1
|
Cheng H, Zhang Z, Zhang L, Liu F, Deng J, Hua M, Cheng Y, Li H, Liu J, Zhu W. Crystal-Plane-Engineered TiO 2-Anchored Vanadium Single Atoms and Clusters for Boosting Ultradeep Aerobic Oxidative Desulfurization of Diesel. Inorg Chem 2024; 63:1488-1498. [PMID: 38175157 DOI: 10.1021/acs.inorgchem.3c04233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The crystal plane effect has gained extensive attention in heterogeneous catalysis reactions; however, it is far from being systematically probed in titanium dioxide (TiO2)-supported vanadium catalysts. Herein, a series of vanadium (V) single atoms and clusters anchored on TiO2 with different crystal planes was fabricated by an improved "top-down" protocol. The dispersion state, electronic structure, and redox properties of the V single-atom and VOx cluster-supported catalysts were systematically analyzed by a series of characterization methods, including X-ray absorption near edge structure (XANES) and density functional theory (DFT) calculations, and their catalytic performances were examined for aerobic oxidative desulfurization (AODS) of 4,6-dimethyl-dibenzothiophen (4,6-DMDBT) with O2 as the oxidant. The results unveiled that the synergistic effect between the V single atom and the VOx cluster perceptibly promoted the catalytic performances of VOx/TiO2 samples. Therein, VOx/TiO2-(001) shows the lowest apparent activation energy (Ea) value of 46.3 kJ/mol and the optimal AODS performance with complete 4,6-DMDBT conversion to 4,6-dimethyldibenzothiophene sulfone (4,6-DMDBTO2) within 60 min at 120 °C as compared with VOx/TiO2-(101) (81.9 kJ/mol and 180 min) and VOx/TiO2-(100) (68.0 kJ/mol and 240 min), which should be attributed to its higher V5+/V4+ ratio, the optimal redox behavior of the V species, the moderate adsorption energy between 4,6-DMDBT and VOx active centers, and the synthetic effect of V single atoms and VOx clusters. Moreover, VOx/TiO2-(001) exhibits robust durability in seven cycles of reuse, showcasing the potential for practical applications in the future.
Collapse
Affiliation(s)
- Huifang Cheng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Ziteng Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Lu Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Feng Liu
- SINOPEC Research Institute of Petroleum Processing Co., Ltd, Beijing 100083, P. R. China
| | - Jianlin Deng
- School of Chemical Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying 257061, P. R. China
| | - Mingqing Hua
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Ying Cheng
- Department of Environmental Engineering, Hebei University of Environmental Engineering, Qinhuangdao 066102, P. R. China
| | - Huaming Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jixing Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
- College of Chemical Engineering and Environment, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| |
Collapse
|
2
|
Din NU, Le D, Rahman TS. Computational screening of chemically active metal center in coordinated dipyridyl tetrazine network. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:154001. [PMID: 36799354 DOI: 10.1088/1361-648x/acb8f3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Creation, stabilization, characterization, and control of single transition metal (TM) atoms may lead to significant advancement of the next-generation catalyst. Metal organic network (MON) in which single TM atoms are coordinated and separated by organic ligands is a promising class of material that may serve as a single atom catalyst. Our density functional theory-based calculations of MONs in which dipyridyl tetrazine (DPTZ) ligands coordinate with a TM atom to form linear chains leads to two types of geometries of the chains. Those with V, Cr, Mo, Fe, Co, Pt, or Pd atoms at the coordination center are planar while those with Au, Ag, Cu, or Ni are non-planar. The formation energies of the chains are high (∼2.0-7.9 eV), suggesting that these MON can be stabilized. Moreover, the calculated adsorption energies of CO and O2on the metal atom at center of the chains with the planar configuration lie in the range 1.0-3.0 eV for V, Cr, Mo, Fe, and Co at the coordination center, paving the way for future studies of CO oxidation on TM-DPTZ chains with the above five atoms at the coordination center.
Collapse
Affiliation(s)
- Naseem Ud Din
- Department of Physics, University of Central Florida, Orlando, FL, 32816, United States of America
| | - Duy Le
- Department of Physics, University of Central Florida, Orlando, FL, 32816, United States of America
| | - Talat S Rahman
- Department of Physics, University of Central Florida, Orlando, FL, 32816, United States of America
| |
Collapse
|
3
|
Ligand-coordination effects on the selective hydrogenation of acetylene in single-site Pd-ligand supported catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Neumann CN, Payne MT, Rozeveld SJ, Wu Z, Zhang G, Comito RJ, Miller JT, Dincă M. Structural Evolution of MOF-Derived RuCo, A General Catalyst for the Guerbet Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52113-52124. [PMID: 34405986 DOI: 10.1021/acsami.1c09873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Guerbet alcohols, a class of β-branched terminal alcohols, find widespread application because of their low melting points and excellent fluidity. Because of the limitations in the activity and selectivity of existing Guerbet catalysts, Guerbet alcohols are not currently produced via the Guerbet reaction but via hydroformylation of oil-derived alkenes followed by aldol condensation. In pursuit of a one-step synthesis of Guerbet alcohols from simple linear alcohol precursors, we show that MOF-derived RuCo alloys achieve over a million turnovers in the Guerbet reaction of 1-propanol, 1-butanol, and 1-pentanol. The active catalyst is formed in situ from ruthenium-impregnated metal-organic framework MFU-1. XPS and XAS studies indicate that the precatalyst is composed of Ru precursor trapped inside the MOF pores with no change in the oxidation state or coordination environment of Ru upon MOF incorporation. The significantly higher reactivity of Ru-impregnated MOF versus a physical mixture of Ru precursor and MOF suggests that the MOF plays an important role in templating the formation of the active catalyst and/or its stabilization. XPS reveals partial reduction of both ruthenium and MOF-derived cobalt under the Guerbet reaction conditions, and TEM/EDX imaging shows that Ru is decorated on the edges of dense nanoparticles, as well as thin nanoplates of CoOx. The use of ethanol rather than higher alcohols as a substrate results in lower turnover frequencies, and RuCo recovered from ethanol upgrading lacks nanostructures with plate-like morphology and does not exhibit Ru-enrichment on the surface and edge sites. Notably, 1H and 31P NMR studies show that through use of K3PO4 as a base promoter in the RuCo-catalyzed alcohol upgrading, the formation of carboxylate salts, a common side product in the Guerbet reaction, was effectively eliminated.
Collapse
Affiliation(s)
- Constanze N Neumann
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael T Payne
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Steven J Rozeveld
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Zhenwei Wu
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Guanghui Zhang
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Robert J Comito
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeffrey T Miller
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Chen L, Ali IS, Sterbinsky GE, Zhou X, Wasim E, Tait SL. Ligand-coordinated Ir single-atom catalysts stabilized on oxide supports for ethylene hydrogenation and their evolution under a reductive atmosphere. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01132k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Effective, stable, durable, and tunable Ir-ligand single-atom catalysts for ethylene hydrogenation, studied in situ for structural evolution of Ir single-atoms under a reducing atmosphere.
Collapse
Affiliation(s)
- Linxiao Chen
- Dept. of Chemistry
- Indiana University
- Indiana 47405
- USA
| | - Iyad S. Ali
- Dept. of Chemistry
- Indiana University
- Indiana 47405
- USA
| | | | - Xuemei Zhou
- Dept. of Chemistry
- Indiana University
- Indiana 47405
- USA
| | - Eman Wasim
- Dept. of Chemistry
- Indiana University
- Indiana 47405
- USA
| | | |
Collapse
|
6
|
Chen L, Ali IS, Tait SL. Bidentate N‐based Ligands for Highly Reusable, Ligand‐coordinated, Supported Pt Hydrosilylation Catalysts. ChemCatChem 2020. [DOI: 10.1002/cctc.202000085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Linxiao Chen
- Department of Chemistry Indiana University Bloomington Bloomington IN 47401 USA
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Iyad S. Ali
- Department of Chemistry Indiana University Bloomington Bloomington IN 47401 USA
| | - Steven L. Tait
- Department of Chemistry Indiana University Bloomington Bloomington IN 47401 USA
| |
Collapse
|
7
|
Zhou X, Chen L, Sterbinsky GE, Mukherjee D, Unocic RR, Tait SL. Pt-Ligand single-atom catalysts: tuning activity by oxide support defect density. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02594d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal–ligand coordination stabilizes single atom Pt on pristine and defective TiO2 supports to impact local coordination and catalytic hydrosilylation activity.
Collapse
Affiliation(s)
- Xuemei Zhou
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| | - Linxiao Chen
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| | | | - Debangshu Mukherjee
- Center for Nanophase Materials Sciences
- Oak Ridge National Laboratory
- Oak Ridge
- USA
| | - Raymond R. Unocic
- Center for Nanophase Materials Sciences
- Oak Ridge National Laboratory
- Oak Ridge
- USA
| | | |
Collapse
|
8
|
Rana S, Sindhu P, Ballav N. Perspective on the Interfacial Reduction Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9647-9659. [PMID: 31282684 DOI: 10.1021/acs.langmuir.9b01250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chemical reactions involving oxidation and reduction processes at interfaces may vary from those in conventional liquid-phase or solid-phase reactions and could influence the overall outcome. This article primarily features a study on metal-ligand coordination at the solid-liquid interface. Of particular mention is the spontaneous reduction of Cu(II) to Cu(I) at a solid-liquid interface without the need of any extraneous reducing agent, unlike in the liquid-phase reaction whereby no reduction of Cu(II) to Cu(I) took place. As a consequence of the interfacial reduction reaction (IRR), thin films of Cu-TCNQ (tetracyanoquinodimethane) and Cu-HCF (hexacyanoferrate) were successfully deposited onto a thiol-functionalized Au substrate via a layer-by-layer (LbL) method. IRR is anticipated to be useful in generating new functional and stimuli-responsive materials, which are otherwise difficult to achieve via conventional liquid-phase reactions.
Collapse
Affiliation(s)
- Shammi Rana
- Department of Chemistry , Indian Institute of Science Education and Research (IISER) , Dr. Homi Bhabha Road , Pune 411 008 , India
| | - Pooja Sindhu
- Department of Chemistry , Indian Institute of Science Education and Research (IISER) , Dr. Homi Bhabha Road , Pune 411 008 , India
| | - Nirmalya Ballav
- Department of Chemistry , Indian Institute of Science Education and Research (IISER) , Dr. Homi Bhabha Road , Pune 411 008 , India
| |
Collapse
|
9
|
Chen L, Ali IS, Sterbinsky GE, Gamler JTL, Skrabalak SE, Tait SL. Alkene Hydrosilylation on Oxide‐Supported Pt‐Ligand Single‐Site Catalysts. ChemCatChem 2019. [DOI: 10.1002/cctc.201900530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Linxiao Chen
- Department of Chemistry Indiana University 800 E. Kirkwood Ave., Bloomington Indiana 47405 USA
| | - Iyad S. Ali
- Department of Chemistry Indiana University 800 E. Kirkwood Ave., Bloomington Indiana 47405 USA
| | - George E. Sterbinsky
- Advanced Photon Source Argonne National Laboratory 9700 S. Cass Ave., Lemont Illinois 60439 USA
| | - Jocelyn T. L. Gamler
- Department of Chemistry Indiana University 800 E. Kirkwood Ave., Bloomington Indiana 47405 USA
| | - Sara E. Skrabalak
- Department of Chemistry Indiana University 800 E. Kirkwood Ave., Bloomington Indiana 47405 USA
| | - Steven L. Tait
- Department of Chemistry Indiana University 800 E. Kirkwood Ave., Bloomington Indiana 47405 USA
| |
Collapse
|
10
|
Morris TW, Huerfano IJ, Wang M, Wisman DL, Cabelof AC, Din NU, Tempas CD, Le D, Polezhaev AV, Rahman TS, Caulton KG, Tait SL. Multi-electron Reduction Capacity and Multiple Binding Pockets in Metal-Organic Redox Assembly at Surfaces. Chemistry 2019; 25:5565-5573. [PMID: 30746807 DOI: 10.1002/chem.201900002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/08/2019] [Indexed: 01/12/2023]
Abstract
Metal-ligand complexation at surfaces utilizing redox-active ligands has been demonstrated to produce uniform single-site metals centers in regular coordination networks. Two key design considerations are the electron storage capacity of the ligand and the metal-coordinating pockets on the ligand. In an effort to move toward greater complexity in the systems, particularly dinuclear metal centers, we designed and synthesized tetraethyltetra-aza-anthraquinone, TAAQ, which has superior electron storage capabilities and four ligating pockets in a diverging geometry. Cyclic voltammetry studies of the free ligand demonstrate its ability to undergo up to a four-electron reduction. Solution-based studies with an analogous ligand, diethyldi-aza-anthraquinone, demonstrate these redox capabilities in a molecular environment. Surface studies conducted on the Au(111) surface demonstrate TAAQ's ability to complex with Fe. This complexation can be observed at different stoichiometric ratios of Fe:TAAQ as Fe 2p core level shifts in X-ray photoelectron spectroscopy. Scanning tunneling microscopy experiments confirmed the formation of metal-organic coordination structures. The striking feature of these structures is their irregularity, which indicates the presence of multiple local binding motifs. Density functional theory calculations confirm several energetically accessible Fe:TAAQ isomers, which accounts for the non-uniformity of the chains.
Collapse
Affiliation(s)
- Tobias W Morris
- Departments of Chemistry, Indiana University, Bloomington, IN, 47401, USA
| | - I J Huerfano
- Departments of Chemistry, Indiana University, Bloomington, IN, 47401, USA
| | - Miao Wang
- Department of Physics, Indiana University, Bloomington, IN, 47401, USA
| | - David L Wisman
- Departments of Chemistry, Indiana University, Bloomington, IN, 47401, USA.,NAVSEA Crane, Crane, IN, 47522, USA
| | - Alyssa C Cabelof
- Departments of Chemistry, Indiana University, Bloomington, IN, 47401, USA
| | - Naseem U Din
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | | | - Duy Le
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | | | - Talat S Rahman
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | - Kenneth G Caulton
- Departments of Chemistry, Indiana University, Bloomington, IN, 47401, USA
| | - Steven L Tait
- Departments of Chemistry, Indiana University, Bloomington, IN, 47401, USA.,Department of Physics, Indiana University, Bloomington, IN, 47401, USA
| |
Collapse
|
11
|
Tempas CD, Skomski D, Cook BJ, Le D, Smith KA, Rahman TS, Caulton KG, Tait SL. Redox Isomeric Surface Structures Are Preferred over Odd‐Electron Pt
1+. Chemistry 2018; 24:15852-15858. [DOI: 10.1002/chem.201802943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Indexed: 11/11/2022]
Affiliation(s)
| | - Daniel Skomski
- Department of Chemistry Indiana University Bloomington Indiana 47405 USA
- Current address: Merck and Co. 770 Sumneytown Pike West Point Pennsylvania 19486 USA
| | - Brian J. Cook
- Department of Chemistry Indiana University Bloomington Indiana 47405 USA
- Current address: Center for Catalysis and Florida Center for Heterocyclic Compounds University of Florida Gainesville Florida 32611 USA
| | - Duy Le
- Department of Physics University of Central Florida Orlando Florida 32816 USA
| | - Kevin A. Smith
- Department of Physics Indiana University Bloomington Indiana 47405 USA
| | - Talat S. Rahman
- Department of Physics University of Central Florida Orlando Florida 32816 USA
- Department of Physics University of California, Berkeley Berkeley California 94720 USA
| | - Kenneth G. Caulton
- Department of Chemistry Indiana University Bloomington Indiana 47405 USA
| | - Steven L. Tait
- Department of Chemistry Indiana University Bloomington Indiana 47405 USA
- Department of Physics Indiana University Bloomington Indiana 47405 USA
| |
Collapse
|
12
|
Ren Z, Sunderland TL, Tortoreto C, Yang T, Berry JF, Musaev DG, Davies HML. Comparison of Reactivity and Enantioselectivity between Chiral Bimetallic Catalysts: Bismuth–Rhodium- and Dirhodium-Catalyzed Carbene Chemistry. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03054] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Zhi Ren
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Travis L. Sunderland
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Cecilia Tortoreto
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Tzuhsiung Yang
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - John F. Berry
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Djamaladdin G. Musaev
- Cherry L. Emerson Center for Scientific Computation, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huw M. L. Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
13
|
Chen L, Sterbinsky GE, Tait SL. Synthesis of platinum single-site centers through metal-ligand self-assembly on powdered metal oxide supports. J Catal 2018. [DOI: 10.1016/j.jcat.2018.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
Goronzy DP, Ebrahimi M, Rosei F, Fang Y, De Feyter S, Tait SL, Wang C, Beton PH, Wee ATS, Weiss PS, Perepichka DF. Supramolecular Assemblies on Surfaces: Nanopatterning, Functionality, and Reactivity. ACS NANO 2018; 12:7445-7481. [PMID: 30010321 DOI: 10.1021/acsnano.8b03513] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Understanding how molecules interact to form large-scale hierarchical structures on surfaces holds promise for building designer nanoscale constructs with defined chemical and physical properties. Here, we describe early advances in this field and highlight upcoming opportunities and challenges. Both direct intermolecular interactions and those that are mediated by coordinated metal centers or substrates are discussed. These interactions can be additive, but they can also interfere with each other, leading to new assemblies in which electrical potentials vary at distances much larger than those of typical chemical interactions. Earlier spectroscopic and surface measurements have provided partial information on such interfacial effects. In the interim, scanning probe microscopies have assumed defining roles in the field of molecular organization on surfaces, delivering deeper understanding of interactions, structures, and local potentials. Self-assembly is a key strategy to form extended structures on surfaces, advancing nanolithography into the chemical dimension and providing simultaneous control at multiple scales. In parallel, the emergence of graphene and the resulting impetus to explore 2D materials have broadened the field, as surface-confined reactions of molecular building blocks provide access to such materials as 2D polymers and graphene nanoribbons. In this Review, we describe recent advances and point out promising directions that will lead to even greater and more robust capabilities to exploit designer surfaces.
Collapse
Affiliation(s)
- Dominic P Goronzy
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Maryam Ebrahimi
- INRS Centre for Energy, Materials and Telecommunications , 1650 Boul. Lionel Boulet , Varennes , Quebec J3X 1S2 , Canada
| | - Federico Rosei
- INRS Centre for Energy, Materials and Telecommunications , 1650 Boul. Lionel Boulet , Varennes , Quebec J3X 1S2 , Canada
- Institute for Fundamental and Frontier Science , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
| | - Yuan Fang
- Department of Chemistry , McGill University , Montreal H3A 0B8 , Canada
| | - Steven De Feyter
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , Leuven 3001 , Belgium
| | - Steven L Tait
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Chen Wang
- National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Peter H Beton
- School of Physics & Astronomy , University of Nottingham , Nottingham NG7 2RD , United Kingdom
| | - Andrew T S Wee
- Department of Physics , National University of Singapore , 117542 Singapore
| | - Paul S Weiss
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Dmitrii F Perepichka
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry , McGill University , Montreal H3A 0B8 , Canada
| |
Collapse
|
15
|
Therrien AJ, Hensley AJR, Marcinkowski MD, Zhang R, Lucci FR, Coughlin B, Schilling AC, McEwen JS, Sykes ECH. An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat Catal 2018. [DOI: 10.1038/s41929-018-0028-2] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Tempas CD, Morris TW, Wisman DL, Le D, Din NU, Williams CG, Wang M, Polezhaev AV, Rahman TS, Caulton KG, Tait SL. Redox-active ligand controlled selectivity of vanadium oxidation on Au(100). Chem Sci 2018; 9:1674-1685. [PMID: 29675215 PMCID: PMC5887816 DOI: 10.1039/c7sc04752e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/02/2018] [Indexed: 11/21/2022] Open
Abstract
Metal-organic coordination networks at surfaces, formed by on-surface redox assembly, are of interest for designing specific and selective chemical function at surfaces for heterogeneous catalysts and other applications. The chemical reactivity of single-site transition metals in on-surface coordination networks, which is essential to these applications, has not previously been fully characterized. Here, we demonstrate with a surface-supported, single-site V system that not only are these sites active toward dioxygen activation, but the products of that reaction show much higher selectivity than traditional vanadium nanoparticles, leading to only one V-oxo product. We have studied the chemical reactivity of one-dimensional metal-organic vanadium - 3,6-di(2-pyridyl)-1,2,4,5-tetrazine (DPTZ) chains with O2. The electron-rich chains self-assemble through an on-surface redox process on the Au(100) surface and are characterized by X-ray photoelectron spectroscopy, scanning tunneling microscopy, high-resolution electron energy loss spectroscopy, and density functional theory. Reaction of V-DPTZ chains with O2 causes an increase in V oxidation state from VII to VIV, resulting in a single strongly bonded (DPTZ2-)VIVO product and spillover of O to the Au surface. DFT calculations confirm these products and also suggest new candidate intermediate states, providing mechanistic insight into this on-surface reaction. In contrast, the oxidation of ligand-free V is less complete and results in multiple oxygen-bound products. This demonstrates the high chemical selectivity of single-site metal centers in metal-ligand complexes at surfaces compared to metal nanoislands.
Collapse
Affiliation(s)
| | - Tobias W Morris
- Department of Chemistry , Indiana University , Bloomington , IN 47401 , USA . ;
| | - David L Wisman
- Department of Chemistry , Indiana University , Bloomington , IN 47401 , USA . ;
- NAVSEA Crane , Crane , IN 47522 , USA
| | - Duy Le
- Department of Physics , University of Central Florida , Orlando , FL , USA .
| | - Naseem U Din
- Department of Physics , University of Central Florida , Orlando , FL , USA .
| | | | - Miao Wang
- Department of Physics , Indiana University , Bloomington , IN 47401 , USA
| | | | - Talat S Rahman
- Department of Physics , University of Central Florida , Orlando , FL , USA .
- Donostia International Physics Center (DIPC) , 20018 San Sebastian , Spain
| | - Kenneth G Caulton
- Department of Chemistry , Indiana University , Bloomington , IN 47401 , USA . ;
| | - Steven L Tait
- Department of Chemistry , Indiana University , Bloomington , IN 47401 , USA . ;
- Department of Physics , Indiana University , Bloomington , IN 47401 , USA
| |
Collapse
|
17
|
Hötger D, Carro P, Gutzler R, Wurster B, Chandrasekar R, Klyatskaya S, Ruben M, Salvarezza RC, Kern K, Grumelli D. Polymorphism and metal-induced structural transformation in 5,5′-bis(4-pyridyl)(2,2′-bispyrimidine) adlayers on Au(111). Phys Chem Chem Phys 2018; 20:15960-15969. [DOI: 10.1039/c7cp07746g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Addition of iron to a self-assembled molecular network can lift polymorphism and leads to the expression of one single metal–organic structure on a surface.
Collapse
Affiliation(s)
- Diana Hötger
- Max Planck Institute for Solid State Research
- D-70569 Stuttgart
- Germany
| | - Pilar Carro
- Área de Química Física
- Departamento de Química, Facultad de Ciencias
- Universidad de La Laguna
- Instituto de Materiales y Nanotecnología
- Tenerife
| | - Rico Gutzler
- Max Planck Institute for Solid State Research
- D-70569 Stuttgart
- Germany
| | - Benjamin Wurster
- Max Planck Institute for Solid State Research
- D-70569 Stuttgart
- Germany
| | - Rajadurai Chandrasekar
- Institute of Nanotechnology (INT)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Svetlana Klyatskaya
- Institute of Nanotechnology (INT)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Mario Ruben
- Institute of Nanotechnology (INT)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
- IPCMS-CNRS, Université de Strasbourg
| | - Roberto C. Salvarezza
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata – CONICET – Sucursal 4 Casilla de Correo 16
- (1900) La Plata
- Argentina
| | - Klaus Kern
- Max Planck Institute for Solid State Research
- D-70569 Stuttgart
- Germany
- Institut de Physique
- École polytechnique fédérale de Lausanne
| | - Doris Grumelli
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata – CONICET – Sucursal 4 Casilla de Correo 16
- (1900) La Plata
- Argentina
| |
Collapse
|
18
|
Mboyi CD, Testa C, Reeb S, Genc S, Cattey H, Fleurat-Lessard P, Roger J, Hierso JC. Building Diversity in ortho-Substituted s-Aryltetrazines By Tuning N-Directed Palladium C–H Halogenation: Unsymmetrical Polyhalogenated and Biphenyl s-Aryltetrazines. ACS Catal 2017. [DOI: 10.1021/acscatal.7b03186] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Jean-Cyrille Hierso
- Institut Universitaire de France (IUF), 103 Boulevard Saint Michel, 75005 CEDEX Paris, France
| |
Collapse
|
19
|
Le D, Rahman TS. Pt-dipyridyl tetrazine metal-organic network on the Au(100) surface: insights from first principles calculations. Faraday Discuss 2017; 204:83-95. [PMID: 28795746 DOI: 10.1039/c7fd00097a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic coordination networks with active metal centers are a promising class of materials for next-generation catalysts. Motivated by experimental observations of the formation of a Pt-Dipyridyl Tetrazine (DT) metal-organic network on the Au(100) surface [D. Skomski et al., J. Am. Chem. Soc., 2014, 136, 9862], we carried out density functional theory based calculations on the same system. In this discussion, we demonstrate that the strong interaction between DT ligands and Pt metal centers makes the network stable and that the Pt centers become positively charged by donating their electrons to the DT ligands, resulting in +2 oxidation states for the Pt centers. We further show that the Au substrate withdraws electrons from and hybridizes with the dz2 orbital of the Pt centers, altering their electronic structure and related properties. Furthermore, we find that the Pt centers can absorb SO2via donor-acceptor interactions, leading to the formation of σ-bonds in which Pt dz2 orbitals act as electron donors, and that the strength of the resultant σ-bond depends on the registry of the Pt centers with the Au(100) surface. Finally, we identify factors, such as the specificity of the ligands and the substrate, and the fullness of the outer shell of the metal centers, that may affect the chemical properties of the metal centers. We suggest modifications (and replacement) of these factors as one of the ways to tune and design metal-organic coordination networks for next-generation catalysts.
Collapse
Affiliation(s)
- Duy Le
- Department of Physics, University of Central Florida, Orlando, FL 32816, USA.
| | | |
Collapse
|
20
|
Song Y, Wang Y, Jin Q, Zhou K, Shi Z, Liu PN, Ma YQ. Self-Assembly and Local Manipulation of Au-Pyridyl Coordination Networks on Metal Surfaces. Chemphyschem 2017; 18:2088-2093. [DOI: 10.1002/cphc.201700439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Yang Song
- Center for Soft Condensed Matter Physics & Interdisciplinary Research; College of Physics, Optoelectronics and Energy; Soochow University; 215006 Suzhou China
| | - Yuxu Wang
- Center for Soft Condensed Matter Physics & Interdisciplinary Research; College of Physics, Optoelectronics and Energy; Soochow University; 215006 Suzhou China
| | - Qiao Jin
- Shanghai Key Laboratory of Functional Materials Chemistry; Key Lab for Advanced Materials and School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| | - Kun Zhou
- Center for Soft Condensed Matter Physics & Interdisciplinary Research; College of Physics, Optoelectronics and Energy; Soochow University; 215006 Suzhou China
| | - Ziliang Shi
- Center for Soft Condensed Matter Physics & Interdisciplinary Research; College of Physics, Optoelectronics and Energy; Soochow University; 215006 Suzhou China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry; Key Lab for Advanced Materials and School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| | - Yu-qiang Ma
- Center for Soft Condensed Matter Physics & Interdisciplinary Research; College of Physics, Optoelectronics and Energy; Soochow University; 215006 Suzhou China
- National Laboratory of Solid State Microstructures and Department of Physics; Nanjing University; Nanjing 210093 China
| |
Collapse
|
21
|
Folkertsma E, van der Lit J, Di Cicco F, Lutz M, Klein Gebbink RJM, Swart I, Moret ME. Combination of Scanning Probe Microscopy and Coordination Chemistry: Structural and Electronic Study of Bis(methylbenzimidazolyl)ketone and Its Iron Complex. ACS OMEGA 2017; 2:1372-1379. [PMID: 28474011 PMCID: PMC5410654 DOI: 10.1021/acsomega.6b00510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/23/2017] [Indexed: 06/07/2023]
Abstract
Here, we report the bulk synthesis of [FeII(BMBIK)Cl2] bearing the redox noninnocent bis(methylbenzimidazolyl)ketone (BMBIK) ligand and the synthesis of the similar complex [FeI(BMBIK)]+ on a Au(111) surface using lateral manipulation at the atomic level. Cyclic voltammetry and scanning tunneling spectroscopy are shown to be useful techniques to compare the coordination compound in solution with the one on the surface. The total charge, as well as the oxidation and spin state of [FeI(BMBIK)]+, are investigated by comparison of the shape of the lowest unoccupied molecular orbital (LUMO), visualized by tunneling through the LUMO, with theoretical models. The similar reduction potentials found for the solution and surface compounds indicate that the major effect of lowering the LUMO upon coordination of BMBIK to the iron center is conserved on the surface. The synthesis and analysis of [FeI(BMBIK)]+ using scanning tunneling microscopy, scanning tunneling spectroscopy, and atomic force microscopy are the first steps toward mechanistic studies of homogeneous catalysts with redox noninnocent ligands at the single molecule level.
Collapse
Affiliation(s)
- Emma Folkertsma
- Organic
Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Joost van der Lit
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, P.O.
Box 80000, 3508 TA Utrecht, The Netherlands
| | - Francesca Di Cicco
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, P.O.
Box 80000, 3508 TA Utrecht, The Netherlands
| | - Martin Lutz
- Crystal
and Structural Chemistry, Bijvoet Center for Biomolecular Research,
Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Robertus J. M. Klein Gebbink
- Organic
Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Ingmar Swart
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, P.O.
Box 80000, 3508 TA Utrecht, The Netherlands
| | - Marc-Etienne Moret
- Organic
Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
22
|
|