1
|
Chen X, Zhao Z, Laster KV, Liu K, Dong Z. Advancements in therapeutic peptides: Shaping the future of cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189197. [PMID: 39413854 DOI: 10.1016/j.bbcan.2024.189197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
In the evolving landscape of cancer treatment, therapeutic peptides are assuming to play an increasingly vital role. Although the number of peptide drugs available for clinical cancer treatment is currently limited, extensive preclinical research is underway, presenting a promising trajectory for the future. The collaborative efforts of natural anti-cancer peptides (ACPs) and synthetic ACPs, propelled by advancements in molecular biology and peptide chemistry, are steering remarkable progress in this domain. We explores the intricate mechanisms underlying the anti-cancer effects of these peptides. The exploration of innovative strategies, including cancer immunotherapy and advanced drug delivery systems, is likely to contribute to the increasing presenceuse of peptide drugs in clinical cancer care. Furthermore, we delve into the potential implications and challenges associated with this anticipated shift, emphasizing the need for continued research and development to unlock the full therapeutic potential of peptide drugs in cancer treatment.
Collapse
Affiliation(s)
- Xiaojie Chen
- School of Basic Medical Sciences, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China
| | - Zhiwei Zhao
- School of Basic Medical Sciences, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | | | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China; Research Center of Basic Medicine Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China; Research Center of Basic Medicine Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Masuda R, Anami Y, Kusama H. Umpolung Synthesis of Selenoesters and Telluroesters via the Photoinduced Coupling of Acylsilanes with Electrophilic Chalcogen Reagents. Org Lett 2024; 26:8011-8016. [PMID: 39264729 DOI: 10.1021/acs.orglett.4c02757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
A novel synthesis of selenoesters and telluroesters based on the reactions of nucleophilic siloxycarbenes, which were generated by the visible-light-induced isomerization of the corresponding aroyl-, heteroaroyl-, or alkenoylsilanes, with electrophilic chalcogen reagents was developed. The use of appropriate selenides or ditellurides/Lewis acids enabled the coupling at temperatures below ambient temperature with a broad substrate scope and high functional-group tolerance. To the best of our knowledge, this is the first example of a synthetic method for selenoesters and telluroesters involving the combination of an acylanion equivalent and cationic chalcogen synthons.
Collapse
Affiliation(s)
- Ryosuke Masuda
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Yuki Anami
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Hiroyuki Kusama
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
3
|
Lin Z, Liu B, Lu M, Wang Y, Ren X, Liu Z, Luo C, Shi W, Zou X, Song X, Tang F, Huang H, Huang W. Controlled Reversible N-Terminal Modification of Peptides and Proteins. J Am Chem Soc 2024; 146:23752-23763. [PMID: 39143892 DOI: 10.1021/jacs.4c04894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
A reversible modification strategy enables a switchable cage/decage process of proteins with an array of applications for protein function research. However, general N-terminal selective reversible modification strategies which present site selectivity are specifically limited. Herein, we report a general reversible modification strategy compatible with 20 canonical amino acids at the N-terminal site by the palladium-catalyzed cinnamylation of native peptides and proteins under biologically relevant conditions. This approach broadens the substrate adaptability of N-terminal modification of proteins and shows a potential impact on the more challenging protein substrates such as antibodies. In the presence of 1,3-dimethylbarbituric acid, palladium-catalyzed deconjugation released native peptides and proteins efficiently. Harnessing the reversible nature of this protocol, practical applications were demonstrated by precise function modulation of antibodies and traceless enrichment of the protein-of-interest for proteomics analysis. This novel on/off strategy working on the N-terminus will provide new opportunities in chemical biology and medicinal research.
Collapse
Affiliation(s)
- Zeng Lin
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Bo Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Mengru Lu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yongqin Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xuelian Ren
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhaoxi Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Caili Luo
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Wei Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Xiangman Zou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Xiaohan Song
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Feng Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - He Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
4
|
Bartlett RJ, Crisostomo KD, Zhang Q. Reversible Conjugation of Polypeptides and Proteins Utilizing a [3.3.1] Scaffold under Mild Conditions. Org Lett 2024; 26:6428-6432. [PMID: 39038165 DOI: 10.1021/acs.orglett.4c02228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
An investigation of reversible protein conjugation and deconjugation is presented. Despite numerous available protein conjugation methods, there has been limited documentation of achieving protein conjugation in a controlled and reversible manner. This report introduces a protocol that enables protein modification in a multicomponent fashion under aqueous buffer and mild conditions. A readily available mercaptobenzaldehyde derivative can modify the primary amine of peptides and proteins with a distinctive [3.3.1] scaffold. This modification can be reversed under mild conditions in a controlled fashion, restoring the original protein motif. The effectiveness of this approach has been demonstrated in the modification and quantifiable regeneration of insulin protein.
Collapse
Affiliation(s)
- Ryan J Bartlett
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Kelly D Crisostomo
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Qiang Zhang
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
5
|
Castro-Godoy WD, Heredia AA, Bouchet LM, Argüello JE. Synthesis of Selenium Derivatives using Organic Selenocyanates as Masked Selenols: Chemical Reduction with Rongalite as a Simpler Tool to give Nucleophilic Selenides. Chempluschem 2024; 89:e202400183. [PMID: 38648466 DOI: 10.1002/cplu.202400183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
The chemical reduction within a family of organic selenocyanates, as masked selenols, using reducing agents, such as Rongalite, sodium dithionite, and sodium thiosulfate is investigated. Using Rongalite, the corresponding diselenides were obtained quantitatively and selectively in very good to excellent yields (51-100 %) starting from alkyl, aryl, and benzyl selenocyanates. The scope of the reaction is unaffected by the electronic nature of the substituents. Furthermore, the reducing agent, Rongalite, is compatible with hydrolysable and reducing-sensitive functional groups. Additionally, a simple methodology employing the in-situ generated benzyl selenolate anion (PhCH2Se-) to promote aliphatic nucleophilic substitution, epoxide ring opening, and Michael addition reactions has been developed; thus, extending the structural diversity of the synthesized selenium derivatives.
Collapse
Affiliation(s)
- Willber D Castro-Godoy
- Dpto. de Química, Física y Matemática, Facultad de Química y Farmacia, Universidad de El Salvador, Final Av. de Mártires y Héroes del 30 de Julio, San, Salvador, 1101, El Salvador
| | - Adrián A Heredia
- INFIQC-CONICET-UNC, Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Lydia M Bouchet
- INFIQC-CONICET-UNC, Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Juan E Argüello
- INFIQC-CONICET-UNC, Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
6
|
Martin MS, Jacob-Dolan JW, Pham VTT, Sjoblom NM, Scheck RA. The chemical language of protein glycation. Nat Chem Biol 2024:10.1038/s41589-024-01644-y. [PMID: 38942948 DOI: 10.1038/s41589-024-01644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/10/2024] [Indexed: 06/30/2024]
Abstract
Glycation is a non-enzymatic post-translational modification (PTM) that is correlated with many diseases, including diabetes, cancer and age-related disorders. Although recent work points to the importance of glycation as a functional PTM, it remains an open question whether glycation has a causal role in cellular signaling and/or disease development. In this Review, we contextualize glycation as a specific mechanism of carbon stress and consolidate what is known about advanced glycation end-product (AGE) structures and mechanisms. We highlight the current understanding of glycation as a PTM, focusing on mechanisms for installing, removing or recognizing AGEs. Finally, we discuss challenges that have hampered a more complete understanding of the biological consequences of glycation. The development of tools for predicting, modulating, mimicking or capturing glycation will be essential for interpreting a post-translational glycation network. Therefore, continued insights into the chemistry of glycation will be necessary to advance understanding of glycation biology.
Collapse
|
7
|
Chauhan P, V R, Kumar M, Molla R, Mishra SD, Basa S, Rai V. Chemical technology principles for selective bioconjugation of proteins and antibodies. Chem Soc Rev 2024; 53:380-449. [PMID: 38095227 DOI: 10.1039/d3cs00715d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proteins are multifunctional large organic compounds that constitute an essential component of a living system. Hence, control over their bioconjugation impacts science at the chemistry-biology-medicine interface. A chemical toolbox for their precision engineering can boost healthcare and open a gateway for directed or precision therapeutics. Such a chemical toolbox remained elusive for a long time due to the complexity presented by the large pool of functional groups. The precise single-site modification of a protein requires a method to address a combination of selectivity attributes. This review focuses on guiding principles that can segregate them to simplify the task for a chemical method. Such a disintegration systematically employs a multi-step chemical transformation to deconvolute the selectivity challenges. It constitutes a disintegrate (DIN) theory that offers additional control parameters for tuning precision in protein bioconjugation. This review outlines the selectivity hurdles faced by chemical methods. It elaborates on the developments in the perspective of DIN theory to demonstrate simultaneous regulation of reactivity, chemoselectivity, site-selectivity, modularity, residue specificity, and protein specificity. It discusses the progress of such methods to construct protein and antibody conjugates for biologics, including antibody-fluorophore and antibody-drug conjugates (AFCs and ADCs). It also briefs how this knowledge can assist in developing small molecule-based covalent inhibitors. In the process, it highlights an opportunity for hypothesis-driven routes to accelerate discoveries of selective methods and establish new targetome in the precision engineering of proteins and antibodies.
Collapse
Affiliation(s)
- Preeti Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Ragendu V
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Mohan Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Rajib Molla
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Surya Dev Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Sneha Basa
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| |
Collapse
|
8
|
Digal LD, Kirkeby EK, Austin MJ, Roberts AG. Design and Evaluation of Ambiphilic Aryl Thiol-Iminium-Based Molecules for Organocatalyzed Thioacyl Aminolysis. ACS OMEGA 2023; 8:9319-9325. [PMID: 36936301 PMCID: PMC10018527 DOI: 10.1021/acsomega.2c07586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Progress toward the design and synthesis of ambiphilic aryl thiol-iminium-based small molecules for organocatalyzed thioacyl aminolysis is reported. Here we describe the synthesis of a novel tetrahydroisoquinoline-derived scaffold, bearing both thiol and iminium functionalities, capable of promoting the transthioesterification and subsequent amine capture reactions necessary to achieve organocatalyzed thioacyl aminolysis. Model studies demonstrate the ability of this designed organocatalyst to deliver critical intermediates capable of undergoing these individual reactions necessary for the proposed process. Future design improvements and directions toward cysteine-independent organocatalyzed native chemical ligation are discussed.
Collapse
|
9
|
Chauhan P, V. R, Kumar M, Molla R, V. B. U, Rai V. Dis integrate (DIN) Theory Enabling Precision Engineering of Proteins. ACS CENTRAL SCIENCE 2023; 9:137-150. [PMID: 36844488 PMCID: PMC9951294 DOI: 10.1021/acscentsci.2c01455] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 06/18/2023]
Abstract
The chemical toolbox for the selective modification of proteins has witnessed immense interest in the past few years. The rapid growth of biologics and the need for precision therapeutics have fuelled this growth further. However, the broad spectrum of selectivity parameters creates a roadblock to the field's growth. Additionally, bond formation and dissociation are significantly redefined during the translation from small molecules to proteins. Understanding these principles and developing theories to deconvolute the multidimensional attributes could accelerate the area. This outlook presents a disintegrate (DIN) theory for systematically disintegrating the selectivity challenges through reversible chemical reactions. An irreversible step concludes the reaction sequence to render an integrated solution for precise protein bioconjugation. In this perspective, we highlight the key advancements, unsolved challenges, and potential opportunities.
Collapse
|
10
|
Sharma K, Sharma KK, Sharma A, Jain R. Peptide-based drug discovery: Current status and recent advances. Drug Discov Today 2023; 28:103464. [PMID: 36481586 DOI: 10.1016/j.drudis.2022.103464] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The progressive development of peptides from reaction vessels to life-saving drugs via rigorous preclinical and clinical assessments is fascinating. Peptide therapeutics have gained momentum with the evolution of techniques in peptide chemistry, such as microwave irradiation in solid- and solution-phase synthesis, ligation chemistry, recombinant synthesis, and amalgamation with synthetic tools, including metal catalysis. Diverse emerging technologies, such as DNA-encoded libraries (DELs) and display techniques, are changing the status quo in the discovery of peptide therapeutics. In this review, we analyzed US Food and Drug Administration (FDA)-approved peptide drugs and those in clinical trials, highlighting recent advances in peptide-based drug discovery.
Collapse
Affiliation(s)
- Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Anku Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India.
| |
Collapse
|
11
|
Tantipanjaporn A, Wong MK. Development and Recent Advances in Lysine and N-Terminal Bioconjugation for Peptides and Proteins. Molecules 2023; 28:molecules28031083. [PMID: 36770752 PMCID: PMC9953373 DOI: 10.3390/molecules28031083] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The demand for creation of protein diversity and regulation of protein function through native protein modification and post-translational modification has ignited the development of selective chemical modification methods for peptides and proteins. Chemical bioconjugation offers selective functionalization providing bioconjugates with desired properties and functions for diverse applications in chemical biology, medicine, and biomaterials. The amino group existing at the lysine residue and N-terminus of peptides and proteins has been extensively studied in bioconjugation because of its good nucleophilicity and high surface exposure. Herein, we review the development of chemical methods for modification of the amino groups on lysine residue and N-terminus featuring excellent selectivity, mild reaction conditions, short reaction time, high conversion, biocompatibility, and preservation of protein integrity. This review is organized based on the chemoselectivity and site-selectivity of the chemical bioconjugation reagents to the amino acid residues aiming to provide guidance for the selection of appropriate bioconjugation methods.
Collapse
|
12
|
Thakur K, T K S, Singh SK, V R, Rawale DG, Adusumalli SR, Kalra N, Shukla S, Mishra RK, Rai V. Human Behavior-Inspired Linchpin-Directed Catalysis for Traceless Precision Labeling of Lysine in Native Proteins. Bioconjug Chem 2022; 33:2370-2380. [PMID: 36383773 DOI: 10.1021/acs.bioconjchem.2c00454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The complex social ecosystem regulates the spectrum of human behavior. However, it becomes relatively easier to understand if we disintegrate the contributing factors, such as locality and interacting partners. Interestingly, it draws remarkable similarity with the behavior of a residue placed in a social setup of functional groups in a protein. Can it inspire principles for creating a unique environment for the precision engineering of proteins? We demonstrate that localization-regulated interacting partner(s) could render precise and traceless single-site modification of structurally diverse native proteins. The method targets a combination of high-frequency Lys residues through an array of reversible and irreversible reactions. However, excellent simultaneous control over chemoselectivity, site selectivity, and modularity ensures that the user-friendly protocol renders acyl group installation, including post-translational modifications (PTMs), on a single Lys. Besides, it offers a chemically orthogonal handle for the installation of probes. Also, a purification protocol integration delivers analytically pure single-site tagged protein bioconjugates. The precise labeling of a surface Lys residue ensures that the structure and enzymatic activities remain conserved post-bioconjugation. For example, the precise modification of insulin does not affect its uptake and downstream signaling pathway. Further, the method enables the synthesis of homogeneous antibody-fluorophore and antibody-drug conjugates (AFC and ADC; K183 and K249 labeling). The trastuzumab-rhodamine B conjugate displays excellent serum stability along with antigen-specific cellular imaging. Further, the trastuzumab-emtansine conjugate offers highly specific antiproliferative activity toward HER-2 positive SKBR-3 breast cancer cells. This work validates that disintegrate theory can create a comprehensive platform to enrich the chemical toolbox to meet the technological demands at the chemistry, biology, and medicine interface.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Neetu Kalra
- School of Bioengineering, VIT Bhopal, Bhopal 466114, Madhya Pradesh, India
| | | | | | | |
Collapse
|
13
|
Photocatalyzed Oxidative Decarboxylation Forming Aminovinylcysteine Containing Peptides. Catalysts 2022. [DOI: 10.3390/catal12121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The formation of (2S,3S)-S-[(Z)-aminovinyl]-3-methyl-D-cysteine (AviMeCys) substructures was developed based on the photocatalyzed-oxidative decarboxylation of lanthionine-bearing peptides. The decarboxylative selenoetherification of the N-hydroxyphthalimide ester, generated in situ, proceeded under mild conditions at −40 °C in the presence of 1 mol% of eosin Y-Na2 as a photocatalyst and the Hantzsch ester. The following β-elimination of the corresponding N,Se-acetal was operated in a one-pot operation, led to AviMeCys substructures found in natural products in moderate to good yields. The sulfide-bridged motif, and also the carbamate-type protecting groups, such as Cbz, Teoc, Boc and Fmoc groups, were tolerant under the reaction conditions.
Collapse
|
14
|
Reddy NC, Molla R, Joshi PN, T. K. S, Basu I, Kawadkar J, Kalra N, Mishra RK, Chakrabarty S, Shukla S, Rai V. Traceless cysteine-linchpin enables precision engineering of lysine in native proteins. Nat Commun 2022; 13:6038. [PMID: 36229616 PMCID: PMC9561114 DOI: 10.1038/s41467-022-33772-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
The maintenance of machinery requires its operational understanding and a toolbox for repair. The methods for the precision engineering of native proteins meet a similar requirement in biosystems. Its success hinges on the principles regulating chemical reactions with a protein. Here, we report a technology that delivers high-level control over reactivity, chemoselectivity, site-selectivity, modularity, dual-probe installation, and protein-selectivity. It utilizes cysteine-based chemoselective Linchpin-Directed site-selective Modification of lysine residue in a protein (LDMC-K). The efficiency of the end-user-friendly protocol is evident in quantitative conversions within an hour. A chemically orthogonal C-S bond-formation and bond-dissociation are essential among multiple regulatory attributes. The method offers protein selectivity by targeting a single lysine residue of a single protein in a complex biomolecular mixture. The protocol renders analytically pure single-site probe-engineered protein bioconjugate. Also, it provides access to homogeneous antibody conjugates (AFC and ADC). The LDMC-K-ADC exhibits highly selective anti-proliferative activity towards breast cancer cells.
Collapse
Affiliation(s)
- Neelesh C. Reddy
- grid.462376.20000 0004 1763 8131Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066 M.P. India
| | - Rajib Molla
- grid.462376.20000 0004 1763 8131Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066 M.P. India
| | - Pralhad Namdev Joshi
- grid.462376.20000 0004 1763 8131Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066 M.P. India
| | - Sajeev T. K.
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066 M.P. India
| | - Ipsita Basu
- grid.452759.80000 0001 2188 427XDepartment of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata, 700 106 W.B. India
| | - Jyotsna Kawadkar
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066 M.P. India
| | | | - Ram Kumar Mishra
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066 M.P. India
| | - Suman Chakrabarty
- grid.452759.80000 0001 2188 427XDepartment of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata, 700 106 W.B. India
| | - Sanjeev Shukla
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066 M.P. India
| | - Vishal Rai
- grid.462376.20000 0004 1763 8131Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066 M.P. India
| |
Collapse
|
15
|
Djaló M, Silva MJSA, Faustino H, Pinto SN, Mendonça R, Gois PMP. Multivalent NHS-activated acrylates for orthogonal site-selective functionalisation of peptides at cysteine residues. Chem Commun (Camb) 2022; 58:7928-7931. [PMID: 35758206 DOI: 10.1039/d2cc02204d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The site-selective chemical appendage of multiple functionalities on a native peptide backbone is a highly demanding and complex tool of modern chemical biology. Here, novel NHS-activated acrylates were designed to hold various payloads in a single bioconjugation handle that is able to site-selectively and orthogonally target the N-terminal cysteine of peptides.
Collapse
Affiliation(s)
- Mariama Djaló
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| | - Maria J S A Silva
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| | - Hélio Faustino
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal. .,Association BLC3-Innovation and Technology Campus, Oliveira do Hospital, Portugal
| | - Sandra N Pinto
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | | | - Pedro M P Gois
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
16
|
Handoko, Panigrahi NR, Arora PS. Two-Component Redox Organocatalyst for Peptide Bond Formation. J Am Chem Soc 2022; 144:3637-3643. [DOI: 10.1021/jacs.1c12798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Handoko
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Nihar R. Panigrahi
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Paramjit S. Arora
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
17
|
Sornay C, Vaur V, Wagner A, Chaubet G. An overview of chemo- and site-selectivity aspects in the chemical conjugation of proteins. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211563. [PMID: 35116160 PMCID: PMC8790347 DOI: 10.1098/rsos.211563] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/20/2021] [Indexed: 05/03/2023]
Abstract
The bioconjugation of proteins-that is, the creation of a covalent link between a protein and any other molecule-has been studied for decades, partly because of the numerous applications of protein conjugates, but also due to the technical challenge it represents. Indeed, proteins possess inner physico-chemical properties-they are sensitive and polynucleophilic macromolecules-that make them complex substrates in conjugation reactions. This complexity arises from the mild conditions imposed by their sensitivity but also from selectivity issues, viz the precise control of the conjugation site on the protein. After decades of research, strategies and reagents have been developed to address two aspects of this selectivity: chemoselectivity-harnessing the reacting chemical functionality-and site-selectivity-controlling the reacting amino acid residue-most notably thanks to the participation of synthetic chemistry in this effort. This review offers an overview of these chemical bioconjugation strategies, insisting on those employing native proteins as substrates, and shows that the field is active and exciting, especially for synthetic chemists seeking new challenges.
Collapse
Affiliation(s)
- Charlotte Sornay
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Valentine Vaur
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| |
Collapse
|
18
|
Cong M, Tavakolpour S, Berland L, Glöckner H, Andreiuk B, Rakhshandehroo T, Uslu S, Mishra S, Clark L, Rashidian M. Direct N- or C-Terminal Protein Labeling Via a Sortase-Mediated Swapping Approach. Bioconjug Chem 2021; 32:2397-2406. [PMID: 34748323 PMCID: PMC9595177 DOI: 10.1021/acs.bioconjchem.1c00442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Site-specific protein labeling is important in biomedical research and biotechnology. While many methods allow site-specific protein modification, a straightforward approach for efficient N-terminal protein labeling is not available. We introduce a novel sortase-mediated swapping approach for a one-step site-specific N-terminal labeling with a near-quantitative yield. We show that this method allows rapid and efficient cleavage and simultaneous labeling of the N or C termini of fusion proteins. The method does not require any prior modification beyond the genetic incorporation of the sortase recognition motif. This new approach provides flexibility for protein engineering and site-specific protein modifications.
Collapse
Affiliation(s)
- Min Cong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Soheil Tavakolpour
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Lea Berland
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06100 Nice, France
| | - Hannah Glöckner
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Bohdan Andreiuk
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Taha Rakhshandehroo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Safak Uslu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Medical Scientist Training Program, Hacettepe University Faculty of Medicine, Ankara, 06230, Turkey
| | - Shruti Mishra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Louise Clark
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
19
|
Kumar M, Reddy NC, Rai V. Chemical technologies for precise protein bioconjugation interfacing biology and medicine. Chem Commun (Camb) 2021; 57:7083-7095. [PMID: 34180471 DOI: 10.1039/d1cc02268g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteins provide an excellent means to monitor and regulate biological processes. Hence, a precise chemical toolbox for their modification becomes indispensable. In this perspective, this feature article outlines our efforts to establish the core principles of chemoselectivity, site-selectivity, site-specificity, site-modularity, residue-modularity, and protein-specificity. With the knowledge to systematically regulate these parameters, the field has access to technological platforms that can address multiple challenges at the interface of chemistry, biology, and medicine.
Collapse
Affiliation(s)
- Mohan Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, MP 462 066, India.
| | - Neelesh C Reddy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, MP 462 066, India.
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, MP 462 066, India.
| |
Collapse
|
20
|
Bechtler C, Lamers C. Macrocyclization strategies for cyclic peptides and peptidomimetics. RSC Med Chem 2021; 12:1325-1351. [PMID: 34447937 PMCID: PMC8372203 DOI: 10.1039/d1md00083g] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Peptides are a growing therapeutic class due to their unique spatial characteristics that can target traditionally "undruggable" protein-protein interactions and surfaces. Despite their advantages, peptides must overcome several key shortcomings to be considered as drug leads, including their high conformational flexibility and susceptibility to proteolytic cleavage. As a general approach for overcoming these challenges, macrocyclization of a linear peptide can usually improve these characteristics. Their synthetic accessibility makes peptide macrocycles very attractive, though traditional synthetic methods for macrocyclization can be challenging for peptides, especially for head-to-tail cyclization. This review provides an updated summary of the available macrocyclization chemistries, such as traditional lactam formation, azide-alkyne cycloadditions, ring-closing metathesis as well as unconventional cyclization reactions, and it is structured according to the obtained functional groups. Keeping peptide chemistry and screening in mind, the focus is given to reactions applicable in solution, on solid supports, and compatible with contemporary screening methods.
Collapse
Affiliation(s)
- Clément Bechtler
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| | - Christina Lamers
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| |
Collapse
|
21
|
De Rosa L, Di Stasi R, Romanelli A, D’Andrea LD. Exploiting Protein N-Terminus for Site-Specific Bioconjugation. Molecules 2021; 26:3521. [PMID: 34207845 PMCID: PMC8228110 DOI: 10.3390/molecules26123521] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
Although a plethora of chemistries have been developed to selectively decorate protein molecules, novel strategies continue to be reported with the final aim of improving selectivity and mildness of the reaction conditions, preserve protein integrity, and fulfill all the increasing requirements of the modern applications of protein conjugates. The targeting of the protein N-terminal alpha-amine group appears a convenient solution to the issue, emerging as a useful and unique reactive site universally present in each protein molecule. Herein, we provide an updated overview of the methodologies developed until today to afford the selective modification of proteins through the targeting of the N-terminal alpha-amine. Chemical and enzymatic strategies enabling the selective labeling of the protein N-terminal alpha-amine group are described.
Collapse
Affiliation(s)
- Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy; (L.D.R.); (R.D.S.)
| | - Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy; (L.D.R.); (R.D.S.)
| | - Alessandra Romanelli
- Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy;
| | - Luca Domenico D’Andrea
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, CNR Via M. Bianco 9, 20131 Milano, Italy
| |
Collapse
|
22
|
Rawale DG, Thakur K, Sreekumar P, T K S, A R, Adusumalli SR, Mishra RK, Rai V. Linchpins empower promiscuous electrophiles to enable site-selective modification of histidine and aspartic acid in proteins. Chem Sci 2021; 12:6732-6736. [PMID: 34040749 PMCID: PMC8133000 DOI: 10.1039/d1sc00335f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/03/2021] [Indexed: 11/29/2022] Open
Abstract
The conservation of chemoselectivity becomes invalid for multiple electrophilic warheads during protein bioconjugation. Consequently, it leads to unpredictable heterogeneous labeling of proteins. Here, we report that a linchpin can create a unique chemical space to enable site-selectivity for histidine and aspartic acid modifications overcoming the pre-requisite of chemoselectivity.
Collapse
Affiliation(s)
- Dattatraya Gautam Rawale
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Kalyani Thakur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Pranav Sreekumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Sajeev T K
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Ramesh A
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Srinivasa Rao Adusumalli
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Ram Kumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| |
Collapse
|
23
|
Tang KC, Raj M. One‐Step Azolation Strategy for Site‐ and Chemo‐Selective Labeling of Proteins with Mass‐Sensitive Probes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202007608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kuei C. Tang
- Present address: Department of Chemistry Emory University Atlanta GA 30322 USA
| | - Monika Raj
- Present address: Department of Chemistry Emory University Atlanta GA 30322 USA
| |
Collapse
|
24
|
Boto A, González CC, Hernández D, Romero-Estudillo I, Saavedra CJ. Site-selective modification of peptide backbones. Org Chem Front 2021. [DOI: 10.1039/d1qo00892g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Exciting developments in the site-selective modification of peptide backbones are allowing an outstanding fine-tuning of peptide conformation, folding ability, and physico-chemical and biological properties.
Collapse
Affiliation(s)
- Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Concepción C. González
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Dácil Hernández
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Iván Romero-Estudillo
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca, Morelos 62209, Mexico
- Catedrático CONACYT-CIQ-UAEM, Mexico
| | - Carlos J. Saavedra
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
- Programa Agustín de Betancourt, Universidad de la Laguna, 38200 Tenerife, Spain
| |
Collapse
|
25
|
Tang KC, Raj M. One‐Step Azolation Strategy for Site‐ and Chemo‐Selective Labeling of Proteins with Mass‐Sensitive Probes. Angew Chem Int Ed Engl 2020; 60:1797-1805. [PMID: 33047860 PMCID: PMC10111340 DOI: 10.1002/anie.202007608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 11/09/2022]
Abstract
The chemical modification of proteins in a site-selective manner leads to many advances in various scientific fields. The major challenges with conventional N-terminal bioconjugation techniques are the lack of universal sequence compatibility and poor mass-detection sensitivity of the resulting bioconjugates. This approach efficiently analyzes proteolytic fragments and native proteins in a complex mixture. Multiple chemical steps are usually required for the site-selective synthesis of bioconjugates with enhanced mass-detection sensitivity. We present a single-step, versatile strategy for the selective modification of protein N-termini with mass boosters. The chemical tag enhances the peptide detection by multiple orders thus leading to the unambiguous analysis of the resulting bioconjugates. We demonstrate that tagging proteolytic fragments with mass sensitivity probes in a complex mixture improves the detection of resulting bioconjugates.
Collapse
Affiliation(s)
- Kuei C. Tang
- Present address: Department of Chemistry Emory University Atlanta GA 30322 USA
| | - Monika Raj
- Present address: Department of Chemistry Emory University Atlanta GA 30322 USA
| |
Collapse
|
26
|
Bajaj K, Pillai GG, Sakhuja R, Kumar D. Expansion of Phosphane Treasure Box for Staudinger Peptide Ligation. J Org Chem 2020; 85:12147-12159. [DOI: 10.1021/acs.joc.0c01319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kiran Bajaj
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | | | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| |
Collapse
|
27
|
Al Khalyfeh K, Taher D, Helal W, Korb M, Hamadneh I, Al-Dujaili A, Imraish A, Hammad HM, Al-As’ad RM, Abu-Orabi ST, Hildebrandt A, Lang H. Synthesis and characterization of 1,4-chalcogenesters bearing 5-membered heterocycles. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Li K, Wang W, Gao J. Fast and Stable N‐Terminal Cysteine Modification through Thiazolidino Boronate Mediated Acyl Transfer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000837] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kaicheng Li
- Department of Chemistry Boston College Merkert Chemistry Center 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Wenjian Wang
- Department of Chemistry Boston College Merkert Chemistry Center 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Jianmin Gao
- Department of Chemistry Boston College Merkert Chemistry Center 2609 Beacon Street Chestnut Hill MA 02467 USA
| |
Collapse
|
29
|
Li K, Wang W, Gao J. Fast and Stable N-Terminal Cysteine Modification through Thiazolidino Boronate Mediated Acyl Transfer. Angew Chem Int Ed Engl 2020; 59:14246-14250. [PMID: 32437040 DOI: 10.1002/anie.202000837] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/02/2020] [Indexed: 01/07/2023]
Abstract
We report a novel conjugation of N-terminal cysteines (NCys) that proceeds with fast kinetics and exquisite selectivity, thereby enabling facile modification of NCys-bearing proteins in complex biological milieu. This new NCys conjugation proceeds via a thiazolidine boronate (TzB) intermediate that results from fast (k2 : ≈5000 m-1 s-1 ) and reversible conjugation of NCys with 2-formylphenylboronic acid (FPBA). We designed a FPBA derivative that upon TzB formation elicits intramolecular acyl transfer to give N-acyl thiazolidines. In contrast to the quick hydrolysis of TzB, the N-acylated thiazolidines exhibit robust stability under physiologic conditions. The utility of the TzB-mediated NCys conjugation is demonstrated by rapid and non-disruptive labeling of two enzymes. Furthermore, applying this chemistry to bacteriophage allows facile chemical modification of phage libraries, which greatly expands the chemical space amenable to phage display.
Collapse
Affiliation(s)
- Kaicheng Li
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Wenjian Wang
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Jianmin Gao
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
30
|
Du JJ, Zhang L, Gao XF, Sun H, Guo J. Peptidyl ω-Asp Selenoesters Enable Efficient Synthesis of N-Linked Glycopeptides. Front Chem 2020; 8:396. [PMID: 32478036 PMCID: PMC7232547 DOI: 10.3389/fchem.2020.00396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/15/2020] [Indexed: 01/04/2023] Open
Abstract
Chemical synthesis is an attractive approach allows for the assembly of homogeneous complex N-linked glycopeptides and glycoproteins, but the limited coupling efficiency between glycans and peptides hampered the synthesis and research in the related field. Herein we developed an alternative glycosylation to construct N-linked glycopeptide via efficient selenoester-assisted aminolysis, which employs the peptidyl ω-asparagine selenoester and unprotected glycosylamine to perform rapid amide-bond ligation. This glycosylation strategy is highly compatible with the free carboxylic acids and hydroxyl groups of peptides and carbohydrates, and readily available for the assembly of structure-defined homogeneous N-linked glycopeptides, such as segments derived from glycoprotein EPO and IL-5.
Collapse
Affiliation(s)
- Jing-Jing Du
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Lian Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Xiao-Fei Gao
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, China
| | - Hui Sun
- Hubei Key Laboratory of Cell Homeostasis, Hubei Province Key Laboratory of Allergy and Immunology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, College of Life Sciences, Ministry of Education, Wuhan University, Wuhan, China
| | - Jun Guo
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| |
Collapse
|
31
|
Mechanism, origin of diastereoselectivity and factors affecting reaction efficiency of serine/threonine ligation: A computational study. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Adusumalli SR, Rawale DG, Thakur K, Purushottam L, Reddy NC, Kalra N, Shukla S, Rai V. Chemoselective and Site‐Selective Lysine‐Directed Lysine Modification Enables Single‐Site Labeling of Native Proteins. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Srinivasa Rao Adusumalli
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Dattatraya Gautam Rawale
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Kalyani Thakur
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Landa Purushottam
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Neelesh C. Reddy
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Neetu Kalra
- Department of Biological Sciences Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Sanjeev Shukla
- Department of Biological Sciences Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Vishal Rai
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| |
Collapse
|
33
|
Adusumalli SR, Rawale DG, Thakur K, Purushottam L, Reddy NC, Kalra N, Shukla S, Rai V. Chemoselective and Site-Selective Lysine-Directed Lysine Modification Enables Single-Site Labeling of Native Proteins. Angew Chem Int Ed Engl 2020; 59:10332-10336. [PMID: 32171045 DOI: 10.1002/anie.202000062] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/24/2020] [Indexed: 12/13/2022]
Abstract
The necessity for precision labeling of proteins emerged during the efforts to understand and regulate their structure and function. It demands selective attachment of tags such as affinity probes, fluorophores, and potent cytotoxins. Here, we report a method that enables single-site labeling of a high-frequency Lys residue in the native proteins. At first, the enabling reagent forms stabilized imines with multiple solvent-accessible Lys residues chemoselectively. These linchpins create the opportunity to regulate the position of a second Lys-selective electrophile connected by a spacer. Consequently, it enables the irreversible single-site labeling of a Lys residue independent of its place in the reactivity order. The user-friendly protocol involves a series of steps to deconvolute and address chemoselectivity, site-selectivity, and modularity. Also, it delivers ordered immobilization and analytically pure probe-tagged proteins. Besides, the methodology provides access to antibody-drug conjugate (ADC), which exhibits highly selective anti-proliferative activity towards HER-2 expressing SKBR-3 breast cancer cells.
Collapse
Affiliation(s)
- Srinivasa Rao Adusumalli
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, India
| | - Dattatraya Gautam Rawale
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, India
| | - Kalyani Thakur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, India
| | - Landa Purushottam
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, India
| | - Neelesh C Reddy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, India
| | - Neetu Kalra
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, India
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, India
| |
Collapse
|
34
|
Rhodium‐Catalyzed Synthesis of Heteroarylselenyl Esters from Diheteroaryl Diselenides and Acid Fluorides. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
35
|
Reddy NC, Kumar M, Molla R, Rai V. Chemical methods for modification of proteins. Org Biomol Chem 2020; 18:4669-4691. [DOI: 10.1039/d0ob00857e] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The field of protein bioconjugation draws attention from stakeholders in chemistry, biology, and medicine. This review provides an overview of the present status, challenges, and opportunities for organic chemists.
Collapse
Affiliation(s)
- Neelesh C. Reddy
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- India
| | - Mohan Kumar
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- India
| | - Rajib Molla
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- India
| | - Vishal Rai
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- India
| |
Collapse
|
36
|
Kirkeby EK, Roberts AG. Design, synthesis and characterization of structurally dynamic cyclic N,S-acetals. Chem Commun (Camb) 2020; 56:9118-9121. [DOI: 10.1039/d0cc03503c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis, characterization and comparison of a series of electronically perturbed, cyclic N,S-acetals.
Collapse
|
37
|
Belén LH, Rangel-Yagui CDO, Beltrán Lissabet JF, Effer B, Lee-Estevez M, Pessoa A, Castillo RL, Farías JG. From Synthesis to Characterization of Site-Selective PEGylated Proteins. Front Pharmacol 2019; 10:1450. [PMID: 31920645 PMCID: PMC6930235 DOI: 10.3389/fphar.2019.01450] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Covalent attachment of therapeutic proteins to polyethylene glycol (PEG) is widely used for the improvement of its pharmacokinetic and pharmacological properties, as well as the reduction in reactogenicity and related side effects. This technique named PEGylation has been successfully employed in several approved drugs to treat various diseases, even cancer. Some methods have been developed to obtain PEGylated proteins, both in multiple protein sites or in a selected amino acid residue. This review focuses mainly on traditional and novel examples of chemical and enzymatic methods for site-selective PEGylation, emphasizing in N-terminal PEGylation, that make it possible to obtain products with a high degree of homogeneity and preserve bioactivity. In addition, the main assay methods that can be applied for the characterization of PEGylated molecules in complex biological samples are also summarized in this paper.
Collapse
Affiliation(s)
- Lisandra Herrera Belén
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| | - Carlota de Oliveira Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jorge F. Beltrán Lissabet
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| | - Brian Effer
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| | - Manuel Lee-Estevez
- Faculty of Health Sciences, Universidad Autónoma de Chile, Temuco, Chile
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rodrigo L. Castillo
- Department of Internal Medicine East, Faculty of Medicine, University of Chile, Santiago de Chile, Chile
| | - Jorge G. Farías
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
38
|
Arredondo V, Roa DE, Gutman ES, Huynh NO, Van Vranken DL. Total Synthesis of (±)-Brazilin Using [4 + 1] Palladium-Catalyzed Carbenylative Annulation. J Org Chem 2019; 84:14745-14759. [DOI: 10.1021/acs.joc.9b02343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Vanessa Arredondo
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Daniel E. Roa
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Eugene S. Gutman
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Nancy O. Huynh
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - David L. Van Vranken
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| |
Collapse
|
39
|
Chatterjee R, Mukherjee A, Santra S, Zyryanov GV, Majee A. Iron(III)-catalyzed synthesis of selenoesters from α-amino carbonyl derivatives at room temperature. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
40
|
|
41
|
Handoko, Satishkumar S, Panigrahi NR, Arora PS. Rational Design of an Organocatalyst for Peptide Bond Formation. J Am Chem Soc 2019; 141:15977-15985. [PMID: 31508947 DOI: 10.1021/jacs.9b07742] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amide bonds are ubiquitous in peptides, proteins, pharmaceuticals, and polymers. The formation of amide bonds is a straightforward process: amide bonds can be synthesized with relative ease because of the availability of efficient coupling agents. However, there is a substantive need for methods that do not require excess reagents. A catalyst that condenses amino acids could have an important impact by reducing the significant waste generated during peptide synthesis. We describe the rational design of a biomimetic catalyst that can efficiently couple amino acids featuring standard protecting groups. The catalyst design combines lessons learned from enzymes, peptide biosynthesis, and organocatalysts. Under optimized conditions, 5 mol % catalyst efficiently couples Fmoc amino acids without notable racemization. Importantly, we demonstrate that the catalyst is functional for the synthesis of oligopeptides on solid phase. This result is significant because it illustrates the potential of the catalyst to function on a substrate with a multitude of amide bonds, which may be expected to inhibit a hydrogen-bonding catalyst.
Collapse
Affiliation(s)
- Handoko
- Department of Chemistry New York University , New York , New York 10003 , United States
| | - Sakilam Satishkumar
- Department of Chemistry New York University , New York , New York 10003 , United States
| | - Nihar R Panigrahi
- Department of Chemistry New York University , New York , New York 10003 , United States
| | - Paramjit S Arora
- Department of Chemistry New York University , New York , New York 10003 , United States
| |
Collapse
|
42
|
Chow HY, Zhang Y, Matheson E, Li X. Ligation Technologies for the Synthesis of Cyclic Peptides. Chem Rev 2019; 119:9971-10001. [PMID: 31318534 DOI: 10.1021/acs.chemrev.8b00657] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclic peptides have been attracting a lot of attention in recent decades, especially in the area of drug discovery, as more and more naturally occurring cyclic peptides with diverse biological activities have been discovered. Chemical synthesis of cyclic peptides is essential when studying their structure-activity relationships. Conventional peptide cyclization methods via direct coupling have inherent limitations, like the susceptibility to epimerization at the C-terminus, poor solubility of fully protected peptide precursors, and low yield caused by oligomerization. In this regard, chemoselective ligation-mediated cyclization methods have emerged as effective strategies for cyclic peptide synthesis. The toolbox for cyclic peptide synthesis has been expanded substantially in the past two decades, allowing more efficient synthesis of cyclic peptides with various scaffolds and modifications. This Review will explore different chemoselective ligation technologies used for cyclic peptide synthesis that generate both native and unnatural peptide linkages. The practical issues and limitations of different methods will be discussed. The advance in cyclic peptide synthesis will benefit the biological and medicinal study of cyclic peptides, an important class of macrocycles with potentials in numerous fields, notably in therapeutics.
Collapse
Affiliation(s)
- Hoi Yee Chow
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China
| | - Yue Zhang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China
| | - Eilidh Matheson
- School of Chemistry , University of Edinburgh , Edinburgh EH8 9LE , United Kingdom
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , P. R. China
| |
Collapse
|
43
|
Purushottam L, Adusumalli SR, Singh U, Unnikrishnan VB, Rawale DG, Gujrati M, Mishra RK, Rai V. Single-site glycine-specific labeling of proteins. Nat Commun 2019; 10:2539. [PMID: 31182711 PMCID: PMC6557831 DOI: 10.1038/s41467-019-10503-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 05/16/2019] [Indexed: 11/09/2022] Open
Abstract
Labeling of native proteins invites interest from diverse segments of science. However, there remains the significant unmet challenge in precise labeling at a single site of a protein. Here, we report the site-specific labeling of natural or easy-to-engineer N-terminus Gly in proteins with remarkable efficiency and selectivity. The method generates a latent nucleophile from N-terminus imine that reacts with an aldehyde to deliver an aminoalcohol under physiological conditions. It differentiates N-Gly as a unique target amongst other proteinogenic amino acids. The method allows single-site labeling of proteins in isolated form and extends to lysed cells. It administers an orthogonal aldehyde group primed for late-stage tagging with an affinity tag, 19F NMR probe, and a fluorophore. A user-friendly protocol delivers analytically pure tagged proteins. The mild reaction conditions do not alter the structure and function of the protein. The cellular uptake of fluorophore-tagged insulin and its ability to activate the insulin-receptor mediated signaling remains unperturbed. Single-site labelling of proteins is desirable, e.g., for analytical purposes. Here, the authors developed a method in which they use an aldol-type reaction to modify proteins at N-terminal glycine residues in an efficient and selective manner, which is also applicable to cell lysates.
Collapse
Affiliation(s)
- Landa Purushottam
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, India
| | - Srinivasa Rao Adusumalli
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, India
| | - Usha Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, India
| | - V B Unnikrishnan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, India
| | - Dattatraya Gautam Rawale
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, India
| | - Mansi Gujrati
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, India
| | - Ram Kumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, India
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, India.
| |
Collapse
|
44
|
Dai Y, Weng J, George J, Chen H, Lin Q, Wang J, Royzen M, Zhang Q. Three-Component Protein Modification Using Mercaptobenzaldehyde Derivatives. Org Lett 2019; 21:3828-3833. [PMID: 31058515 DOI: 10.1021/acs.orglett.9b01294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A chemoselective primary amine modification strategy that enables the three-component, one-pot bioconjugation is described. The specifically designed, mercaptobenzaldehyde-based bifunctional linker achieves highly selective and robust amine labeling under biocompatible conditions. This linker demonstrates wide functional group tolerance and is simple to prepare, which allowed facile payload incorporation. Finally, our studies have shown that the introduction of linker does not impair the function of modified protein such as insulin.
Collapse
Affiliation(s)
- Yuanwei Dai
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Jiaping Weng
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Justin George
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Huan Chen
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Qishan Lin
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Jun Wang
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Maksim Royzen
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Qiang Zhang
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| |
Collapse
|
45
|
Adusumalli SR, Rawale DG, Singh U, Tripathi P, Paul R, Kalra N, Mishra RK, Shukla S, Rai V. Single-Site Labeling of Native Proteins Enabled by a Chemoselective and Site-Selective Chemical Technology. J Am Chem Soc 2018; 140:15114-15123. [PMID: 30336012 DOI: 10.1021/jacs.8b10490] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chemical biology research often requires precise covalent attachment of labels to the native proteins. Such methods are sought after to probe, design, and regulate the properties of proteins. At present, this demand is largely unmet due to the lack of empowering chemical technology. Here, we report a chemical platform that enables site-selective labeling of native proteins. Initially, a reversible intermolecular reaction places the "chemical linchpins" globally on all the accessible Lys residues. These linchpins have the capability to drive site-selective covalent labeling of proteins. The linchpin detaches within physiological conditions and capacitates the late-stage installation of various tags. The chemical platform is modular, and the reagent design regulates the site of modification. The linchpin is a multitasking group and facilitates purification of the labeled protein eliminating the requirement of additional chromatography tag. The methodology allows the labeling of a single protein in a mixture of proteins. The precise modification of an accessible residue in protein ensures that their structure remains unaltered. The enzymatic activity of myoglobin, cytochrome C, aldolase, and lysozyme C remains conserved after labeling. Also, the cellular uptake of modified insulin and its downstream signaling process remain unperturbed. The linchpin directed modification (LDM) provides a convenient route for the conjugation of a fluorophore and drug to a Fab and monoclonal antibody. It delivers trastuzumab-doxorubicin and trastuzumab-emtansine conjugates with selective antiproliferative activity toward Her-2 positive SKBR-3 breast cancer cells.
Collapse
|
46
|
Abstract
Synthetic proteins are expected to go beyond the boundary of recombinant DNA expression systems by being flexibly installed with site-specific natural or unnatural modification structures during synthesis. To enable protein chemical synthesis, peptide ligations provide effective strategies to assemble short peptide fragments obtained from solid-phase peptide synthesis (SPPS) into long peptides and proteins. In this regard, chemoselective peptide ligation represents a simple but powerful transformation realizing selective amide formation between the C-terminus and N-terminus of two side-chain-unprotected peptide fragments. These reactions are highly chemo- and regioselective to tolerate the side-chain functionalities present on the unprotected peptides, highly reactive to work with millmolar or submillimolar concentrations of the substrates, and operationally simple with mild conditions and accessible building blocks. This Account focuses on our work in the development of serine/threonine ligation (STL), which originates from a chemoselective reaction between an unprotected peptide with a C-terminal salicylaldehyde (SAL) ester and another unprotected peptide with an N-terminal serine or threonine residue. Mechanistically, STL involves imine capture, 5- endo-trig ring-chain tautomerization, O-to- N [1,5] acyl transfer to afford the N, O-benzylidene acetal-linked peptide, and acidolysis to regenerate the Xaa-Ser/Thr linkage (where Xaa is the amino acid) at the ligation site. The high abundance of serine and threonine residues (12.7%) in naturally occurring proteins and the good compatibility of STL with various C-terminal residues provide multiple choices for ligation sites. The requisite peptide C-terminal SAL esters can be prepared from the peptide fragments obtained from both Fmoc-SPPS and Boc-SPPS through four available methods (a safety-catch strategy based on phenolysis, direct coupling, ozonolysis, and the n + 1 strategy). In the synthesis of proteins (e.g., ACYP enzyme, MUC1 glycopeptide 40-mer to 80-mer, interleukin 25, and HMGA1a with variable post-translational modification patterns), both C-to- N and N-to- C sequential STL strategies have been developed through selection of temporal N-terminal protecting groups and proper design of the switch-on/off C-terminal SAL ester surrogate, respectively. In the synthesis of cyclic peptide natural products (e.g., daptomycin, teixobactin, cyclomontanin B, yunnanin C) and their analogues, intramolecular head-to-tail STL has been implemented on linear peptide SAL ester precursors containing four to 10 amino acid residues with good efficiency and minimized oligomerization. As a thiol-independent chemoselective ligation complementary to native chemical ligation, STL provides an alternative tool for the chemical synthesis of homogeneous proteins with site-specific and structure-defined modifications and cyclic peptide natural products, which lays foundation for chemical biology and medicinal studies of those molecules with biological importance and therapeutic potential.
Collapse
Affiliation(s)
- Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| |
Collapse
|
47
|
Du JJ, Xin LM, Lei Z, Zou SY, Xu WB, Wang CW, Zhang L, Gao XF, Guo J. Glycopeptide ligation via direct aminolysis of selenoester. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
48
|
Abstract
The facile rearrangement of "S-acyl isopeptides" to native peptide bonds via S,N-acyl shift is central to the success of native chemical ligation, the widely used approach for protein total synthesis. Proximity-driven amide bond formation via acyl transfer reactions in other contexts has proven generally less effective. Here, we show that under neutral aqueous conditions, "O-acyl isopeptides" derived from hydroxy-asparagine [aspartic acid-β-hydroxamic acid; Asp(β-HA)] rearrange to form native peptide bonds via an O,N-acyl shift. This process constitutes a rare example of an O,N-acyl shift that proceeds rapidly across a medium-size ring (t1/2 ∼ 15 min), and takes place in water with minimal interference from hydrolysis. In contrast to serine/threonine or tyrosine, which form O-acyl isopeptides only by the use of highly activated acyl donors and appropriate protecting groups in organic solvent, Asp(β-HA) is sufficiently reactive to form O-acyl isopeptides by treatment with an unprotected peptide-αthioester, at low mM concentration, in water. These findings were applied to an acyl transfer-based chemical ligation strategy, in which an unprotected N-terminal Asp(β-HA)-peptide and peptide-αthioester react under aqueous conditions to give a ligation product ultimately linked by a native peptide bond.
Collapse
|
49
|
Wang Y, Han L, Yuan N, Wang H, Li H, Liu J, Chen H, Zhang Q, Dong S. Traceless β-mercaptan-assisted activation of valinyl benzimidazolinones in peptide ligations. Chem Sci 2018; 9:1940-1946. [PMID: 29675240 PMCID: PMC5892131 DOI: 10.1039/c7sc04148a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/04/2018] [Indexed: 12/27/2022] Open
Abstract
Peptidyl thioesters or their surrogates with C-terminal β-branched hydrophobic amino acid residues usually exhibit poor reactivities in ligation reactions. Thus, activation using exogenous additives is required to ensure an acceptable reaction efficiency. Herein, we report a traceless ligation at Val-Xaa sites under mild thiol additive-free reaction conditions, whereby the introduction of β-mercaptan on the C-terminal valine residue effectively activates the otherwise unreactive N-acyl-benzimidazolinone (Nbz), and enables the use of a one-pot ligation-desulfurization strategy to generate the desired peptide products. The orthogonality between β-thiovaline-Nbz and a conventional alkyl thioester, as well as the convenient access to the former from readily available penicillamine, also allowed expedited assembly of the peptidic hormone β-LPH and hPTH analogues, based on a kinetically controlled one-pot three-segment ligation and desulfurization strategy.
Collapse
Affiliation(s)
- Yinglu Wang
- State Key Laboratory of Natural and Biomimetic Drugs , Department of Chemical Biology , School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China .
| | - Lin Han
- State Key Laboratory of Natural and Biomimetic Drugs , Department of Chemical Biology , School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China .
| | - Ning Yuan
- State Key Laboratory of Natural and Biomimetic Drugs , Department of Chemical Biology , School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China .
| | - Hanxuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs , Department of Chemical Biology , School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China .
| | - Hongxing Li
- State Key Laboratory of Natural and Biomimetic Drugs , Department of Chemical Biology , School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China .
| | - Jinrong Liu
- State Key Laboratory of Natural and Biomimetic Drugs , Department of Chemical Biology , School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China .
| | - Huan Chen
- Department of Chemistry , University at Albany , Albany , New York 12222 , USA .
| | - Qiang Zhang
- Department of Chemistry , University at Albany , Albany , New York 12222 , USA .
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs , Department of Chemical Biology , School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China .
| |
Collapse
|
50
|
Chen H, Xiao Y, Yuan N, Weng J, Gao P, Breindel L, Shekhtman A, Zhang Q. Coupling of sterically demanding peptides by β-thiolactone-mediated native chemical ligation. Chem Sci 2018; 9:1982-1988. [PMID: 29675245 PMCID: PMC5892351 DOI: 10.1039/c7sc04744d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/02/2018] [Indexed: 12/30/2022] Open
Abstract
The ligation of sterically demanding peptidyl sites such as those involving Val-Val and Val-Pro linkages has proven to be extremely challenging with conventional NCL methods that rely on exogenous thiol additives. Herein, we report an efficient β-thiolactone-mediated additive-free NCL protocol that enables the establishment of these connections in good yield. The rapid NCL was followed by in situ desulfurization. Reaction rates between β-thiolactones and conventional thioesters towards NCL were also investigated, and direct aminolysis was ruled out as a possible pathway. Finally, the potent cytotoxic cyclic-peptide axinastatin 1 has been prepared using the developed methodology.
Collapse
Affiliation(s)
- Huan Chen
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , NY 12222 , USA .
| | - Yunxian Xiao
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , NY 12222 , USA .
| | - Ning Yuan
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Beijing 100191 , China
| | - Jiaping Weng
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , NY 12222 , USA .
| | - Pengcheng Gao
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , NY 12222 , USA .
| | - Leonard Breindel
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , NY 12222 , USA
| | - Alexander Shekhtman
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , NY 12222 , USA
| | - Qiang Zhang
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , NY 12222 , USA .
| |
Collapse
|