T, Hartwig JF. Iridium-Catalyzed, β-Selective C(sp 3)-H Silylation of Aliphatic Amines To Form Silapyrrolidines and 1,2-Amino Alcohols. J Am Chem Soc 2018; 140:18032-18038. [PMID: 30354144 DOI: 10.1021/jacs.8b10428] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The functionalization of unactivated C(sp3)-H bonds of aliphatic amines catalyzed by transition-metal complexes is important because amine-based functionality is present in a majority of biologically active molecules and commercial pharmaceuticals. However, such reactions are underdeveloped and challenging to achieve in general because the basicity and reducing properties of alkylamines tends to interfere with potential reagents and catalysts. The functionalization of C-H bonds β to the nitrogen of aliphatic amines to form prevalent 1,2-amino functionalized structures is particularly challenging because the C-H bond β to nitrogen is stronger than the C-H bond α to nitrogen, and the nitrogen in the amine or its derivatives usually directs a catalyst to react at more distal γ- and δ-C-H bonds to form 5- or 6-membered metallacyclic intermediate. The enantioselective functionalization of a C-H bond at any position in amines also has been vexing and is currently limited to reactions of specific, sterically hindered, cyclic structures. We report iridium-catalyzed, β-selective silylations of unactivated C(sp3)-H bonds of aliphatic amines to form silapyrrolidines that are both silicon-containing analogs of common saturated nitrogen heterocycles and precursors to 1,2-amino alcohols by Tamao-Fleming oxidation. These silylations of amines are accomplished by introducing a simple methylene linker between the heteroatom and silicon that has not been used previously for the silylation of C-H bonds. The reactions occur with high enantioselectivity when catalyzed by complexes of new chiral, pyridyl imidazoline ligands, and the rates of reactions with catalysts of these highly basic ligands are particularly fast, occuring in some cases at or even below room temperature.
Collapse
Affiliation(s)
- Bo Su
- Department of Chemistry , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Taegyo Lee
- Department of Chemistry , University of California, Berkeley , Berkeley , California 94720 , United States
| | - John F Hartwig
- Department of Chemistry , University of California, Berkeley , Berkeley , California 94720 , United States
| |
Collapse
|
43
|
Sun Y, Cramer N. Enantioselective Synthesis of Chiral‐at‐Sulfur 1,2‐Benzothiazines by CpxRhIII‐Catalyzed C−H Functionalization of Sulfoximines. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810887] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yang Sun
- Laboratory of Asymmetric Catalysis and SynthesisEPFL SB ISIC LCSA, BCH 4305 1015 Lausanne Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and SynthesisEPFL SB ISIC LCSA, BCH 4305 1015 Lausanne Switzerland
| |
Collapse
|
44
|
Sun Y, Cramer N. Enantioselective Synthesis of Chiral‐at‐Sulfur 1,2‐Benzothiazines by CpxRhIII‐Catalyzed C−H Functionalization of Sulfoximines. Angew Chem Int Ed Engl 2018; 57:15539-15543. [DOI: 10.1002/anie.201810887] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Yang Sun
- Laboratory of Asymmetric Catalysis and SynthesisEPFL SB ISIC LCSA, BCH 4305 1015 Lausanne Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and SynthesisEPFL SB ISIC LCSA, BCH 4305 1015 Lausanne Switzerland
| |
Collapse
|
45
|
Critical view on the recent enantioselective synthesis of alcohols, amines and related molecules having tertiary benzylic stereocenter. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem Soc Rev 2018; 47:6603-6743. [PMID: 30033454 PMCID: PMC6113863 DOI: 10.1039/c8cs00201k] [Citation(s) in RCA: 1105] [Impact Index Per Article: 184.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 12/20/2022]
Abstract
The present review is devoted to summarizing the recent advances (2015-2017) in the field of metal-catalysed group-directed C-H functionalisation. In order to clearly showcase the molecular diversity that can now be accessed by means of directed C-H functionalisation, the whole is organized following the directing groups installed on a substrate. Its aim is to be a comprehensive reference work, where a specific directing group can be easily found, together with the transformations which have been carried out with it. Hence, the primary format of this review is schemes accompanied with a concise explanatory text, in which the directing groups are ordered in sections according to their chemical structure. The schemes feature typical substrates used, the products obtained as well as the required reaction conditions. Importantly, each example is commented on with respect to the most important positive features and drawbacks, on aspects such as selectivity, substrate scope, reaction conditions, directing group removal, and greenness. The targeted readership are both experts in the field of C-H functionalisation chemistry (to provide a comprehensive overview of the progress made in the last years) and, even more so, all organic chemists who want to introduce the C-H functionalisation way of thinking for a design of straightforward, efficient and step-economic synthetic routes towards molecules of interest to them. Accordingly, this review should be of particular interest also for scientists from industrial R&D sector. Hence, the overall goal of this review is to promote the application of C-H functionalisation reactions outside the research groups dedicated to method development and establishing it as a valuable reaction archetype in contemporary R&D, comparable to the role cross-coupling reactions play to date.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - David Schönbauer
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Remi Blieck
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Toan Dao-Huy
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Gerit Pototschnig
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Patricia Schaaf
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Thomas Wiesinger
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Muhammad Farooq Zia
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Joanna Wencel-Delord
- Laboratoire de Chimie Moléculaire (UMR CNRS 7509)
, Université de Strasbourg
,
ECPM 25 Rue Becquerel
, 67087 Strasbourg
, France
| | - Tatiana Besset
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Bert U. W. Maes
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| |
Collapse
|
47
|
Tang Y, Qin Y, Meng D, Li C, Wei J, Yang M. Diverse secondary C(sp 3)-H bond functionalization via site-selective trifluoroacetoxylation of aliphatic amines. Chem Sci 2018; 9:6374-6378. [PMID: 30310565 PMCID: PMC6115674 DOI: 10.1039/c8sc01788c] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/28/2018] [Indexed: 02/02/2023] Open
Abstract
We describe a coinage-metal-catalyzed site-selective oxidation of secondary C(sp3)-H bonds for aliphatic amine substrates. Broad amine scope, good functional compatibility and late-stage diversification are demonstrated with this method. The steric demand of the β-substituents controlled diastereoselectivities under this catalytic system. The site selectivity favors secondary C(sp3)-H bonds over tertiary ones underscoring the unique synthetic potential of this method.
Collapse
Affiliation(s)
- Yongzhen Tang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE , School of Chemistry and Chemical Engineering , Shaanxi Normal University , 620 West Chang'an Ave , Xi'an , 710119 , China . ;
| | - Yuman Qin
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE , School of Chemistry and Chemical Engineering , Shaanxi Normal University , 620 West Chang'an Ave , Xi'an , 710119 , China . ;
| | - Dongmei Meng
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE , School of Chemistry and Chemical Engineering , Shaanxi Normal University , 620 West Chang'an Ave , Xi'an , 710119 , China . ;
| | - Chaoqun Li
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE , School of Chemistry and Chemical Engineering , Shaanxi Normal University , 620 West Chang'an Ave , Xi'an , 710119 , China . ;
| | - Junfa Wei
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE , School of Chemistry and Chemical Engineering , Shaanxi Normal University , 620 West Chang'an Ave , Xi'an , 710119 , China . ;
| | - Mingyu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE , School of Chemistry and Chemical Engineering , Shaanxi Normal University , 620 West Chang'an Ave , Xi'an , 710119 , China . ;
| |
Collapse
|
48
|
Greßies S, Klauck FJR, Kim JH, Daniliuc CG, Glorius F. Ligandenaktivierte enantioselektive Csp3
-H-Aktivierung von Tetrahydrochinolinen und gesättigten Aza-Heterocyclen durch RhI. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805680] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Steffen Greßies
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Deutschland
| | - Felix J. R. Klauck
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Deutschland
| | - Ju Hyun Kim
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Deutschland
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Deutschland
| | - Frank Glorius
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
49
|
Greßies S, Klauck FJR, Kim JH, Daniliuc CG, Glorius F. Ligand-Enabled Enantioselective Csp3
-H Activation of Tetrahydroquinolines and Saturated Aza-Heterocycles by RhI. Angew Chem Int Ed Engl 2018; 57:9950-9954. [DOI: 10.1002/anie.201805680] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/07/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Steffen Greßies
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Felix J. R. Klauck
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Ju Hyun Kim
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Frank Glorius
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
50
|
Hurtley AE, Stone EA, Metrano AJ, Miller SJ. Desymmetrization of Diarylmethylamido Bis(phenols) through Peptide-Catalyzed Bromination: Enantiodivergence as a Consequence of a 2 amu Alteration at an Achiral Residue within the Catalyst. J Org Chem 2018; 82:11326-11336. [PMID: 29020446 DOI: 10.1021/acs.joc.7b02339] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diarylmethylamido bis(phenols) have been subjected to peptide-catalyzed, enantioselective bromination reactions. Desymmetrization of compounds in this class has been achieved such that enantioenriched products may be isolated with up to 97:3 er. Mechanistically, the observed enantioselectivity was shown to be primarily a function of differential functionalization of enantiotopic arenes, although additional studies unveiled a contribution from secondary kinetic resolution of the product (to afford the symmetrical dibromide) under the reaction conditions. Variants of the tetrapeptide catalyst were also evaluated and revealed a striking observation-enantiodivergent catalysis is observed upon changing the achiral amino acid residue in the catalyst (at the i+2 position) from an aminocyclopropane carboxamide residue (97:3 er) to an aminoisobutyramide residue (33:67 er) under a common set of conditions. An expanded set of catalysts was also evaluated, enabling structure/selectivity correlations to be considered in a mechanistic light.
Collapse
Affiliation(s)
- Anna E Hurtley
- Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Elizabeth A Stone
- Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Anthony J Metrano
- Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Scott J Miller
- Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|