1
|
Mashima T, Yamanaka M, Yoshida A, Kobayashi N, Kanaoka Y, Uchihashi T, Hirota S. Construction of ligand-binding controlled hemoprotein assemblies utilizing 3D domain swapping. Chem Commun (Camb) 2024; 60:9440-9443. [PMID: 39139060 DOI: 10.1039/d4cc03129f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Association-controllable hemoprotein assemblies were constructed from a fusion protein containing two c-type cytochrome units using 3D domain swapping. The hemoprotein assembly exhibited a dynamic exchange between cyclic and linear structures and could be regulated by carbon monoxide (CO) and imidazole binding.
Collapse
Affiliation(s)
- Tsuyoshi Mashima
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
- Medilux Research Center, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Masaru Yamanaka
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | - Atsuki Yoshida
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | - Naoya Kobayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | - Yui Kanaoka
- Department of Physics, Nagoya University, Nagoya, 464-8602, Japan
| | - Takayuki Uchihashi
- Department of Physics, Nagoya University, Nagoya, 464-8602, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, 444-0864, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
2
|
Sobczak JM, Barkovska I, Balke I, Rothen DA, Mohsen MO, Skrastina D, Ogrina A, Martina B, Jansons J, Bogans J, Vogel M, Bachmann MF, Zeltins A. Identifying Key Drivers of Efficient B Cell Responses: On the Role of T Help, Antigen-Organization, and Toll-like Receptor Stimulation for Generating a Neutralizing Anti-Dengue Virus Response. Vaccines (Basel) 2024; 12:661. [PMID: 38932390 PMCID: PMC11209419 DOI: 10.3390/vaccines12060661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
T help (Th), stimulation of toll-like receptors (pathogen-associated molecular patterns, PAMPs), and antigen organization and repetitiveness (pathogen-associated structural patterns, PASPs) were shown numerous times to be important in driving B-cell and antibody responses. In this study, we dissected the individual contributions of these parameters using newly developed "Immune-tag" technology. As model antigens, we used eGFP and the third domain of the dengue virus 1 envelope protein (DV1 EDIII), the major target of virus-neutralizing antibodies. The respective proteins were expressed alone or genetically fused to the N-terminal fragment of the cucumber mosaic virus (CMV) capsid protein-nCMV, rendering the antigens oligomeric. In a step-by-step manner, RNA was attached as a PAMP, and/or a universal Th-cell epitope was genetically added for additional Th. Finally, a PASP was added to the constructs by displaying the antigens highly organized and repetitively on the surface of CMV-derived virus-like particles (CuMV VLPs). Sera from immunized mice demonstrated that each component contributed stepwise to the immunogenicity of both proteins. All components combined in the CuMV VLP platform induced by far the highest antibody responses. In addition, the DV1 EDIII induced high levels of DENV-1-neutralizing antibodies only if displayed on VLPs. Thus, combining multiple cues typically associated with viruses results in optimal antibody responses.
Collapse
Affiliation(s)
- Jan M. Sobczak
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Irena Barkovska
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Ina Balke
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Dominik A. Rothen
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Mona O. Mohsen
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Dace Skrastina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Anete Ogrina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Byron Martina
- Artemis Bioservices, 2629 JD Delft, The Netherlands;
- Protinhi Therapeutics, 6534 AT Nijmegen, The Netherlands
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Janis Bogans
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| | - Monique Vogel
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Martin F. Bachmann
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, CH-3010 Bern, Switzerland; (D.A.R.); (M.O.M.); (M.V.); (M.F.B.)
- Department of BioMedical Research, University of Bern, CH-3008 Bern, Switzerland
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Andris Zeltins
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (I.B.); (I.B.); (D.S.); (A.O.); (J.J.); (J.B.); (A.Z.)
| |
Collapse
|
3
|
Ohara N, Kawakami N, Arai R, Adachi N, Ikeda A, Senda T, Miyamoto K. Fusion then fission: splitting and reassembly of an artificial fusion-protein nanocage. Chem Commun (Camb) 2024; 60:4605-4608. [PMID: 38586927 DOI: 10.1039/d4cc00115j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A split-protein system is a simple approach to introduce new termini which are useful as modification sites in protein engineering, but has been adapted mainly for monomeric proteins. Here we demonstrate the design of split subunits of the 60-mer artificial fusion-protein nanocage TIP60. The subunit fragments successfully reformed the cage structure in the same manner as prior to splitting. One of the newly introduced terminals at the interior surface can be modified using a tag peptide and green fluorescent protein. Therefore, the termini could serve as a versatile modification site for incorporating a wide variety of functional peptides and proteins.
Collapse
Affiliation(s)
- Naoya Ohara
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan.
| | - Norifumi Kawakami
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan.
| | - Ryoichi Arai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Naruhiko Adachi
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba 305-0801, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Akihito Ikeda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba 305-0801, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba 305-0801, Japan
| | - Kenji Miyamoto
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan.
| |
Collapse
|
4
|
Snoj J, Lapenta F, Jerala R. Preorganized cyclic modules facilitate the self-assembly of protein nanostructures. Chem Sci 2024; 15:3673-3686. [PMID: 38455016 PMCID: PMC10915844 DOI: 10.1039/d3sc06658d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 03/09/2024] Open
Abstract
The rational design of supramolecular assemblies aims to generate complex systems based on the simple information encoded in the chemical structure. Programmable molecules such as nucleic acids and polypeptides are particularly suitable for designing diverse assemblies and shapes not found in nature. Here, we describe a strategy for assembling modular architectures based on structurally and covalently preorganized subunits. Cyclization through spontaneous self-splicing of split intein and coiled-coil dimer-based interactions of polypeptide chains provide structural constraints, facilitating the desired assembly. We demonstrate the implementation of a strategy based on the preorganization of the subunits by designing a two-chain coiled-coil protein origami (CCPO) assembly that adopts a tetrahedral topology only when one or both subunit chains are covalently cyclized. Employing this strategy, we further design a 109 kDa trimeric CCPO assembly comprising 24 CC-forming segments. In this case, intein cyclization was crucial for the assembly of a concave octahedral scaffold, a newly designed protein fold. The study highlights the importance of preorganization of building modules to facilitate the self-assembly of higher-order supramolecular structures.
Collapse
Affiliation(s)
- Jaka Snoj
- Department of Synthetic Biology and Immunology, National Institute of Chemistry Hajdrihova 19 SI-1000 Ljubljana Slovenia
- Interdisciplinary Doctoral Program in Biomedicine, University of Ljubljana Kongresni trg 12 SI-1000 Ljubljana Slovenia
| | - Fabio Lapenta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry Hajdrihova 19 SI-1000 Ljubljana Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry Hajdrihova 19 SI-1000 Ljubljana Slovenia
- EN-FIST Centre of Excellence Trg OF 13 SI-1000 Ljubljana Slovenia
| |
Collapse
|
5
|
Khmelinskaia A, Bethel NP, Fatehi F, Antanasijevic A, Borst AJ, Lai SH, Wang JYJ, Mallik BB, Miranda MC, Watkins AM, Ogohara C, Caldwell S, Wu M, Heck AJR, Veesler D, Ward AB, Baker D, Twarock R, King NP. Local structural flexibility drives oligomorphism in computationally designed protein assemblies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562842. [PMID: 37905007 PMCID: PMC10614843 DOI: 10.1101/2023.10.18.562842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Many naturally occurring protein assemblies have dynamic structures that allow them to perform specialized functions. For example, clathrin coats adopt a wide variety of architectures to adapt to vesicular cargos of various sizes. Although computational methods for designing novel self-assembling proteins have advanced substantially over the past decade, most existing methods focus on designing static structures with high accuracy. Here we characterize the structures of three distinct computationally designed protein assemblies that each form multiple unanticipated architectures, and identify flexibility in specific regions of the subunits of each assembly as the source of structural diversity. Cryo-EM single-particle reconstructions and native mass spectrometry showed that only two distinct architectures were observed in two of the three cases, while we obtained six cryo-EM reconstructions that likely represent a subset of the architectures present in solution in the third case. Structural modeling and molecular dynamics simulations indicated that the surprising observation of a defined range of architectures, instead of non-specific aggregation, can be explained by constrained flexibility within the building blocks. Our results suggest that deliberate use of structural flexibility as a design principle will allow exploration of previously inaccessible structural and functional space in designed protein assemblies.
Collapse
|
6
|
Kurokawa M, Ohtsu T, Chatani E, Tamura A. Hyper Thermostability and Liquid-Crystal-Like Properties of Designed α-Helical Peptide Nanofibers. J Phys Chem B 2023; 127:8331-8343. [PMID: 37751540 DOI: 10.1021/acs.jpcb.3c03833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Structural and thermodynamic transitions of artificially designed α-helical nanofibers were investigated using eight peptide variants, including four peptides with amide-modified carboxyl termini (CB peptides) and four unmodified peptides (CF peptides). Temperature-dependent circular dichroism spectroscopy and differential scanning calorimetry showed that CB peptides exhibit thermostability up to 50 °C higher than CF peptides. As a result, one of the denaturation temperatures approached nearly 130 °C, which is exceptionally high for a biomacromolecule. Thermodynamic analysis and microscopy observations also showed that CB peptides undergo a thermal transition similar to the phase transition in liquid crystals. In addition, one of the peptides showed a sharp and highly cooperative transition with a small enthalpy change at around 25 °C, which was ascribed to a giga-bundle burst of the molecular assembly. These macroscopic changes in the thermostability and crystallinity of CB peptides may be attributed to an increased amphiphilicity of the molecule in the direction of the helix axis, originating from the microscopic modification of the carboxyl-terminus.
Collapse
Affiliation(s)
- Minami Kurokawa
- Graduate School of Science, Kobe University, 1-1 Rokkoudai, Nada, Kobe, 657-8501, Japan
| | - Tomoya Ohtsu
- Graduate School of Science, Kobe University, 1-1 Rokkoudai, Nada, Kobe, 657-8501, Japan
| | - Eri Chatani
- Graduate School of Science, Kobe University, 1-1 Rokkoudai, Nada, Kobe, 657-8501, Japan
| | - Atsuo Tamura
- Graduate School of Science, Kobe University, 1-1 Rokkoudai, Nada, Kobe, 657-8501, Japan
| |
Collapse
|
7
|
Mallik BB, Stanislaw J, Alawathurage TM, Khmelinskaia A. De Novo Design of Polyhedral Protein Assemblies: Before and After the AI Revolution. Chembiochem 2023; 24:e202300117. [PMID: 37014094 DOI: 10.1002/cbic.202300117] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023]
Abstract
Self-assembling polyhedral protein biomaterials have gained attention as engineering targets owing to their naturally evolved sophisticated functions, ranging from protecting macromolecules from the environment to spatially controlling biochemical reactions. Precise computational design of de novo protein polyhedra is possible through two main types of approaches: methods from first principles, using physical and geometrical rules, and more recent data-driven methods based on artificial intelligence (AI), including deep learning (DL). Here, we retrospect first principle- and AI-based approaches for designing finite polyhedral protein assemblies, as well as advances in the structure prediction of such assemblies. We further highlight the possible applications of these materials and explore how the presented approaches can be combined to overcome current challenges and to advance the design of functional protein-based biomaterials.
Collapse
Affiliation(s)
- Bhoomika Basu Mallik
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Jenna Stanislaw
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Tharindu Madhusankha Alawathurage
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Alena Khmelinskaia
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
- Current address: Department of Chemistry, Ludwig Maximillian University, 80539, Munich, Germany
| |
Collapse
|
8
|
Dowling QM, Park YJ, Gerstenmaier N, Yang EC, Wargacki A, Hsia Y, Fries CN, Ravichandran R, Walkey C, Burrell A, Veesler D, Baker D, King NP. Hierarchical design of pseudosymmetric protein nanoparticles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545393. [PMID: 37398374 PMCID: PMC10312784 DOI: 10.1101/2023.06.16.545393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Discrete protein assemblies ranging from hundreds of kilodaltons to hundreds of megadaltons in size are a ubiquitous feature of biological systems and perform highly specialized functions 1-3. Despite remarkable recent progress in accurately designing new self-assembling proteins, the size and complexity of these assemblies has been limited by a reliance on strict symmetry 4,5. Inspired by the pseudosymmetry observed in bacterial microcompartments and viral capsids, we developed a hierarchical computational method for designing large pseudosymmetric self-assembling protein nanomaterials. We computationally designed pseudosymmetric heterooligomeric components and used them to create discrete, cage-like protein assemblies with icosahedral symmetry containing 240, 540, and 960 subunits. At 49, 71, and 96 nm diameter, these nanoparticles are the largest bounded computationally designed protein assemblies generated to date. More broadly, by moving beyond strict symmetry, our work represents an important step towards the accurate design of arbitrary self-assembling nanoscale protein objects.
Collapse
Affiliation(s)
- Quinton M Dowling
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Neil Gerstenmaier
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Erin C Yang
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Adam Wargacki
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Yang Hsia
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Chelsea N Fries
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Carl Walkey
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Anika Burrell
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Dzuvor CKO, Shanbhag BK, Shen HH, Haritos VS, He L. An Ultrastable Self-Assembled Antibacterial Nanospears Made of Protein. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2302409. [PMID: 37120846 DOI: 10.1002/adma.202302409] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/21/2023] [Indexed: 06/15/2023]
Abstract
Protein-based nanomaterials have broad applications in the biomedical and bionanotechnological sectors owing to their outstanding properties such as high biocompatibility and biodegradability, structural stability, sophisticated functional versatility, and being environmentally benign. They have gained considerable attention in drug delivery, cancer therapeutics, vaccines, immunotherapies, biosensing, and biocatalysis. However, so far, in the battle against the increasing reports of antibiotic resistance and emerging drug-resistant bacteria, unique nanostructures of this kind are lacking, hindering their potential next-generation antibacterial agents. Here, the discovery of a class of supramolecular nanostructures with well-defined shapes, geometries, or architectures (termed "protein nanospears") based on engineered proteins, exhibiting exceptional broad-spectrum antibacterial activities, is reported. The protein nanospears are engineered via spontaneous cleavage-dependent or precisely tunable self-assembly routes using mild metal salt-ions (Mg2+ , Ca2+ , Na+ ) as a molecular trigger. The nanospears' dimensions collectively range from entire nano- to micrometer scale. The protein nanospears display exceptional thermal and chemical stability yet rapidly disassemble upon exposure to high concentrations of chaotropes (>1 mm sodium dodecyl sulfate (SDS)). Using a combination of biological assays and electron microscopy imaging, it is revealed that the nanospears spontaneously induce rapid and irreparable damage to bacterial morphology via a unique action mechanism provided by their nanostructure and enzymatic action, a feat inaccessible to traditional antibiotics. These protein-based nanospears show promise as a potent tool to combat the growing threats of resistant bacteria, inspiring a new way to engineer other antibacterial protein nanomaterials with diverse structural and dimensional architectures and functional properties.
Collapse
Affiliation(s)
- Christian K O Dzuvor
- Department of Chemical and Biological Engineering Monash University Clayton, Victoria, 3800, Australia
| | - Bhuvana K Shanbhag
- Department of Chemical and Biological Engineering Monash University Clayton, Victoria, 3800, Australia
| | - Hsin-Hui Shen
- Department of Chemical and Biological Engineering Monash University Clayton, Victoria, 3800, Australia
| | - Victoria S Haritos
- Department of Chemical and Biological Engineering Monash University Clayton, Victoria, 3800, Australia
| | - Lizhong He
- Department of Chemical and Biological Engineering Monash University Clayton, Victoria, 3800, Australia
| |
Collapse
|
10
|
Ohara N, Kawakami N, Arai R, Adachi N, Moriya T, Kawasaki M, Miyamoto K. Reversible Assembly of an Artificial Protein Nanocage Using Alkaline Earth Metal Ions. J Am Chem Soc 2023; 145:216-223. [PMID: 36541447 DOI: 10.1021/jacs.2c09537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein nanocages are of increasing interest for use as drug capsules, but the encapsulation and release of drug molecules at appropriate times require the reversible association and dissociation of the nanocages. One promising approach to addressing this challenge is the design of metal-dependent associating proteins. Such designed proteins typically have Cys or His residues at the protein surface for connecting the associating proteins through metal-ion coordination. However, Cys and His residues favor interactions with soft and borderline metal ions, such as Au+ and Zn2+, classified by the hard and soft acids and bases concept, restricting the types of metal ions available to drive association. Here, we show the alkaline earth (AE) metal-dependent association of the recently designed artificial protein nanocage TIP60, which is composed of 60-mer fusion proteins. The introduction of a Glu (hard base) mutation to the fusion protein (K67E mutant) prevented the formation of the 60-mer but formed the expected cage structure in the presence of Ca, Sr, or Ba ions (hard acids). Cryogenic electron microscopy (cryo-EM) analysis indicated a Ba ion at the interface of the subunits. Furthermore, we demonstrated the encapsulation and release of single-stranded DNA molecules using this system. Our results provide insights into the design of AE metal-dependent association and dissociation mechanisms for proteins.
Collapse
Affiliation(s)
- Naoya Ohara
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Norifumi Kawakami
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Ryoichi Arai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Ueda, Nagano 386-8567, Japan.,Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Naruhiko Adachi
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba 305-0801, Japan
| | - Toshio Moriya
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba 305-0801, Japan
| | - Masato Kawasaki
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba 305-0801, Japan
| | - Kenji Miyamoto
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
11
|
Kobayashi N, Arai R. Protein Cages and Nanostructures Constructed from Protein Nanobuilding Blocks. Methods Mol Biol 2023; 2671:79-94. [PMID: 37308639 DOI: 10.1007/978-1-0716-3222-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein cages and nanostructures are promising biocompatible medical materials, such as vaccines and drug carriers. Recent advances in designed protein nanocages and nanostructures have opened up cutting-edge applications in the fields of synthetic biology and biopharmaceuticals. A simple approach for constructing self-assembling protein nanocages and nanostructures is the design of a fusion protein composed of two different proteins forming symmetric oligomers. In this chapter, we describe the design and methods of protein nanobuilding blocks (PN-Blocks) using a dimeric de novo protein WA20 to construct self-assembling protein cages and nanostructures. A protein nanobuilding block (PN-Block), WA20-foldon, was developed by fusing an intermolecularly folded dimeric de novo protein WA20 and a trimeric foldon domain from bacteriophage T4 fibritin. The WA20-foldon self-assembled into several oligomeric nanoarchitectures in multiples of 6-mer. De novo extender protein nanobuilding blocks (ePN-Blocks) were also developed by fusing tandemly two WA20 with various linkers, to construct self-assembling cyclized and extended chain-like nanostructures. These PN-Blocks would be useful for the construction of self-assembling protein cages and nanostructures and their potential applications in the future.
Collapse
Affiliation(s)
- Naoya Kobayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Ryoichi Arai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Ueda, Nagano, Japan.
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, Japan.
| |
Collapse
|
12
|
Ma Y, Li X, Zhao R, Wu E, Du Q, Guo J, Wang L, Zhang F. Creating de novo peptide-based bioactivities: from assembly to origami. RSC Adv 2022; 12:25955-25961. [PMID: 36199601 PMCID: PMC9465703 DOI: 10.1039/d2ra03135c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
DNA origami has created complex structures of various spatial dimensions. However, their versatility in terms of function is limited due to the lower number of the intrinsic building blocks, i.e. nucleotides, compared with the number of amino acids. Therefore, protein origami has been proposed and demonstrated to precisely fabricate artificial functional nanostructures. Despite their hierarchical folded structures, chain-like peptides and DNA share obvious similarities in both structures and properties, especially in terms of chain hybridization; therefore, replacing DNA with peptides to create bioactivities not only has high theoretical feasibility but also provides a new bottom-up synthetic strategy. However, designing functionalities with tens to hundreds of peptide chains using the similar principle of DNA origami has not been reported, although the origami strategy holds great potential to generate more complex bioactivities. In this perspective review, we have reviewed the recent progress in and highlighted the advantages of peptide assembly and origami on the orientation of artificially created bioactivities. With the great potential of peptide origami, we appeal to develop user-friendly softwares in combination with artificial intelligence.
Collapse
Affiliation(s)
- Yuxing Ma
- Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325001 China
- Oujiang Laboratory Wenzhou Zhejiang 325000 P. R. China
- Inner Mongolia Key Laboratory of Tick-Borne Zoonotic Infectious Disease, Department of Medicine, Hetao College Bayannur 015000 China
| | - Xiaofang Li
- Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325001 China
- Oujiang Laboratory Wenzhou Zhejiang 325000 P. R. China
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Ruoyang Zhao
- Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325001 China
- Oujiang Laboratory Wenzhou Zhejiang 325000 P. R. China
| | - Enqi Wu
- Inner Mongolia Key Laboratory of Tick-Borne Zoonotic Infectious Disease, Department of Medicine, Hetao College Bayannur 015000 China
| | - Qiqige Du
- Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325001 China
- Oujiang Laboratory Wenzhou Zhejiang 325000 P. R. China
| | - Jun Guo
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology Shanghai 200093 P. R. China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Oral Disease, Stomatology Hospital, School of Biomedical Engineering, Guangzhou Medical University Guangzhou 511436 China
| | - Liping Wang
- Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325001 China
- Oujiang Laboratory Wenzhou Zhejiang 325000 P. R. China
| | - Feng Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325001 China
- Oujiang Laboratory Wenzhou Zhejiang 325000 P. R. China
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology Shanghai 200093 P. R. China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Oral Disease, Stomatology Hospital, School of Biomedical Engineering, Guangzhou Medical University Guangzhou 511436 China
| |
Collapse
|
13
|
Box-shaped ribozyme octamer formed by face-to-face dimerization of a pair of square-shaped ribozyme tetramers. J Biosci Bioeng 2022; 134:195-202. [PMID: 35810135 DOI: 10.1016/j.jbiosc.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022]
Abstract
Naturally occurring ribozymes with defined three-dimensional (3D) structures serve as promising platforms for the design and construction of artificial RNA nanostructures. We constructed a hexameric ribozyme nanostructure by face-to-face dimerization of a pair of triangular ribozyme trimers, unit RNAs of which were derived from the Tetrahymena group I ribozyme. In this study, we have expanded the dimerization strategy to a square-shaped ribozyme tetramer by introducing four pillar units. The resulting box-shaped nanostructures, which contained eight ribozyme units, can be assembled from either four or two components of their unit RNAs.
Collapse
|
14
|
Reddy MM, Bhandari P, Hati KC, Sandanaraj BS. Rational Design of Self-Assembling Artificial Proteins Utilizing a Micelle-Assisted Protein Labeling Technology (MAPLabTech): Testing the Scope. Chembiochem 2022; 23:e202100607. [PMID: 35181981 DOI: 10.1002/cbic.202100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/03/2022] [Indexed: 11/07/2022]
Abstract
Self-assembling artificial proteins (SAPs) have gained enormous interest in recent years due to their applications in different fields. Synthesis of well-defined monodisperse SAPs is accomplished predominantly through genetic methods. However, the last decade has witnessed the use of a few chemical technologies for this purpose. In particular, micelle-assisted protein labeling technology (MAPLabTech) has made huge progress in this area. The first generation MAPLabTech focused on site-specific labeling of the active-site residue of serine proteases to make SAPs. Further, this methodology was exploited for labeling of N-terminal residue of a globular protein to make functional SAPs. In this study, we describe the synthesis of novel SAPs by developing a chemical method for site-specific labeling of a surface-exposed cysteine residue of globular proteins. In addition, we disclose the synthesis of redox-sensitive SAPs and their systematic self-assembly and disassembly studies using size-exclusion chromatography. Altogether these studies further expand the scope of MAPLabTech in different fields such as vaccine design, targeted drug delivery, diagnostic imaging, biomaterials, and tissue engineering.
Collapse
Affiliation(s)
- Mullapudi Mohan Reddy
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, India
| | - Pavankumar Bhandari
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, India
| | - Kshitish Chandra Hati
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, India
| | - Britto S Sandanaraj
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, India
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
15
|
Self-Assembling Lectin Nano-Block Oligomers Enhance Binding Avidity to Glycans. Int J Mol Sci 2022; 23:ijms23020676. [PMID: 35054861 PMCID: PMC8775495 DOI: 10.3390/ijms23020676] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
Lectins, carbohydrate-binding proteins, are attractive biomolecules for medical and biotechnological applications. Many lectins have multiple carbohydrate recognition domains (CRDs) and strongly bind to specific glycans through multivalent binding effect. In our previous study, protein nano-building blocks (PN-blocks) were developed to construct self-assembling supramolecular nanostructures by linking two oligomeric proteins. A PN-block, WA20-foldon, constructed by fusing a dimeric four-helix bundle de novo protein WA20 to a trimeric foldon domain of T4 phage fibritin, self-assembled into several types of polyhedral nanoarchitectures in multiples of 6-mer. Another PN-block, the extender PN-block (ePN-block), constructed by tandemly joining two copies of WA20, self-assembled into cyclized and extended chain-type nanostructures. This study developed novel functional protein nano-building blocks (lectin nano-blocks) by fusing WA20 to a dimeric lectin, Agrocybe cylindracea galectin (ACG). The lectin nano-blocks self-assembled into various oligomers in multiples of 2-mer (dimer, tetramer, hexamer, octamer, etc.). The mass fractions of each oligomer were changed by the length of the linkers between WA20 and ACG. The binding avidity of the lectin nano-block oligomers to glycans was significantly increased through multivalent effects compared with that of the original ACG dimer. Lectin nano-blocks with high avidity will be useful for various applications, such as specific cell labeling.
Collapse
|
16
|
Sinha NJ, Langenstein MG, Pochan DJ, Kloxin CJ, Saven JG. Peptide Design and Self-assembly into Targeted Nanostructure and Functional Materials. Chem Rev 2021; 121:13915-13935. [PMID: 34709798 DOI: 10.1021/acs.chemrev.1c00712] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptides have been extensively utilized to construct nanomaterials that display targeted structure through hierarchical assembly. The self-assembly of both rationally designed peptides derived from naturally occurring domains in proteins as well as intuitively or computationally designed peptides that form β-sheets and helical secondary structures have been widely successful in constructing nanoscale morphologies with well-defined 1-d, 2-d, and 3-d architectures. In this review, we discuss these successes of peptide self-assembly, especially in the context of designing hierarchical materials. In particular, we emphasize the differences in the level of peptide design as an indicator of complexity within the targeted self-assembled materials and highlight future avenues for scientific and technological advances in this field.
Collapse
Affiliation(s)
- Nairiti J Sinha
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Matthew G Langenstein
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Christopher J Kloxin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States.,Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
17
|
Zhu J, Avakyan N, Kakkis AA, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Protein Assembly by Design. Chem Rev 2021; 121:13701-13796. [PMID: 34405992 PMCID: PMC9148388 DOI: 10.1021/acs.chemrev.1c00308] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are nature's primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.
Collapse
Affiliation(s)
| | | | - Albert A. Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Youjeong Na
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Chung-Jui Yu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
18
|
Hirota S, Mashima T, Kobayashi N. Use of 3D domain swapping in constructing supramolecular metalloproteins. Chem Commun (Camb) 2021; 57:12074-12086. [PMID: 34714300 DOI: 10.1039/d1cc04608j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Supramolecules, which are formed by assembling multiple molecules by noncovalent intermolecular interactions instead of covalent bonds, often show additional properties that cannot be exhibited by a single molecule. Supramolecules have evolved into molecular machines in the field of chemistry, and various supramolecular proteins are responsible for life activities in the field of biology. The design and creation of supramolecular proteins will lead to development of new enzymes, functional biomaterials, drug delivery systems, etc.; thus, the number of studies on the regulation of supramolecular proteins is increasing year by year. Several methods, including disulfide bond, metal coordination, and surface-surface interaction, have been utilized to construct supramolecular proteins. In nature, proteins have been shown to form oligomers by 3D domain swapping (3D-DS), a phenomenon in which a structural region is exchanged between molecules of the same protein. We have been studying the mechanism of 3D-DS and utilizing 3D-DS to construct supramolecular metalloproteins. Cytochrome c forms cyclic oligomers and polymers by 3D-DS, whereas other metalloproteins, such as various c-type cytochromes and azurin form small oligomers and myoglobin forms a compact dimer. We have also utilized 3D-DS to construct heterodimers with different active sites, a protein nanocage encapsulating a Zn-SO4 cluster in the internal cavity, and a tetrahedron with a designed building block protein. Protein oligomer formation was controlled for the 3D-DS dimer of a dimer-monomer transition protein. This article reviews our research on supramolecular metalloproteins.
Collapse
Affiliation(s)
- Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | - Tsuyoshi Mashima
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | - Naoya Kobayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
19
|
Er S, Laraib U, Arshad R, Sargazi S, Rahdar A, Pandey S, Thakur VK, Díez-Pascual AM. Amino Acids, Peptides, and Proteins: Implications for Nanotechnological Applications in Biosensing and Drug/Gene Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3002. [PMID: 34835766 PMCID: PMC8622868 DOI: 10.3390/nano11113002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Over various scientific fields in biochemistry, amino acids have been highlighted in research works. Protein, peptide- and amino acid-based drug delivery systems have proficiently transformed nanotechnology via immense flexibility in their features for attaching various drug molecules and biodegradable polymers. In this regard, novel nanostructures including carbon nanotubes, electrospun carbon nanofibers, gold nanoislands, and metal-based nanoparticles have been introduced as nanosensors for accurate detection of these organic compounds. These nanostructures can bind the biological receptor to the sensor surface and increase the surface area of the working electrode, significantly enhancing the biosensor performance. Interestingly, protein-based nanocarriers have also emerged as useful drug and gene delivery platforms. This is important since, despite recent advancements, there are still biological barriers and other obstacles limiting gene and drug delivery efficacy. Currently available strategies for gene therapy are not cost-effective, and they do not deliver the genetic cargo effectively to target sites. With rapid advancements in nanotechnology, novel gene delivery systems are introduced as nonviral vectors such as protein, peptide, and amino acid-based nanostructures. These nano-based delivery platforms can be tailored into functional transformation using proteins and peptides ligands based nanocarriers, usually overexpressed in the specified diseases. The purpose of this review is to shed light on traditional and nanotechnology-based methods to detect amino acids, peptides, and proteins. Furthermore, new insights into the potential of amino protein-based nanoassemblies for targeted drug delivery or gene transfer are presented.
Collapse
Affiliation(s)
- Simge Er
- Biochemistry Department, Faculty of Science, Ege University, Bornova-Izmir 35100, Turkey;
| | - Ushna Laraib
- Department of Pharmacy, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK;
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
20
|
Yamanaka M, Mashima T, Ogihara M, Okamoto M, Uchihashi T, Hirota S. Construction of ferritin hydrogels utilizing subunit-subunit interactions. PLoS One 2021; 16:e0259052. [PMID: 34731167 PMCID: PMC8565734 DOI: 10.1371/journal.pone.0259052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022] Open
Abstract
Various proteins form nanostructures exhibiting unique functions, making them attractive as next-generation materials. Ferritin is a hollow spherical protein that incorporates iron ions. Here, we found that hydrogels are simply formed from concentrated apoferritin solutions by acid denaturation and subsequent neutralization. The water content of the hydrogel was approximately 80%. The apoferritin hydrogel did not decompose in the presence of 1 M HCl, 2-mercaptoethanol, or methanol but was dissolved in the presence of 1 M NaOH, by heating at 80°C, or by treatment with trypsin or 6 M guanidine hydrochloride. The Young’s modulus of the hydrogel was 20.4 ± 12.1 kPa according to local indentation experimentes using atomic force microscopy, indicating that the hydrogel was relatively stiff. Transition electron microscopy measurements revealed that a fibrous network was constructed in the hydrogel. The color of the hydrogel became yellow-brown upon incubation in the presence of Fe3+ ions, indicating that the hydrogel adsorbed the Fe3+ ions. The yellow-brown color of the Fe3+-adsorbed hydrogel did not change upon incubation in pure water, whereas it became pale by incubating it in the presence of 100 mM ethylenediaminetetraacetic acid (EDTA). The apoferritin hydrogel also adsorbed Co2+ and Cu2+ ions and released them in the presence of EDTA, while it adsorbed less Ni2+ ions; more Fe3+ ions adsorbed to the apoferritin hydrogel than other metal ions, indicating that the hydrogel keeps the iron storage characteristic of ferritin. These results demonstrate a new property of ferritin: the ability to form a hydrogel that can adsorb/desorb metal ions, which may be useful in designing future biomaterials.
Collapse
Affiliation(s)
- Masaru Yamanaka
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tsuyoshi Mashima
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Michio Ogihara
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Mei Okamoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | | | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- * E-mail:
| |
Collapse
|
21
|
Obata J, Kawakami N, Tsutsumi A, Nasu E, Miyamoto K, Kikkawa M, Arai R. Icosahedral 60-meric porous structure of designed supramolecular protein nanoparticle TIP60. Chem Commun (Camb) 2021; 57:10226-10229. [PMID: 34523636 DOI: 10.1039/d1cc03114g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Supramolecular protein nanoparticles and nanocages have potential in a broad range of applications. Recently, we developed a uniform supramolecular protein nanoparticle, TIP60, symmmetrically self-assembled from fusion proteins of a pentameric Sm-like protein and a dimeric MyoX-coil domain. Herein, we report the icosahedral 60-meric structure of TIP60 solved using single-particle cryo-electron microscopy. Interestingly, the structure revealed 20 regular-triangle-like pores on the surface. TIP60 and its mutants have many modifiable sites on their exterior and interior surfaces. The TIP60 architecture will be useful in the development of biomedical and biochemical nanoparticles/nanocages for future applications.
Collapse
Affiliation(s)
- Junya Obata
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Ueda, Nagano 386-8567, Japan. .,Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Norifumi Kawakami
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Akihisa Tsutsumi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Erika Nasu
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Kenji Miyamoto
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryoichi Arai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Ueda, Nagano 386-8567, Japan. .,Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
22
|
Irumagawa S, Kobayashi K, Saito Y, Miyata T, Umetsu M, Kameda T, Arai R. Rational thermostabilisation of four-helix bundle dimeric de novo proteins. Sci Rep 2021; 11:7526. [PMID: 33824364 PMCID: PMC8024369 DOI: 10.1038/s41598-021-86952-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/22/2021] [Indexed: 11/29/2022] Open
Abstract
The stability of proteins is an important factor for industrial and medical applications. Improving protein stability is one of the main subjects in protein engineering. In a previous study, we improved the stability of a four-helix bundle dimeric de novo protein (WA20) by five mutations. The stabilised mutant (H26L/G28S/N34L/V71L/E78L, SUWA) showed an extremely high denaturation midpoint temperature (Tm). Although SUWA is a remarkably hyperstable protein, in protein design and engineering, it is an attractive challenge to rationally explore more stable mutants. In this study, we predicted stabilising mutations of WA20 by in silico saturation mutagenesis and molecular dynamics simulation, and experimentally confirmed three stabilising mutations of WA20 (N22A, N22E, and H86K). The stability of a double mutant (N22A/H86K, rationally optimised WA20, ROWA) was greatly improved compared with WA20 (ΔTm = 10.6 °C). The model structures suggested that N22A enhances the stability of the α-helices and N22E and H86K contribute to salt-bridge formation for protein stabilisation. These mutations were also added to SUWA and improved its Tm. Remarkably, the most stable mutant of SUWA (N22E/H86K, rationally optimised SUWA, ROSA) showed the highest Tm (129.0 °C). These new thermostable mutants will be useful as a component of protein nanobuilding blocks to construct supramolecular protein complexes.
Collapse
Affiliation(s)
- Shin Irumagawa
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan
| | - Kaito Kobayashi
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan
| | - Yutaka Saito
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), Tokyo, 169-8555, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Takeshi Miyata
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan
| | - Ryoichi Arai
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan.
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano, 390-8621, Japan.
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan.
| |
Collapse
|
23
|
Khmelinskaia A, Wargacki A, King NP. Structure-based design of novel polyhedral protein nanomaterials. Curr Opin Microbiol 2021; 61:51-57. [PMID: 33784513 DOI: 10.1016/j.mib.2021.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
Organizing matter at the atomic scale is a central goal of nanotechnology. Bottom-up approaches, in which molecular building blocks are programmed to assemble via supramolecular interactions, are a proven and versatile route to new and useful nanomaterials. Although a wide variety of molecules have been used as building blocks, proteins have several intrinsic features that present unique opportunities for designing nanomaterials with sophisticated functions. There has been tremendous recent progress in designing proteins to fold and assemble to highly ordered structures. Here we review the leading approaches to the design of closed polyhedral protein assemblies, highlight the importance of considering the assembly process itself, and discuss various applications and future directions for the field. We emphasize throughout the exciting opportunities presented by recent advances as well as challenges that remain.
Collapse
Affiliation(s)
- Alena Khmelinskaia
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Adam Wargacki
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Neil P King
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA.
| |
Collapse
|
24
|
Božič Abram S, Gradišar H, Aupič J, Round AR, Jerala R. Triangular in Vivo Self-Assembling Coiled-Coil Protein Origami. ACS Chem Biol 2021; 16:310-315. [PMID: 33476117 PMCID: PMC7901019 DOI: 10.1021/acschembio.0c00812] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Coiled-coil protein
origami (CCPO) polyhedra are designed self-assembling
nanostructures constructed from coiled coil (CC)-forming modules connected
into a single chain. For testing new CCPO building modules, simpler
polyhedra could be used that should maintain most features relevant
to larger scaffolds. We show the design and characterization of nanoscale
single-chain triangles, composed of six concatenated parallel CC dimer-forming
segments connected by flexible linker peptides. The polypeptides self-assembled
in bacteria in agreement with the design, and the shape of the polypeptides
was confirmed with small-angle X-ray scattering. Fusion with split-fluorescent
protein domains was used as a functional assay in bacteria, based
on the discrimination between the correctly folded and misfolded nanoscale
triangles comprising correct, mismatched, or truncated modules. This
strategy was used to evaluate the optimal size of linkers between
CC segments which comprised eight amino acid residues.
Collapse
Affiliation(s)
- Sabina Božič Abram
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Helena Gradišar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
- EN-FIST Centre of Excellence, 1000 Ljubljana, Slovenia
| | - Jana Aupič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Adam R. Round
- EMBL Grenoble outstation, 38042 Grenoble, France
- School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
- EN-FIST Centre of Excellence, 1000 Ljubljana, Slovenia
| |
Collapse
|
25
|
Lapenta F, Aupič J, Vezzoli M, Strmšek Ž, Da Vela S, Svergun DI, Carazo JM, Melero R, Jerala R. Self-assembly and regulation of protein cages from pre-organised coiled-coil modules. Nat Commun 2021; 12:939. [PMID: 33574245 PMCID: PMC7878516 DOI: 10.1038/s41467-021-21184-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/13/2021] [Indexed: 11/09/2022] Open
Abstract
Coiled-coil protein origami (CCPO) is a modular strategy for the de novo design of polypeptide nanostructures. CCPO folds are defined by the sequential order of concatenated orthogonal coiled-coil (CC) dimer-forming peptides, where a single-chain protein is programmed to fold into a polyhedral cage. Self-assembly of CC-based nanostructures from several chains, similarly as in DNA nanotechnology, could facilitate the design of more complex assemblies and the introduction of functionalities. Here, we show the design of a de novo triangular bipyramid fold comprising 18 CC-forming segments and define the strategy for the two-chain self-assembly of the bipyramidal cage from asymmetric and pseudo-symmetric pre-organised structural modules. In addition, by introducing a protease cleavage site and masking the interfacial CC-forming segments in the two-chain bipyramidal cage, we devise a proteolysis-mediated conformational switch. This strategy could be extended to other modular protein folds, facilitating the construction of dynamic multi-chain CC-based complexes. Coiled-coil protein origami is a strategy for the de novo design of polypeptide nanostructures based on coiled-coil dimer forming peptides, where a single chain protein folds into a polyhedral cage. Here, the authors design a single-chain triangular bipyramid and also demonstrate that the bipyramid can be self-assembled as a heterodimeric complex, comprising pre-defined subunits.
Collapse
Affiliation(s)
- Fabio Lapenta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Ljubljana, Slovenia
| | - Jana Aupič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Marco Vezzoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Žiga Strmšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | | | | | | | - Roberto Melero
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia. .,EN-FIST Centre of Excellence, Ljubljana, Slovenia.
| |
Collapse
|
26
|
Diamante A, Chaturbedy PK, Rowling PJE, Kumita JR, Eapen RS, McLaughlin SH, de la Roche M, Perez-Riba A, Itzhaki LS. Engineering mono- and multi-valent inhibitors on a modular scaffold. Chem Sci 2021; 12:880-895. [PMID: 33623657 PMCID: PMC7885266 DOI: 10.1039/d0sc03175e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Here we exploit the simple, ultra-stable, modular architecture of consensus-designed tetratricopeptide repeat proteins (CTPRs) to create a platform capable of displaying both single as well as multiple functions and with diverse programmable geometrical arrangements by grafting non-helical short linear binding motifs (SLiMs) onto the loops between adjacent repeats. As proof of concept, we built synthetic CTPRs to bind and inhibit the human tankyrase proteins (hTNKS), which play a key role in Wnt signaling and are upregulated in cancer. A series of mono-valent and multi-valent hTNKS binders was assembled. To fully exploit the modular scaffold and to further diversify the multi-valent geometry, we engineered the binding modules with two different formats, one monomeric and the other trimeric. We show that the designed proteins are stable, correctly folded and capable of binding to and inhibiting the cellular activity of hTNKS leading to downregulation of the Wnt pathway. Multivalency in both the CTPR protein arrays and the hTNKS target results in the formation of large macromolecular assemblies, which can be visualized both in vitro and in the cell. When delivered into the cell by nanoparticle encapsulation, the multivalent CTPR proteins displayed exceptional activity. They are able to inhibit Wnt signaling where small molecule inhibitors have failed to date. Our results point to the tremendous potential of the CTPR platform to exploit a range of SLiMs and assemble synthetic binding molecules with built-in multivalent capabilities and precise, pre-programmed geometries.
Collapse
Affiliation(s)
- Aurora Diamante
- Department of Pharmacology , University of Cambridge , Tennis Court Road , Cambridge CB2 1PD , UK . ;
| | - Piyush K Chaturbedy
- Department of Pharmacology , University of Cambridge , Tennis Court Road , Cambridge CB2 1PD , UK . ;
| | - Pamela J E Rowling
- Department of Pharmacology , University of Cambridge , Tennis Court Road , Cambridge CB2 1PD , UK . ;
| | - Janet R Kumita
- Department of Pharmacology , University of Cambridge , Tennis Court Road , Cambridge CB2 1PD , UK . ;
| | - Rohan S Eapen
- Department of Pharmacology , University of Cambridge , Tennis Court Road , Cambridge CB2 1PD , UK . ;
| | - Stephen H McLaughlin
- MRC Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge Biomedical Campus , Cambridge , CB2 0QH , UK
| | - Marc de la Roche
- Department of Biochemistry , University of Cambridge , Tennis Court Road , Cambridge CB2 1GA , UK
| | - Albert Perez-Riba
- Department of Pharmacology , University of Cambridge , Tennis Court Road , Cambridge CB2 1PD , UK . ;
| | - Laura S Itzhaki
- Department of Pharmacology , University of Cambridge , Tennis Court Road , Cambridge CB2 1PD , UK . ;
| |
Collapse
|
27
|
Xie C, Shimoyama H, Yamanaka M, Nagao S, Komori H, Shibata N, Higuchi Y, Shigeta Y, Hirota S. Experimental and theoretical study on converting myoglobin into a stable domain-swapped dimer by utilizing a tight hydrogen bond network at the hinge region. RSC Adv 2021; 11:37604-37611. [PMID: 35496441 PMCID: PMC9043842 DOI: 10.1039/d1ra06888a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022] Open
Abstract
Various factors, such as helical propensity and hydrogen bonds, control protein structures. A frequently used model protein, myoglobin (Mb), can perform 3D domain swapping, in which the loop at the hinge region is converted to a helical structure in the dimer. We have previously succeeded in obtaining monomer–dimer equilibrium in the native state by introducing a high α-helical propensity residue, Ala, to the hinge region. In this study, we focused on another factor that governs the protein structure, hydrogen bonding. X-ray crystal structures and thermodynamic studies showed that the myoglobin dimer was stabilized over the monomer when keeping His82 to interact with Lys79 and Asp141 through water moleclues and mutating Leu137, which was located close to the H-bond network at the dimer hinge region, to a hydrophilic amino acid (Glu or Asp). Molecular dynamics simulation studies confirmed that the number of H-bonds increased and the α-helices at the hinge region became more rigid for mutants with a tighter H-bond network, supporting the hypothesis that the myoglobin dimer is stabilized when the H-bond network at the hinge region is enhanced. This demonstrates the importance and utility of hydrogen bonds for designing a protein dimer from its monomer with 3D domain swapping. The tight H-bond network enhanced the helices at the hinge region and stabilized the myoglobin dimer, providing a unique example of using H-bonds in the design of a dimeric protein through 3D domain swapping.![]()
Collapse
Affiliation(s)
- Cheng Xie
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hiromitsu Shimoyama
- Division of Life Science, Center for Computational Sciences, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, 305-8577, Japan
| | - Masaru Yamanaka
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Satoshi Nagao
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hirofumi Komori
- Faculty of Education, Kagawa University, 1-1 Saiwai-cho, Takamatsu, Kagawa 760-8522, Japan
| | - Naoki Shibata
- Graduate School of Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yoshiki Higuchi
- Graduate School of Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yasuteru Shigeta
- Division of Life Science, Center for Computational Sciences, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, 305-8577, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
28
|
Han S, Kim YN, Jo G, Kim YE, Kim HM, Choi JM, Jung Y. Multivalent-Interaction-Driven Assembly of Discrete, Flexible, and Asymmetric Supramolecular Protein Nano-Prisms. Angew Chem Int Ed Engl 2020; 59:23244-23251. [PMID: 32856385 DOI: 10.1002/anie.202010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/25/2022]
Abstract
Current approaches to design monodisperse protein assemblies require rigid, tight, and symmetric interactions between oligomeric protein units. Herein, we introduce a new multivalent-interaction-driven assembly strategy that allows flexible, spaced, and asymmetric assembly between protein oligomers. We discovered that two polygonal protein oligomers (ranging from triangle to hexagon) dominantly form a discrete and stable two-layered protein prism nanostructure via multivalent interactions between fused binding pairs. We demonstrated that protein nano-prisms with long flexible peptide linkers (over 80 amino acids) between protein oligomer layers could be discretely formed. Oligomers with different structures could also be monodispersely assembled into two-layered but asymmetric protein nano-prisms. Furthermore, producing higher-order architectures with multiple oligomer layers, for example, 3-layered nano-prisms or nanotubes, was also feasible.
Collapse
Affiliation(s)
- Suyeong Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Yu-Na Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Gyunghee Jo
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, 34141, Korea
| | - Young Eun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Ho Min Kim
- Graduate School of Medical Science & Engineering, KAIST, Daejeon, 34141, Korea.,Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Korea
| | - Jeong-Mo Choi
- Natural Science Research Institute, KAIST, Daejeon, 34141, Korea.,Department of Chemistry, Busan National University, Busan, 46241, Korea
| | - Yongwon Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| |
Collapse
|
29
|
Han S, Kim Y, Jo G, Kim YE, Kim HM, Choi J, Jung Y. Multivalent‐Interaction‐Driven Assembly of Discrete, Flexible, and Asymmetric Supramolecular Protein Nano‐Prisms. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Suyeong Han
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Yu‐na Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Gyunghee Jo
- Biomedical Science and Engineering Interdisciplinary Program KAIST Daejeon 34141 Korea
| | - Young Eun Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Ho Min Kim
- Graduate School of Medical Science & Engineering KAIST Daejeon 34141 Korea
- Center for Biomolecular & Cellular Structure Institute for Basic Science (IBS) Daejeon 34126 Korea
| | - Jeong‐Mo Choi
- Natural Science Research Institute KAIST Daejeon 34141 Korea
- Department of Chemistry Busan National University Busan 46241 Korea
| | - Yongwon Jung
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| |
Collapse
|
30
|
Kim S, Yun J, Yoo H, Kim S, Kim HM, Lee HS. Metal-Mediated Protein Assembly Using a Genetically Incorporated Metal-Chelating Amino Acid. Biomacromolecules 2020; 21:5021-5028. [PMID: 33253537 DOI: 10.1021/acs.biomac.0c01194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many natural proteins function in oligomeric forms, which are critical for their sophisticated functions. The construction of protein assemblies has great potential for biosensors, enzyme catalysis, and biomedical applications. In designing protein assemblies, a critical process is to create protein-protein interaction (PPI) networks at defined sites of a target protein. Although a few methods are available for this purpose, most of them are dependent on existing PPIs of natural proteins to some extent. In this report, a metal-chelating amino acid, 2,2'-bipyridylalanine (BPA), was genetically introduced into defined sites of a monomeric protein and used to form protein oligomers. Depending on the number of BPAs introduced into the protein and the species of metal ions (Ni2+ and Cu2+), dimers or oligomers with different oligomerization patterns were formed by complexation with a metal ion. Oligomer sizes could also be controlled by incorporating two BPAs at different locations with varied angles to the center of the protein. When three BPAs were introduced, the monomeric protein formed a large complex with Ni2+. In addition, when Cu2+ was used for complex formation with the protein containing two BPAs, a linear complex was formed. The method proposed in this report is technically simple and generally applicable to various proteins with interesting functions. Therefore, this method would be useful for the design and construction of functional protein assemblies.
Collapse
Affiliation(s)
- Sanggil Kim
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 121-742, Republic of Korea
| | - Jeongwon Yun
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyunjung Yoo
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 121-742, Republic of Korea
| | - Sooin Kim
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 121-742, Republic of Korea
| | - Ho Min Kim
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Biomolecular & Cellular Structure, Institution for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 121-742, Republic of Korea
| |
Collapse
|
31
|
Arai R. Design of helical linkers for fusion proteins and protein-based nanostructures. Methods Enzymol 2020; 647:209-230. [PMID: 33482989 DOI: 10.1016/bs.mie.2020.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The construction of recombinant fusion/chimeric proteins has been widely used for expression of soluble proteins and protein purification in a variety of fields of protein engineering and biotechnology. Fusion proteins are constructed by the linking of two protein domains with a peptide linker. The selection of a linker sequence is important for the construction of stable and bioactive fusion proteins. Empirically designed linkers are generally classified into two categories according to their structural features: flexible linkers and rigid linkers. Rigid linkers with the α-helix-forming sequences A(EAAAK)nA (n=2-5) were first designed about two decades ago to control the distance between two protein domains and to reduce their interference. Thereafter, the helical linkers have been applied to the construction of many fusion proteins to improve expression and bioactivity. In addition, the design of fusion proteins that self-assemble into supramolecular complexes is useful for nanobiotechnology and synthetic biology. A protein that forms a self-assembling oligomer was fused by a rigid helical linker to another protein that forms another self-assembling oligomer, and the fusion protein symmetrically self-assembled into a designed protein nanoparticle or nanomaterial. Moreover, to construct chain-like polymeric nanostructures, extender protein nanobuilding blocks were designed by tandemly fusing two dimeric de novo proteins with helical or flexible linkers. The linker design of fusion proteins can affect conformation and dynamics of self-assembling nanostructures. The present review and methods focus on useful helical linkers to construct bioactive fusion proteins and protein-based nanostructures.
Collapse
Affiliation(s)
- Ryoichi Arai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Ueda, Nagano, Japan; Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, Japan.
| |
Collapse
|
32
|
Zhang W, Mo S, Liu M, Liu L, Yu L, Wang C. Rationally Designed Protein Building Blocks for Programmable Hierarchical Architectures. Front Chem 2020; 8:587975. [PMID: 33195088 PMCID: PMC7658299 DOI: 10.3389/fchem.2020.587975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/05/2020] [Indexed: 01/23/2023] Open
Abstract
Diverse natural/artificial proteins have been used as building blocks to construct a variety of well-ordered nanoscale structures over the past couple of decades. Sophisticated protein self-assemblies have attracted great scientific interests due to their potential applications in disease diagnosis, illness treatment, biomechanics, bio-optics and bio-electronics, etc. This review outlines recent efforts directed to the creation of structurally defined protein assemblies including one-dimensional (1D) strings/rings/tubules, two-dimensional (2D) planar sheets and three-dimensional (3D) polyhedral scaffolds. We elucidate various innovative strategies for manipulating proteins to self-assemble into desired architectures. The emergent applications of protein assemblies as versatile platforms in medicine and material science with improved performances have also been discussed.
Collapse
Affiliation(s)
- Wenbo Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanshan Mo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingwei Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Liu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Lanlan Yu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenxuan Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
33
|
Cai Y, Yu Q, Zhao H. Electrostatic assisted fabrication and dissociation of multi-component proteinosomes. J Colloid Interface Sci 2020; 576:90-98. [PMID: 32408164 DOI: 10.1016/j.jcis.2020.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 01/17/2023]
Abstract
Self-assembly of proteins into well-organized proteinosomes has attracted great interest due to the potential medical and biological applications of the structures. Herein, a new concept of electrostatic assisted fabrication of proteinosomes is proposed. The self-assembly is performed by using multi-step dialysis approach, where negatively charged bovine serum albumin-poly(N-isopropylacrylamide) (BSA-PNIPAM) bioconjugate and positively charged enzyme (lysozyme or trypsin) are initially dissolved in phosphate buffer (PB) solution at a high salt concentration, and subsequently the protein solution is dialyzed against PB solutions at low salt concentrations, resulting in the formation of biofunctional proteinosomes. Transmission electron microscopy (TEM), cryo-TEM and light scattering results all demonstrate the formation of hollow structures. The wall of a proteinosome is composed of BSA and enzyme (lysozyme or trypsin), and PNIPAM chains of the bioconjugate are in the corona stabilizing the structure. In comparison with the native enzymes, the enzyme molecules in the assemblies basically retain their bioactivities. The proteinosomes formed by BSA-PNIPAM and lysozyme can be dissociated in the presence of trypsin, and those self-assembled by BSA-PNIPAM and trypsin are able to be self-hydrolyzed, resulting in the dissociation of the structures in aqueous solution. The size and morphology changes of the proteinosomes in the hydrolysis are studied.
Collapse
Affiliation(s)
- Yaqian Cai
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Qianyu Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China.
| |
Collapse
|
34
|
Abstract
Recently an artificial protein named Pizza6 was reported, which possesses six identical tandem repeats and adopts a monomeric β -propeller fold with sixfold structural symmetry. Pizza2, a truncated form that consists of a double tandem repeat, self-assembles into a trimer reconstructing the same propeller architecture as Pizza6. The ability of pizza proteins to self-assemble to form complete propellers makes them interesting building blocks to engineer larger symmetrical protein complexes such as symmetric nanoparticles. Here we have explored the self-assembly of Pizza2 fused to homo-oligomerizing peptides. In total, we engineered five different fusion proteins, of which three appeared to assemble successfully into larger complexes. Further characterization of these proteins showed one monodisperse designer protein with a structure close to the intended design. This protein was further fused to eGFP to investigate functionalization of the nanoparticle. The fusion protein was stable and could be expressed in high yield, showing that Pizza-based nanoparticles may be further decorated with functional domains.
Collapse
|
35
|
Sun H, Li Y, Yu S, Liu J. Hierarchical Self-Assembly of Proteins Through Rationally Designed Supramolecular Interfaces. Front Bioeng Biotechnol 2020; 8:295. [PMID: 32426335 PMCID: PMC7212437 DOI: 10.3389/fbioe.2020.00295] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
With the increasing advances in the basic understanding of pathogenesis mechanism and fabrication of advanced biological materials, protein nanomaterials are being developed for their potential bioengineering research and biomedical applications. Among different fabrication strategies, supramolecular self-assembly provides a versatile approach to construct hierarchical nanostructures from polyhedral cages, filaments, tubules, monolayer sheets to even cubic crystals through rationally designed supramolecular interfaces. In this mini review, we will briefly recall recent progress in reconstituting protein interfaces for hierarchical self-assembly and classify by the types of designed protein-protein interactions into receptor-ligand recognition, electrostatic interaction, metal coordination, and non-specific interaction networks. Moreover, some attempts on functionalization of protein superstructures for bioengineering and/or biomedical applications are also shortly discussed. We believe this mini review will outline the stream of hierarchical self-assembly of proteins through rationally designed supramolecular interfaces, which would open minds in visualizing protein-protein recognition and assembly in living cells and organisms, and even constructing multifarious functional bionanomaterials.
Collapse
Affiliation(s)
- Hongcheng Sun
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Yan Li
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Shuangjiang Yu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
36
|
Cahyono RN, Yamanaka M, Nagao S, Shibata N, Higuchi Y, Hirota S. 3D domain swapping of azurin from Alcaligenes xylosoxidans. Metallomics 2020; 12:337-345. [PMID: 31956880 DOI: 10.1039/c9mt00255c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein oligomers have gained interest, owing to their increased knowledge in cells and promising utilization for future materials. Various proteins have been shown to 3D domain swap, but there has been no domain swapping report on a blue copper protein. Here, we found that azurin from Alcaligenes xylosoxidans oligomerizes by the procedure of 2,2,2-trifluoroethanol addition to Cu(i)-azurin at pH 5.0, lyophilization, and dissolution at pH 7.0, whereas it slightly oligomerizes when using Cu(ii)-azurin. The amount of high order oligomers increased with the addition of Cu(ii) ions to the dissolution process of a similar procedure for apoazurin, indicating that Cu(ii) ions enhance azurin oligomerization. The ratio of the absorbance at 460 nm to that at ∼620 nm of the azurin dimer (Abs460/Abs618 = 0.113) was higher than that of the monomer (Abs460/Abs622 = 0.067) and the EPR A‖ value of the dimer (5.85 mT) was slightly smaller than that of the monomer (5.95 mT), indicating a slightly more rhombic copper coordination for the dimer. The redox potential of the azurin dimer was 342 ± 5 mV vs. NHE, which was 50 mV higher than that of the monomer. According to X-ray crystal analysis, the azurin dimer exhibited a domain-swapped structure, where the N-terminal region containing three β-strands was exchanged between protomers. The copper coordination structure was tetrahedrally distorted in the azurin dimer, similar to that in the monomer; however, the Cu-O(Gly45) bond length was longer for the dimer (monomer, 2.46-2.59 Å; dimer, 2.98-3.25 Å). These results open the door for designing oligomers of blue copper proteins by domain swapping.
Collapse
Affiliation(s)
- Robby Noor Cahyono
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan. and Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Masaru Yamanaka
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | - Satoshi Nagao
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | - Naoki Shibata
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yoshiki Higuchi
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
37
|
Better together: building protein oligomers naturally and by design. Biochem Soc Trans 2020; 47:1773-1780. [PMID: 31803901 PMCID: PMC6925524 DOI: 10.1042/bst20190283] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
Abstract
Protein oligomers are more common in nature than monomers, with dimers being the most prevalent final structural state observed in known structures. From a biological perspective, this makes sense as it conserves vital molecular resources that may be wasted simply by generating larger single polypeptide units, and allows new features such as cooperativity to emerge. Taking inspiration from nature, protein designers and engineers are now building artificial oligomeric complexes using a variety of approaches to generate new and useful supramolecular protein structures. Oligomerisation is thus offering a new approach to sample structure and function space not accessible through simply tinkering with monomeric proteins.
Collapse
|
38
|
Kimura N, Mochizuki K, Umezawa K, Hecht MH, Arai R. Hyperstable De Novo Protein with a Dimeric Bisecting Topology. ACS Synth Biol 2020; 9:254-259. [PMID: 31951376 DOI: 10.1021/acssynbio.9b00501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, we designed and assembled protein nanobuilding blocks (PN-Blocks) from an intermolecularly folded dimeric de novo protein called WA20. Using this dimeric 4-helix bundle, we constructed a series of self-assembling supramolecular nanostructures including polyhedra and chain-type complexes. Here we describe the stabilization of WA20 by designing mutations that stabilize the helices and hydrophobic core. The redesigned proteins denature with substantially higher midpoints, with the most stable variant, called Super WA20 (SUWA), displaying an extremely high midpoint (Tm = 122 °C), much higher than the Tm of WA20 (75 °C). The crystal structure of SUWA reveals an intermolecularly folded dimer with bisecting U topology, similar to the parental WA20 structure, with two long α-helices of a protomer intertwined with the helices of another protomer. Molecular dynamics simulations demonstrate that the redesigned hydrophobic core in the center of SUWA significantly suppresses the deformation of helices observed in the same region of WA20, suggesting this is a critical factor stabilizing the SUWA structure. This hyperstable de novo protein is expected to be useful as nanoscale pillars of PN-Block components in new types of self-assembling nanoarchitectures.
Collapse
Affiliation(s)
- Naoya Kimura
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Kenji Mochizuki
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
- Institute for Fiber Engineering, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Koji Umezawa
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano 390-8621, Japan
- Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Michael H. Hecht
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Ryoichi Arai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano 390-8621, Japan
- Department of Supramolecular Complexes, Research Center for Fungal and Microbial Dynamism, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
39
|
Hirayama S, Oohora K, Uchihashi T, Hayashi T. Thermoresponsive Micellar Assembly Constructed from a Hexameric Hemoprotein Modified with Poly( N-isopropylacrylamide) toward an Artificial Light-Harvesting System. J Am Chem Soc 2020; 142:1822-1831. [PMID: 31904965 DOI: 10.1021/jacs.9b10080] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Artificial protein assemblies inspired by nature have significant potential in development of emergent functional materials. In order to construct an artificial protein assembly, we employed a mutant of a thermostable hemoprotein, hexameric tyrosine-coordinated heme protein (HTHP), as a building block. The HTHP mutant which has cysteine residues introduced on the bottom surface of its columnar structure was reacted with maleimide-tethering thermoresponsive poly(N-isopropylacrylamide), PNIPAAm, to generate the protein assembly upon heating. The site-specific modification of the cysteine residues with PNIPAAm on the protein surface was confirmed by SDS-PAGE and analytical size exclusion chromatography (SEC). The PNIPAAm-modified HTHP (PNIPAAm-HTHP) is found to provide a 43 nm spherical structure at 60 °C, and the structural changes observed between the assembled and the disassembled forms were duplicated at least five times. High-speed atomic force microscopic measurements of the micellar assembly supported by cross-linkage with glutaraldehyde indicate that the protein matrices are located on the surface of the sphere and cover the inner PNIPAAm core. Furthermore, substitution of heme with a photosensitizer, Zn protoporphyrin IX (ZnPP), in the micellar assembly provides an artificial light-harvesting system. Photochemical measurements of the ZnPP-substituted micellar assembly demonstrate that energy migration among the arrayed ZnPP molecules occurs within the range of several tens of picoseconds. Our present work represents the first example of an artificial light-harvesting system based on an assembled hemoprotein oligomer structure to replicate natural light-harvesting systems.
Collapse
Affiliation(s)
| | | | - Takayuki Uchihashi
- Department of Physics , Nagoya University , Nagoya 464-8602 , Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS) , Okazaki 444-8787 , Japan
| | | |
Collapse
|
40
|
Wang T, Fan X, Xu J, Li R, Yan X, Liu S, Jiang X, Li F, Liu J. Giant Proteinosomes As Scaffolds for Light Harvesting. ACS Macro Lett 2019; 8:1128-1132. [PMID: 35619446 DOI: 10.1021/acsmacrolett.9b00545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Based on an interfacial assembly strategy, a giant proteinosome was successfully fabricated by using protein-surfactant as building blocks, which formed a thin protein layer as a membrane. This approach of making protein assemblies was very facile, and it was very convenient to remove the templates of oil and get water-filled proteinosomes by dialysis. Through modifying acceptor and donor chromophores on the protein monomers, an efficient artificial light-harvesting system was successfully fabricated on the proteinosome, which was a scaffold for efficient light harvesting. Furthermore, the on-off switchable energy transfer was realized by protein folding and unfolding. The efficient artificial light-harvesting systems we designed as the potential platforms could be utilized for biomaterials.
Collapse
Affiliation(s)
- Tingting Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xiaotong Fan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jiayun Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Ruyu Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xu Yan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Shengda Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xiaojia Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
41
|
Shiga S, Yamanaka M, Fujiwara W, Hirota S, Goda S, Makabe K. Domain-Swapping Design by Polyproline Rod Insertion. Chembiochem 2019; 20:2454-2457. [PMID: 31094059 DOI: 10.1002/cbic.201900179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 12/19/2022]
Abstract
During domain swapping, proteins mutually interconvert structural elements to form a di-/oligomer. Engineering this process by design is important for creating a higher order protein assembly with minimal modification. Herein, a simple design strategy is shown for domain-swapping formation by loop deletion and insertion of a polyproline rod. Crystal structures revealed the formation of the domain-swapped dimers and polyproline portion formed a polyproline II (PPII) structure. Small-angle X-ray scattering demonstrated that an extended orientation of domain-swapped dimer was retained in solution. It is found that a multiple of three of inserting proline residue is favored for domain swapping because of the helical nature of PPII. The rigid nature of the polyproline rod enables precise control of the interdomain distance and orientation.
Collapse
Affiliation(s)
- Shota Shiga
- Graduate School of Science and Engineering, Yamagata University, Jyonan 4-3-16, Yonezawa, Yamagata, 992-8510, Japan
| | - Masaru Yamanaka
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Wataru Fujiwara
- Graduate School of Science and Engineering, Yamagata University, Jyonan 4-3-16, Yonezawa, Yamagata, 992-8510, Japan
| | - Shun Hirota
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Shuichiro Goda
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Koki Makabe
- Graduate School of Science and Engineering, Yamagata University, Jyonan 4-3-16, Yonezawa, Yamagata, 992-8510, Japan
| |
Collapse
|
42
|
Abstract
Capsid of tomato bushy stunt virus consists of an outer coat protein shell decorated on an internal skeleton comprising a β-annulus motif. We mimicked this capsid structure with our artificial viral capsid dressed up with protein. We synthesized the β-annulus peptide bearing a Cys at the C-terminal side and linked it with Cys34 of the human serum albumin (HSA) via a bismaleimide linker. The β-annulus peptide-HSA conjugate self-assembled into spherical structures of a 50-70 nm size range in the Tris-HCl buffer, with the ζ-potential of assemblies of such conjugate revealing that HSA proteins were displayed on the outer surface of the artificial viral capsid. Interestingly, the critical aggregation concentration (CAC) of the conjugate in the Tris-HCl buffer at 25 °C was approximately 0.01 μM, or 1/2500 lower than that of the unmodified β-annulus peptides, suggesting that the artificial viral capsids were stabilized via HSA modification. The present strategy of constructing protein nanocapsule by self-assembly of a β-annulus peptide-protein conjugate is simpler than that of previously reported protein nanocapsules.
Collapse
|
43
|
Miyamoto T, Hayashi Y, Yoshida K, Watanabe H, Uchihashi T, Yonezawa K, Shimizu N, Kamikubo H, Hirota S. Construction of a Quadrangular Tetramer and a Cage-Like Hexamer from Three-Helix Bundle-Linked Fusion Proteins. ACS Synth Biol 2019; 8:1112-1120. [PMID: 30966743 DOI: 10.1021/acssynbio.9b00019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Self-assembled protein nanostructures have gained interest, owing to their potential applications in biomaterials; however, successful design and construction of protein nanostructures are limited. Herein, we constructed fusion protein 1 by linking the C-terminus of a dimerization domain and the N-terminus of another dimerization domain with a three-helix bundle protein, where it self-assembled mainly into tetramers. By replacing the C-terminal dimerization domain of 1 with a trimerization domain (fusion protein 2), hexamers were mainly obtained. According to ab initio structural models reconstructed from the small-angle X-ray scattering data, the tetramer of 1 and hexamer of 2 adopted quadrangle and cage-like structures, respectively, although they were combinations of different conformations. High-speed atomic force microscopy observations indicated that the tetramer and hexamer exhibit conformational dynamics. These results show that the present method utilizing three-helix bundle-linked fusion proteins is useful in the construction of protein nanostructures.
Collapse
Affiliation(s)
- Takaaki Miyamoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yugo Hayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Keito Yoshida
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hiroki Watanabe
- Exploratory Research Center on Life and Living Systems, Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems, Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Physics, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Kento Yonezawa
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Nobutaka Shimizu
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Hironari Kamikubo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
44
|
Hirota S. Oligomerization of cytochrome c, myoglobin, and related heme proteins by 3D domain swapping. J Inorg Biochem 2019; 194:170-179. [DOI: 10.1016/j.jinorgbio.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
|
45
|
Abstract
![]()
Ordered
protein assemblies are attracting interest as next-generation
biomaterials with a remarkable range of structural and functional
properties, leading to potential applications in biocatalysis, materials
templating, drug delivery and vaccine development. This Review covers
ordered protein assemblies including protein nanowires/nanofibrils,
nanorings, nanotubes, designed two- and three-dimensional ordered
protein lattices and protein-like cages including polyhedral virus-like
cage structures. The main focus is on designed ordered protein assemblies,
in which the spatial organization of the proteins is controlled by
tailored noncovalent interactions (including metal ion binding interactions,
electrostatic interactions and ligand–receptor interactions
among others) or by careful design of modified (mutant) proteins or de novo constructs. The modification of natural protein
assemblies including bacterial S-layers and cage-like and rod-like
viruses to impart novel function, e.g. enzymatic activity, is also
considered. A diversity of structures have been created using distinct
approaches, and this Review provides a summary of the state-of-the-art
in the development of these systems, which have exceptional potential
as advanced bionanomaterials for a diversity of applications.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry , University of Reading , Whiteknights , Reading RG6 6AD , United Kingdom
| |
Collapse
|
46
|
Hirabayashi J, Arai R. Lectin engineering: the possible and the actual. Interface Focus 2019; 9:20180068. [PMID: 30842871 DOI: 10.1098/rsfs.2018.0068] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2018] [Indexed: 12/19/2022] Open
Abstract
Lectins are a widespread group of sugar-binding proteins occurring in all types of organisms including animals, plants, bacteria, fungi and even viruses. According to a recent report, there are more than 50 lectin scaffolds (∼Pfam), for which three-dimensional structures are known and sugar-binding functions have been confirmed in the literature, which far exceeds our view in the twentieth century (Fujimoto et al. 2014 Methods Mol. Biol. 1200, 579-606 (doi:10.1007/978-1-4939-1292-6_46)). This fact suggests that new lectins will be discovered either by a conventional screening approach or just by chance. It is also expected that new lectin domains including those found in enzymes as carbohydrate-binding modules will be generated in the future through evolution, although this has never been attempted on an experimental level. Based on the current state of the art, various methods of lectin engineering are available, by which lectin specificity and/or stability of a known lectin scaffold can be improved. However, the above observation implies that any protein scaffold, including those that have never been described as lectins, may be modified to acquire a sugar-binding function. In this review, possible approaches to confer sugar-binding properties on synthetic proteins and peptides are described.
Collapse
Affiliation(s)
- Jun Hirabayashi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Ryoichi Arai
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan.,Department of Supramolecular Complexes, Research Center for Fungal and Microbial Dynamism, Shinshu University, 8304, Minamiminowa, Kamiina, Nagano 399-4598, Japan
| |
Collapse
|
47
|
Taylor LLK, Riddell IA, Smulders MMJ. Selbstorganisation von funktionellen diskreten dreidimensionalen Architekturen in Wasser. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lauren L. K. Taylor
- School of Chemistry; University of Manchester; Oxford Road M13 9PL Großbritannien
| | - Imogen A. Riddell
- School of Chemistry; University of Manchester; Oxford Road M13 9PL Großbritannien
| | - Maarten M. J. Smulders
- Laboratory of Organic Chemistry; Wageningen University, P.O. Box 8026; 6700EG Wageningen Niederlande
| |
Collapse
|
48
|
Taylor LLK, Riddell IA, Smulders MMJ. Self-Assembly of Functional Discrete Three-Dimensional Architectures in Water. Angew Chem Int Ed Engl 2018; 58:1280-1307. [DOI: 10.1002/anie.201806297] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Indexed: 01/01/2023]
Affiliation(s)
| | - Imogen A. Riddell
- School of Chemistry; University of Manchester; Oxford Road M13 9PL UK
| | - Maarten M. J. Smulders
- Laboratory of Organic Chemistry; Wageningen University, P.O. Box 8026; 6700EG Wageningen The Netherlands
| |
Collapse
|
49
|
Gómez-González J, Peña DG, Barka G, Sciortino G, Maréchal JD, Vázquez López M, Vázquez ME. Directed Self-Assembly of Trimeric DNA-Bindingchiral Miniprotein Helicates. Front Chem 2018; 6:520. [PMID: 30425980 PMCID: PMC6218460 DOI: 10.3389/fchem.2018.00520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/09/2018] [Indexed: 01/19/2023] Open
Abstract
We propose that peptides are highly versatile platforms for the precise design of supramolecular metal architectures, and particularly, for the controlled assembly of helicates. In this context, we show that the bacteriophage T4 Fibritin foldon (T4Ff) can been engineered on its N-terminus with metal-chelating 2,2'-bipyridine units that stereoselectively assemble in the presence of Fe(II) into parallel, three-stranded peptide helicates with preferred helical orientation. Modeling studies support the proposed self-assembly and the stability of the final helicate. Furthermore, we show that these designed mini-metalloproteins selectively recognize three-way DNA junctions over double-stranded DNA.
Collapse
Affiliation(s)
- Jacobo Gómez-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Diego G Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ghofrane Barka
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola, Spain.,Dipartimento di Chimica e Farmacia, Università di Sassari, Sassari, Italy
| | | | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - M Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
50
|
Sandanaraj BS, Reddy MM, Bhandari PJ, Kumar S, Aswal VK. Rational Design of Supramolecular Dynamic Protein Assemblies by Using a Micelle-Assisted Activity-Based Protein-Labeling Technology. Chemistry 2018; 24:16085-16096. [DOI: 10.1002/chem.201802824] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Britto S. Sandanaraj
- Department of Chemistry & Biology; Indian Institute of Science Education and Research (IISER); Pune 411 008 India
| | - Mullapudi Mohan Reddy
- Department of Chemistry & Biology; Indian Institute of Science Education and Research (IISER); Pune 411 008 India
| | | | - Sugam Kumar
- Solid State Physics Division; Bhabha Atomic Research Centre (BARC); Mumbai 400085 India
| | - Vinod K. Aswal
- Solid State Physics Division; Bhabha Atomic Research Centre (BARC); Mumbai 400085 India
| |
Collapse
|