1
|
Privado M, Moles Quintero S, Barrejón M, de La Cruz P, P M JB, Casanova D, Langa F, Casado J. Dibenzoquinone Cyclopentadithiophene Diradicaloids Show Optical Transitions of Different Spin States and Anomalous Near-Infrared Emission. Angew Chem Int Ed Engl 2025; 64:e202413988. [PMID: 39231118 DOI: 10.1002/anie.202413988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
We have prepared a series of bis(semiquinone) compounds with dithiophene bridges of different length that evolve from closed-shell (smaller compound) to full diradical (longer compound) for which the narrow singlet-triplet energy gap allows the triplet population at 298 K. The medium size system has a variety of photonic properties with absorptions and emission in the optical near-infrared region mediated by a unique case of anti-Kasha emission. A whole set of optical absorption/emission and vibrational steady state spectroscopies as well as picosecond transient absorption spectroscopy, all complemented with spectroelectrochemistry and theoretical calculations, is presented.
Collapse
Affiliation(s)
- María Privado
- Institute of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), University of Castilla-La Mancha, Campus de la Fábrica de Armas, 45071-, Toledo, Spain
| | - Sergio Moles Quintero
- Department of Physical Chemistry, University of Málaga, Andalucia-Tech Campus de Teatinos s/n, 29071, Málaga, Spain
| | - Myriam Barrejón
- Institute of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), University of Castilla-La Mancha, Campus de la Fábrica de Armas, 45071-, Toledo, Spain
| | - Pilar de La Cruz
- Institute of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), University of Castilla-La Mancha, Campus de la Fábrica de Armas, 45071-, Toledo, Spain
| | - Janaarthana Babu P M
- Donostia International Physics Center (DIPC), 20018, Donostia, Euskadi, Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Euskal Herriko Unibertsitatea (UPV/EHU), PK 1072, 20080, Donostia, Euskadi, Spain
| | - David Casanova
- Donostia International Physics Center (DIPC), 20018, Donostia, Euskadi, Spain
| | - Fernando Langa
- Institute of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), University of Castilla-La Mancha, Campus de la Fábrica de Armas, 45071-, Toledo, Spain
| | - Juan Casado
- Department of Physical Chemistry, University of Málaga, Andalucia-Tech Campus de Teatinos s/n, 29071, Málaga, Spain
| |
Collapse
|
2
|
Banachowicz P, Das M, Kruczała K, Siczek M, Sojka Z, Kijewska M, Pawlicki M. Breaking Global Diatropic Current to Tame Diradicaloid Character: Thiele's Hydrocarbon Under Macrocyclic Constraints. Angew Chem Int Ed Engl 2024; 63:e202400780. [PMID: 38407458 DOI: 10.1002/anie.202400780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 02/27/2024]
Abstract
A diradical/biradical character of organic derivatives is one of the key aspects of contemporary research focusing on the fundamental studies followed by potential applicability relying on the unique optical, electronic, or magnetic properties assigned to unpaired electrons. A precise involvement of two p-phenylenes into a cyclophane-like conjugated, diatropic system creates a flexible molecule with the two different characters of both subunits (benzene and quinone) imprinting into the structure a Kekulé delocalized system. A dynamic of both carbocyclic subunits, and their mutual interaction generates a singlet open-shell state (J=-1.25 kcal/mol) as documented spectroscopically (NMR and EPR). The extended theoretical analysis has proved a correlation between dihedral angle and the diradicaloid character that shifts from a closed-shell singlet to an open-shell state, eventually showing the y0=0.86 for 78 degrees and ΔEST=-0.34 kcal/mol.
Collapse
Affiliation(s)
- Piotr Banachowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Mainak Das
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Krzysztof Kruczała
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Miłosz Siczek
- Department of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50383, Wrocław, Poland
| | - Zbigniew Sojka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Monika Kijewska
- Department of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50383, Wrocław, Poland
| | - Miłosz Pawlicki
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| |
Collapse
|
3
|
Abstract
Quinoidal π-conjugated systems are sought-after materials for semiconducting applications because of their rich optical and electronic characteristics. However, the analogous fluorescent compounds are extremely rare, with just two reports in the literature. Here, we present the design and development of a third series of quinoidal fluorophores [(2,5-diarylidene)-3,6-bis(hexyloxy)-2,5-dihydropyrazine (Q1-Q5)] that incorporates p-azaquinodimethane. The fluorophores are synthesized in a two-step synthetic approach employing Knoevenagel condensation of N,N-diacetyl-piperazine-2,5-dione with different aromatic aldehydes followed by O-alkylation in high yields. Q1-Q5 are strongly emissive, and by altering the aryl-substituents, the emission colors can be modulated from blue to orange. The compounds possess emission maxima (λem) at 475-555 nm in the solution state and 510-610 nm in the solid state, with fluorescence quantum yields of up to 60%. To the best of our knowledge, the reported systems are the first quinoidal dual-state emissive (solution- and solid-state) compounds. In trifluoroacetic acid, Q5 exhibits halochromic behavior, with a dramatic color change from yellow to blue. Furthermore, the preliminary fluorescent sensing studies demonstrated that Q5 could act as a selective turn-off fluorescence probe for electron-deficient picric acid (PA), with an emission quenching of >90% in the solution state. The thin-layer chromatography (TLC) strip sensor of Q5 was also designed to detect PA in water.
Collapse
Affiliation(s)
- Aswani Raj K
- Department of Chemistry, Indian Institute of Technology Dharwad, Karnataka, 580011, India
| | - Rajeswara Rao M
- Department of Chemistry, Indian Institute of Technology Dharwad, Karnataka, 580011, India
| |
Collapse
|
4
|
Punzi A, Dai Y, Dibenedetto CN, Mesto E, Schingaro E, Ullrich T, Striccoli M, Guldi DM, Negri F, Farinola GM, Blasi D. Dark State of the Thiele Hydrocarbon: Efficient Solvatochromic Emission from a Nonpolar Centrosymmetric Singlet Diradicaloid. J Am Chem Soc 2023; 145:20229-20241. [PMID: 37671971 DOI: 10.1021/jacs.3c05251] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
In this work, a comprehensive investigation of the photoinduced processes and mechanisms linked to the luminescence of a novel nonperchlorinated Thiele hydrocarbon (TTH) is presented. Despite the comparable diradical character of TTH (y0 = 0.32-0.44) and the unsubstituted Thiele hydrocarbon (TH) (y0 = 0.30), the polyhalogenated species is inert and photostable, showing an intense deep-red/near-infrared (NIR) fluorescence (photoluminescence quantum yield (PLQY) = 0.84 in toluene) even at room temperature and in the solid state (PLQY = 0.19). TTH displays a large Stokes shift (307 nm in benzonitrile) and solvatochromic behavior, which is unusual for a centrosymmetric, nonpolar, and low-conjugated species. These outstanding emission features are interpreted through quantum-chemical calculations, indicating that its fluorescence arises from the low-lying dark doubly excited zwitterionic state, typically found at low excitation energies in diradicaloids, acquiring dipole moment and intensity by state mixing via twisting around the strongly elongated exocyclic CC bonds of the excited p-quinodimethane (pQDM) core, with a mechanism similar to sudden polarization occurring in olefins. Such a mechanism is derived from ns and fs transient absorption measurements.
Collapse
Affiliation(s)
- Angela Punzi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Yasi Dai
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna and INSTM UdR Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Carlo N Dibenedetto
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
- CNR-Istituto per i Processi Chimico Fisici (CNR-IPCF), SS Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Ernesto Mesto
- Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Emanuela Schingaro
- Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Tobias Ullrich
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Marinella Striccoli
- CNR-Istituto per i Processi Chimico Fisici (CNR-IPCF), SS Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Fabrizia Negri
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna and INSTM UdR Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Gianluca M Farinola
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Davide Blasi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
5
|
Design of an open-shell nitrogen-centered diradicaloid with tunable stimuli-responsive electronic properties. Commun Chem 2022; 5:127. [PMID: 36697916 PMCID: PMC9814612 DOI: 10.1038/s42004-022-00747-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/03/2022] [Indexed: 01/28/2023] Open
Abstract
Organic diradicaloids usually display an open-shell singlet ground state with significant singlet diradical character (y0) which endow them with intriguing physiochemical properties and wide applications. In this study, we present the design of an open-shell nitrogen-centered diradicaloid which can reversibly respond to multiple stimuli and display the tunable diradical character and chemo-physical properties. 1a was successfully synthesized through a simple and high-yielding two-step synthetic strategy. Both experimental and calculated results indicated that 1a displayed an open-shell singlet ground state with small singlet-triplet energy gap (ΔES-T = -2.311 kcal mol-1) and a modest diradical character (y0 = 0.60). Interestingly, 1a was demonstrated to undergo reversible Lewis acid-base reaction to form acid-base adducts, which was proven to effectively tune the ground-state electronic structures of 1a as well as its diradical character and spin density distributions. Based on this, we succeeded in devising a photoresponsive system based on 1a and a commercially available photoacid merocyanine (MEH). We believe that our studies including the molecular design methodology and the stimuli-responsive organic diradicaloid system will open up a new way to develop organic diradicaloids with tunable properties and even intelligent-responsive diradicaloid-based materials.
Collapse
|
6
|
Xu Y, Xu P, Hu D, Ma Y. Recent progress in hot exciton materials for organic light-emitting diodes. Chem Soc Rev 2020; 50:1030-1069. [PMID: 33231588 DOI: 10.1039/d0cs00391c] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
According to Kasha's rule, high-lying excited states usually have little effect on fluorescence. However, in some molecular systems, the high-lying excited states partly or even mainly contribute to the photophysical properties, especially in the process of harvesting triplet excitons in organic electroluminescent devices. In the current review, we focus on a type of organic light-emitting diode (OLED) materials called "hot exciton" materials, which can effectively harness the non-radiative triplet excitons via reverse intersystem crossing (RISC) from high-lying triplet states to singlet states (Tn→ Sm; n≥ 2, m≥ 1). Since Ma and Yang proposed the hot exciton mechanism for OLED material design in 2012, there have been many reports aiming at the design and synthesis of novel hot exciton luminogens. Herein, we present a comprehensive review of the recent progress in hot exciton materials. The developments of the hot exciton mechanism are reviewed, the fundamental principles regarding molecular design are discussed, and representative reported hot exciton luminogens are summarized and analyzed, along with their structure-property relationships and OLED applications.
Collapse
Affiliation(s)
- Yuwei Xu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
| | | | | | | |
Collapse
|
7
|
Rausch R, Röhr MIS, Schmidt D, Krummenacher I, Braunschweig H, Würthner F. Tuning phenoxyl-substituted diketopyrrolopyrroles from quinoidal to biradical ground states through (hetero-)aromatic linkers. Chem Sci 2020; 12:793-802. [PMID: 34163813 PMCID: PMC8179021 DOI: 10.1039/d0sc05475e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/10/2020] [Indexed: 12/31/2022] Open
Abstract
Strongly fluorescent halochromic 2,6-di-tert-butyl-phenol-functionalised phenyl-, thienyl- and furyl-substituted diketopyrrolopyrrole (DPP) dyes were deprotonated and oxidised to give either phenylene-linked DPP1˙˙ biradical (y 0 = 0.75) with a singlet open shell ground state and a thermally populated triplet state (ΔE ST = 19 meV; 1.8 kJ mol-1; 0.43 kcal mol-1) or thienylene/furylene-linked DPP2q and DPP3q compounds with closed shell quinoidal ground states. Accordingly, we identified the aromaticity of the conjugated (hetero-)aromatic bridge to be key for modulating the electronic character of these biradicaloid compounds and achieved a spin crossover from closed shell quinones DPP2q and DPP3q to open shell biradical DPP1˙˙ as confirmed by optical and magnetic spectroscopic studies (UV/vis/NIR, NMR, EPR) as well as computational investigations (spin-flip TD-DFT calculations in combination with CASSCF(4,4) and harmonic oscillator model of aromaticity (HOMA) analysis). Spectroelectrochemical studies and comproportionation experiments further prove the reversible formation of mixed-valent radical anions for the DPP2q and DPP3q quinoidal compounds with absorption bands edging into the NIR spectral region.
Collapse
Affiliation(s)
- Rodger Rausch
- Universität Würzburg, Institut für Organische Chemie Am Hubland 97074 Würzburg Germany
| | - Merle I S Röhr
- Universität Würzburg, Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Germany
| | - David Schmidt
- Universität Würzburg, Institut für Organische Chemie Am Hubland 97074 Würzburg Germany
- Universität Würzburg, Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Ivo Krummenacher
- Universität Würzburg, Institut für Anorganische Chemie, Institute for Sustainable Chemistry and Catalysis with Boron Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Universität Würzburg, Institut für Anorganische Chemie, Institute for Sustainable Chemistry and Catalysis with Boron Am Hubland 97074 Würzburg Germany
| | - Frank Würthner
- Universität Würzburg, Institut für Organische Chemie Am Hubland 97074 Würzburg Germany
- Universität Würzburg, Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
8
|
Lu Y, Liu D, Lin YJ, Li ZH, Jin GX. Self-assembly of metalla[3]catenanes, Borromean rings and ring-in-ring complexes using a simple π-donor unit. Natl Sci Rev 2020; 7:1548-1556. [PMID: 34691487 PMCID: PMC8290965 DOI: 10.1093/nsr/nwaa164] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/24/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022] Open
Abstract
Despite extensive research and several stunning breakthroughs in the synthesis of interlocked molecular species, [3]catenanes, Borromean rings and ring-in-ring complexes are exceedingly rare and their targeted synthesis remains a formidable challenge. Herein, a series of Cp*Rh-based homogeneous and heterogeneous interlocked structures have been prepared by coordination-driven self-assembly, not only including metalla[2]catenanes and molecular Borromean rings, but also linear metalla[3]catenanes and ring-in-ring complexes. The interlocked structures are all based on bithiophenyl groups. The bithiophenyl groups effectively enhance the strength of the inter-ring interactions and play a crucial role in the formation of these interlocked structures. By taking advantage of the strong interaction between π-donor (D) and π-acceptor (A) groups, the electron-deficient methylviologen cation was introduced into a cationic metallarectangle based on bithiophenyl groups. Taking inspiration from these results, a cationic metallarectangle based on A units was threaded into a metallarectangle based on D units, leading to a heterogeneous D–A ring-in-ring structure.
Collapse
Affiliation(s)
- Ye Lu
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Dong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Yue-Jian Lin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Zhen-Hua Li
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
9
|
Johnson KR, Vittardi SB, Gracia‐Nava MA, Rack JJ, Bettencourt‐Dias A. Wavelength‐Dependent Singlet Oxygen Generation in Luminescent Lanthanide Complexes with a Pyridine‐Bis(Carboxamide)‐Terthiophene Sensitizer. Chemistry 2020; 26:7274-7280. [DOI: 10.1002/chem.202000587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/03/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | - Sebastian B. Vittardi
- Department of Chemistry and Chemical Biology University of New Mexico Albuquerque NM 87131 USA
| | | | - Jeffrey J. Rack
- Department of Chemistry and Chemical Biology University of New Mexico Albuquerque NM 87131 USA
| | | |
Collapse
|
10
|
Higashino T, Ishida K, Sakurai T, Seki S, Konishi T, Kamada K, Kamada K, Imahori H. Pluripotent Features of Doubly Thiophene‐Fused Benzodiphospholes as Organic Functional Materials. Chemistry 2019; 25:6425-6438. [DOI: 10.1002/chem.201900661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/07/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Tomohiro Higashino
- Department of Molecular EngineeringGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Keiichi Ishida
- Department of Molecular EngineeringGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Tsuneaki Sakurai
- Department of Molecular EngineeringGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Shu Seki
- Department of Molecular EngineeringGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Tatsuki Konishi
- Inorganic Functional Materials Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST) 1-8-31 Midorigaoka, Ikeda Osaka 563-8577 Japan
- Department of ChemistrySchool of Science and TechnologyKwansei Gakuin University Sanda Hyogo 669-1337 Japan
| | - Kenji Kamada
- Inorganic Functional Materials Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST) 1-8-31 Midorigaoka, Ikeda Osaka 563-8577 Japan
| | - Kenji Kamada
- Department of ChemistrySchool of Science and TechnologyKwansei Gakuin University Sanda Hyogo 669-1337 Japan
| | - Hiroshi Imahori
- Department of Molecular EngineeringGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
11
|
Ren L, Yuan D, Zhu X. Design of a Quinoidal Thieno[3,4‐
b
]thiophene‐Diketopyrrolopyrrole‐Based Small Molecule as n‐Type Semiconductor. Chem Asian J 2019; 14:1717-1722. [PMID: 30600925 DOI: 10.1002/asia.201801737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/24/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Longbin Ren
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic SolidsInstitute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100190 China
| | - Dafei Yuan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic SolidsInstitute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100190 China
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic SolidsInstitute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
12
|
Takimiya K, Kawabata K. Thienoquinoidal System: Promising Molecular Architecture for Optoelectronic Applications. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.1176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kazuo Takimiya
- Department of Chemistry, Graduate School of Science, Tohoku University
- RIKEN Center for Emergent Matter Science (CEMS)
| | - Kohsuke Kawabata
- Department of Chemistry, Graduate School of Science, Tohoku University
- RIKEN Center for Emergent Matter Science (CEMS)
| |
Collapse
|
13
|
A Highly Efficient Near‐Infrared‐Emissive Copolymer with a N=N Double‐Bond π‐Conjugated System Based on a Fused Azobenzene–Boron Complex. Angew Chem Int Ed Engl 2018; 57:6546-6551. [DOI: 10.1002/anie.201803013] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 01/07/2023]
|
14
|
Gon M, Tanaka K, Chujo Y. A Highly Efficient Near‐Infrared‐Emissive Copolymer with a N=N Double‐Bond π‐Conjugated System Based on a Fused Azobenzene–Boron Complex. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Masayuki Gon
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kazuo Tanaka
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoshiki Chujo
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
15
|
Abstract
Singlet fission is a photophysical reaction in which a singlet excited electronic state splits into two spin-triplet states. Singlet fission was discovered more than 50 years ago, but the interest in this process has gained a lot of momentum in the past decade due to its potential as a way to boost solar cell efficiencies. This review presents and discusses the most recent advances with respect to the theoretical and computational studies on the singlet fission phenomenon. The work revisits important aspects regarding electronic states involved in the process, the evaluation of fission rates and interstate couplings, the study of the excited state dynamics in singlet fission, and the advances in the design and characterization of singlet fission compounds and materials such as molecular dimers, polymers, or extended structures. Finally, the review tries to pinpoint some aspects that need further improvement and proposes future lines of research for theoretical and computational chemists and physicists in order to further push the understanding and applicability of singlet fission.
Collapse
Affiliation(s)
- David Casanova
- Kimika Fakultatea , Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC) , P.K. 1072, 20080 Donostia , Euskadi, Spain.,IKERBASQUE, Basque, Foundation for Science , 48013 Bilbao , Euskadi, Spain
| |
Collapse
|
16
|
Regulation of excitation transitions by molecular design endowing full-color-tunable emissions with unexpected high quantum yields for bioimaging application. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9159-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Japahuge A, Zeng T. Theoretical Studies of Singlet Fission: Searching for Materials and Exploring Mechanisms. Chempluschem 2018; 83:146-182. [PMID: 31957288 DOI: 10.1002/cplu.201700489] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/31/2017] [Indexed: 02/02/2023]
Abstract
In this Review article, a survey is given for theoretical studies in the subject of singlet fission. Singlet fission converts one singlet exciton to two triplet excitons. With the doubled number of excitons and the longer lifetime of the triplets, singlet fission provides an avenue to improve the photoelectric conversion efficiency in organic photovoltaic devices. It has been a subject of intense research in the past decade. Theoretical studies play an essential role in understanding singlet fission. This article presents a Review of theoretical studies in singlet fission since 2006, the year when the research interest in this subject was reignited. Both electronic structure and dynamics studies are covered. Electronic structure studies provide guidelines for designing singlet fission chromophores and insights into the couplings between single- and multi-excitonic states. The latter provides fundamental knowledge for engineering interchromophore conformations to enhance the fission efficiency. Dynamics studies reveal the importance of vibronic couplings in singlet fission.
Collapse
Affiliation(s)
- Achini Japahuge
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S5B6, Canada
| | - Tao Zeng
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S5B6, Canada
| |
Collapse
|
18
|
Brogdon P, Cheema H, Delcamp JH. Near-Infrared-Absorbing Metal-Free Organic, Porphyrin, and Phthalocyanine Sensitizers for Panchromatic Dye-Sensitized Solar Cells. CHEMSUSCHEM 2018; 11:86-103. [PMID: 28926685 DOI: 10.1002/cssc.201701441] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/18/2017] [Indexed: 06/07/2023]
Abstract
Dye-sensitized solar cells (DSCs) are a promising source of renewable energy. However, the power conversion efficiency (PCE) of devices has been limited largely by the difficulty of producing electricity using photons from the near-infrared (NIR) spectral region. Metal-free organic sensitizers frequently employ strong electron-donating or -withdrawing moieties to tune the optical band gap to allow the absorption of lower energy wavelengths in charge-transfer systems, whereas porphyrins and phthalocyanines use substituents to shift the Soret and Q bands toward lower energy absorption. Very few devices employing precious metal-free dyes have achieved panchromatic and NIR photon conversion for electricity generation at wavelengths >750 nm despite a tremendous number of sensitizers published over the last 25 years. This Minireview seeks to compile a summary of these sensitizers to encourage assimilation, analysis, and development of efficient future sensitizers with absorption extending into the NIR. Herein, we discuss common synthetic strategies, optical properties, and electronic properties of the most successful panchromatic organic sensitizers.
Collapse
Affiliation(s)
- Phillip Brogdon
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, 38677, USA
| | - Hammad Cheema
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, 38677, USA
| | - Jared H Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, 38677, USA
| |
Collapse
|
19
|
Li Z, Yan X, Huang F, Sepehrpour H, Stang PJ. Near-Infrared Emissive Discrete Platinum(II) Metallacycles: Synthesis and Application in Ammonia Detection. Org Lett 2017; 19:5728-5731. [PMID: 29027805 PMCID: PMC5808942 DOI: 10.1021/acs.orglett.7b02456] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two novel discrete organoplatinum(II) metallacycles are prepared by means of coordination-driven self-assembly of a 90° organoplatinum(II) acceptor, cis-(PEt3)2Pt(OTf)2, with two donors, a pyridyl donor, 9,10-di(4-pyridylvinyl)anthracene, and one of two dicarboxylate ligands. Both metallacycles display aggregation-induced emission as well as solvatochromism. More interestingly, both metallacycles exhibit near-infrared fluorescent emission in the solid state and can be used to detect ammonia gas.
Collapse
Affiliation(s)
- Zhengtao Li
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xuzhou Yan
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hajar Sepehrpour
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
20
|
Ooyama Y, Enoki T, Aoyama S, Ohshita J. Synthesis and optical and electrochemical properties of a phenanthrodithiophene (fused-bibenzo[c]thiophene) derivative. Org Biomol Chem 2017; 15:7302-7307. [PMID: 28819667 DOI: 10.1039/c7ob01695f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We designed and developed a fused-bibenzo[c]thiophene, namely, 2,9-bis(tert-butyldimethylsilyl)phenanthro[9,8-bc:10,1-b'c']dithiophene (PHDT-Si), as a new π-building block in the emitters, photosensitizers and semiconductors for organic optoelectronic devices. Based on photophysical (photoabsorption, fluorescence and time-resolved fluorescence spectroscopy) and electrochemical measurements (cyclic voltammetry), and density functional theory (DFT) calculations, this work reveals that the fused-bibenzo[c]thiophene PHDT-Si, which is prepared by an efficient synthesis method, has a rigid, high planar and expanded π-conjugation structure, and possesses intense photoabsorption and fluorescence properties (λ = 598 nm (εmax = 41 000 M-1 cm-1) and λ = 613 nm (Φf = 0.74) in toluene) in the long-wavelength region and undergoes an electrochemically reversible oxidation process, compared to non-fused 1,1'-bis(tert-butyldimethylsilyl)-4,4'-bibenzo[c]thiophene (BBT-Si).
Collapse
Affiliation(s)
- Yousuke Ooyama
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | | | | | | |
Collapse
|
21
|
Zhang C, Zhu X. Thieno[3,4-b]thiophene-Based Novel Small-Molecule Optoelectronic Materials. Acc Chem Res 2017; 50:1342-1350. [PMID: 28375613 DOI: 10.1021/acs.accounts.7b00050] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Because of the tailorable photoelectric properties derived from judicious molecular design and large-area and low-temperature processability especially on flexible substrates, design and synthesis of new organic π-functional materials is always a central topic in the field of organic optoelectronics, which siginificantly contributed to the development of high-performance optoelectronic devices such as organic photovoltaics (OPVs), organic field-effect transistors (OFETs), and organic light-emitting diodes (OLEDs). Compared with polymers, small molecules with well-defined molecular structures benefit the establishment of structure-property relationships, which may provide valuable guidelines for the design of new optoelectronic materials to further promote the device performance. New building blocks are essential for the construction of optoelectronic materials. As is well recognized, thiophene-based functional materials have played an indispensable role in the development of organic optoelectronics. Compared with six-membered benzene, five-membered thiophene shows weaker aromaticity and lower steric hindrance and may provide extra sulfur-sulfur interactions in solid state. Among various thiophene building blocks, thieno[3,4-b]thiophene (TbT) is an asymmetric fused bithiophene containing four functionalization positions, in which the proaromatic thiophene can effectively stabilize the quinoidal resonance of the aromatic thiophene. Thus, TbT exhibits a unique characteristic of quinoid-resonance effect that is powerful to modulate electronic structures. Although the application of TbT in polymer donor materials represented by PTB-7 has achieved a great success, its application in small-molecule optoelectronic materials is almost an untouched field. In this Account, we summerize the rational design of a series of TbT-based small-molecule optoelectronic materials designed and optimized by quinoid-resonance effect, regiochemistry, and side-chain engineering and demonstrate the crucial effect of TbT building blocks on the electronic structures, photophysical and charge transport properties, and photovoltaic performance. With well-defined regioregular oligothieno[3,4-b]thiopenes, we revealed the quinoid-resonance effect of the TbT moiety and its geometric origin. TbT-based small molecules exhibit full-color tunable emissions in the visible to near-infrared regions and excellent performance in OFETs and OPVs. For instance, TbT-based quinoidal molecules with near-infrared fluorescence quantum yields up to 53.1% and TbT-based aromatic molecules with full-color-tunable emissions and high fluorescence quantum yields approaching 100% in polar solvent were designed and synthesized. Solution-processable ambient-stable n-channel organic thin-film transistors based on two-dimensional π-expanded quinoidal terthiophenes with distal or proximal sulfur orientations (2DQTTs) realized a record electron mobility of 5.2 cm2 V-1 s-1. Furthermore, TbT-based electron donor and electron acceptor materials were successfully designed for OPV applications delivering high power conversion efficiencies up to 9.26% and 10.07%, respectively. We believe that new TbT-based small-molecule materials designed by a synergy of molecular engineering strategy may not only further promote OFET and OPV performance but also realize more unique applications.
Collapse
Affiliation(s)
- Cheng Zhang
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaozhang Zhu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
22
|
Zhang Y, Autry SA, McNamara LE, Nguyen ST, Le N, Brogdon P, Watkins DL, Hammer NI, Delcamp JH. Near-Infrared Fluorescent Thienothiadiazole Dyes with Large Stokes Shifts and High Photostability. J Org Chem 2017; 82:5597-5606. [DOI: 10.1021/acs.joc.7b00422] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yanbing Zhang
- Department of Chemistry and
Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Shane A. Autry
- Department of Chemistry and
Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Louis E. McNamara
- Department of Chemistry and
Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Suong T. Nguyen
- Department of Chemistry and
Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Ngoc Le
- Department of Chemistry and
Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Phillip Brogdon
- Department of Chemistry and
Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Davita L. Watkins
- Department of Chemistry and
Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Nathan I. Hammer
- Department of Chemistry and
Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Jared H. Delcamp
- Department of Chemistry and
Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
23
|
Kovacs D, Lu X, Mészáros LS, Ott M, Andres J, Borbas KE. Photophysics of Coumarin and Carbostyril-Sensitized Luminescent Lanthanide Complexes: Implications for Complex Design in Multiplex Detection. J Am Chem Soc 2017; 139:5756-5767. [PMID: 28388066 DOI: 10.1021/jacs.6b11274] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Luminescent lanthanide (Ln(III)) complexes with coumarin or carbostyril antennae were synthesized and their photophysical properties evaluated using steady-state and time-resolved UV-vis spectroscopy. Ligands bearing distant hydroxycoumarin-derived antennae attached through triazole linkers were modest sensitizers for Eu(III) and Tb(III), whereas ligands with 7-amidocarbostyrils directly linked to the coordination site could reach good quantum yields for multiple Ln(III), including the visible emitters Sm(III) and Dy(III), and the near-infrared emitters Nd(III) and Yb(III). The highest lanthanide-centered luminescence quantum yields were 35% (Tb), 7.9% (Eu), 0.67% (Dy), and 0.18% (Sm). Antennae providing similar luminescence intensities with 2-4 Ln-emitters were identified. Photoredox quenching of the carbostyril antenna excited states was observed for all Eu(III)-complexes and should be sensitizing in the case of Yb(III); the scope of the process extends to Ln(III) for which it has not been seen previously, specifically Dy(III) and Sm(III). The proposed process is supported by photophysical and electrochemical data. A FRET-type mechanism was identified in architectures with both distant and close antennae for all of the Lns. This mechanism seems to be the only sensitizing one at long distance and probably contributes to the sensitization at shorter distances along with the triplet pathway. The complexes were nontoxic to either bacterial or mammalian cells. Complexes of an ester-functionalized ligand were taken up by bacteria in a concentration-dependent manner. Our results suggest that the effects of FRET and photoredox quenching should be taken into consideration when designing luminescent Ln complexes. These results also establish these Ln(III)-complexes for multiplex detection beyond the available two-color systems.
Collapse
Affiliation(s)
- Daniel Kovacs
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University , Uppsala 75120, Sweden
| | - Xi Lu
- Department of Engineering Sciences, Ångström Laboratory, Box 534, Uppsala University , Uppsala 75121, Sweden
| | - Lívia S Mészáros
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University , Uppsala 75120, Sweden
| | - Marjam Ott
- Department of Engineering Sciences, Ångström Laboratory, Box 534, Uppsala University , Uppsala 75121, Sweden
| | - Julien Andres
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University , Uppsala 75120, Sweden
| | - K Eszter Borbas
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University , Uppsala 75120, Sweden
| |
Collapse
|
24
|
Ren L, Fan H, Huang D, Yuan D, Di CA, Zhu X. Dithienoindophenines: p-Type Semiconductors Designed by Quinoid Stabilization for Solar-Cell Applications. Chemistry 2016; 22:17136-17140. [DOI: 10.1002/chem.201603112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Longbin Ren
- CAS Key Laboratory of Organic Solids; Beijing National Laboratory for Molecular Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Haijun Fan
- CAS Key Laboratory of Organic Solids; Beijing National Laboratory for Molecular Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Dazhen Huang
- CAS Key Laboratory of Organic Solids; Beijing National Laboratory for Molecular Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Dafei Yuan
- CAS Key Laboratory of Organic Solids; Beijing National Laboratory for Molecular Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Chong-an Di
- CAS Key Laboratory of Organic Solids; Beijing National Laboratory for Molecular Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Xiaozhang Zhu
- CAS Key Laboratory of Organic Solids; Beijing National Laboratory for Molecular Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| |
Collapse
|
25
|
Momeni MR. Intramolecular Singlet Fission in Quinoidal Bi- and Tetrathiophenes: A Comparative Study of Low-Lying Excited Electronic States and Potential Energy Surfaces. J Chem Theory Comput 2016; 12:5067-5075. [PMID: 27623317 DOI: 10.1021/acs.jctc.6b00737] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quinoidal bithiophene has recently been introduced ( Varnavski, O. et al. J. Phys. Chem. Lett. 2015 , 6 , 1375 - 1384 ) as a very promising isolated organic compound for intramolecular singlet fission (iSF) with an outstanding SF quantum yield of ≈180%. In contrast, another recent study ( Ren, L. et al. J. Am. Chem. Soc. 2015 , 137 , 11294 - 11302 ) revealed that quinoidal tetrathiophenes have no activity in the iSF process and are strong fluorophores instead, with measured fluorescent quantum yields up to 53.1%. Using DFT and TD-DFT methods, the authors of the second contribution attributed the marked differences between these compounds to faster reverse T2 → S1 intersystem crossing processes in the tetrathiophenes. To address this unprecedented discrepancy, quinoidal bithiophene and tetrathiophene compounds and their derivatives are carefully examined using the CASPT2 technique. Theoretical evidence is provided through detailed investigation of CASPT2 potential energy surfaces of different singlet and triplet states involved in the iSF process. Through comparison of the CASPT2 results with the CASSCF and RAS-2SF data, it is found that the dynamic electron correlation present in the CASPT2 method plays a crucial role for correct description of the multiexciton nature of the triplet pair 1[TT] state in quinoidal bi- and tetrathiophenes. Effects of substitution and structural modification on iSF activity of these compounds are also examined using the CASPT2 method where the obtained results are in accordance with previous experimental predictions. These results contribute to a better understanding of the iSF mechanism in quinoidal systems which could be relevant for designing new iSF active compounds.
Collapse
Affiliation(s)
- Mohammad R Momeni
- Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
26
|
Cekli S, Winkel RW, Alarousu E, Mohammed OF, Schanze KS. Triplet excited state properties in variable gap π-conjugated donor-acceptor-donor chromophores. Chem Sci 2016; 7:3621-3631. [PMID: 29997854 PMCID: PMC6008705 DOI: 10.1039/c5sc04578a] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/12/2016] [Indexed: 11/21/2022] Open
Abstract
A series of variable band-gap donor-acceptor-donor (DAD) chromophores capped with platinum(ii) acetylide units has been synthesized and fully characterized by electrochemical and photophysical methods, with particular emphasis placed on probing triplet excited state properties. A counter-intuitive trend of increasing fluorescence quantum efficiency and lifetime with decreasing excited state energy (optical gap) is observed across the series of DAD chromophores. Careful study of the excited state dynamics, including triplet yields (as inferred from singlet oxygen sensitization), reveals that the underlying origin of the unusual trend in the fluorescence parameters is that the singlet-triplet intersystem crossing rate and yield decrease with decreasing optical gap. It is concluded that the rate of intersystem crossing decreases as the LUMO is increasingly localized on the acceptor unit in the DAD chromophore, and this result is interpreted as arising because the extent of spin-orbit coupling induced by the platinum heavy metal centers decreases as the LUMO is more localized on the acceptor. In addition to the trend in intersystem crossing, the results show that the triplet decay rates follow the Energy Gap Law correlation over a 1.8 eV range of triplet energy and 1000-fold range of triplet decay rates. Finally, femtosecond transient absorption studies for the DAD chromophores reveals a strong absorption in the near-infrared region which is attributed to the singlet excited state. This spectral band appears to be general for DAD chromophores, and may be a signature of the charge transfer (CT) singlet excited state.
Collapse
Affiliation(s)
- Seda Cekli
- Department of Chemistry and Center for Macromolecular Science and Engineering , University of Florida , Gainesville , Florida 32611-7200 , USA .
| | - Russell W Winkel
- Department of Chemistry and Center for Macromolecular Science and Engineering , University of Florida , Gainesville , Florida 32611-7200 , USA .
| | - Erkki Alarousu
- Solar and Photovoltaics Engineering Research Center , Division of Physical Sciences and Engineering , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Solar and Photovoltaics Engineering Research Center , Division of Physical Sciences and Engineering , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Kirk S Schanze
- Department of Chemistry and Center for Macromolecular Science and Engineering , University of Florida , Gainesville , Florida 32611-7200 , USA .
| |
Collapse
|
27
|
Chen S, Lee KC, Zhang ZG, Kim DS, Li Y, Yang C. An Indacenodithiophene–Quinoxaline Polymer Prepared by Direct Arylation Polymerization for Organic Photovoltaics. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02324] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Shanshan Chen
- Department
of Energy Engineering, School of Energy and Chemical Engineering,
Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, South Korea
| | - Kyu Cheol Lee
- Department
of Energy Engineering, School of Energy and Chemical Engineering,
Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, South Korea
| | - Zhi-Guo Zhang
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dong Suk Kim
- KIER-UNIST
Advanced Center for Energy, Korea Institute of Energy Research, Ulsan 689-798, South Korea
| | - Yongfang Li
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Changduk Yang
- Department
of Energy Engineering, School of Energy and Chemical Engineering,
Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, South Korea
| |
Collapse
|
28
|
Kar H, Ghosh S. J-aggregation of a sulfur-substituted naphthalenediimide (NDI) with remarkably bright fluorescence. Chem Commun (Camb) 2016; 52:8818-21. [DOI: 10.1039/c6cc03493d] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This communication reveals the H-bonding driven supramolecular assembly of a sulfur-substituted naphthalenediimide leading to the formation of very strong (Tg > 90 °C) organogel in aliphatic hydrocarbons.
Collapse
Affiliation(s)
- Haridas Kar
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Suhrit Ghosh
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|