1
|
Suenaga K, Ito S, Tanaka K, Chujo Y. Modulation of Properties by Ion Changing Based on Luminescent Ionic Salts Consisting of Spirobi(boron ketoiminate). Molecules 2022; 27:molecules27113438. [PMID: 35684375 PMCID: PMC9182478 DOI: 10.3390/molecules27113438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
We report development of luminescent ionic salts consisting of the boron ketoiminate structure, which is one of the robust skeletons for expressing aggregation-induced emission (AIE) properties. From the formation of the boron-centered spiro structure with the ketoiminate ligands, we obtained stable ionic salts with variable anions. Since the ionic salts show Tms below 100 °C, it was shown that these salts can be classified as an ionic liquid. By using PF6 anion, the single crystal—which is applicable for X-ray crystallography—was obtained. According to the optical measurements, it was proposed that electronic interaction should occur through the boron center. Moreover, intense emission was observed both in solution and solid. Finally, we demonstrated that the emission color of the PF6 salt was altered from crystal to amorphous by adding mechanical forces. Based on boron complexation and intrinsic solid-state luminescent characters, we achieved obtainment of emissive ionic materials with environmental responsivity.
Collapse
Affiliation(s)
| | | | - Kazuo Tanaka
- Correspondence: ; Tel.: +81-75-383-2604; Fax: +81-75-383-2605
| | | |
Collapse
|
2
|
Ahmed J, Mandal SK. Phenalenyl Radical: Smallest Polycyclic Odd Alternant Hydrocarbon Present in the Graphene Sheet. Chem Rev 2022; 122:11369-11431. [PMID: 35561295 DOI: 10.1021/acs.chemrev.1c00963] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Phenalenyl, a zigzag-edged odd alternant hydrocarbon unit can be found in the graphene nanosheet. Hückel molecular orbital calculations indicate the presence of a nonbonding molecular orbital (NBMO), which originates from the linear combination of atomic orbitals (LCAO) arising from 13 carbon atoms of the phenalenyl molecule. Three redox states (cationic, neutral radical, and anionic) of the phenalenyl-based molecules were attributed to the presence of this NBMO. The cationic state can undergo two consecutive reductions to result in neutral radical and anionic states, stepwise, respectively. The phenalenyl-based radicals were found as crucial building blocks and attracted the attention of various research fields such as organic synthesis, material science, computation, and device physics. From 2012 onward, a strategy was devised using the cationic state of phenalenyl-based molecules and in situ generated phenalenyl radicals, which created a new domain of catalysis. The in situ generated phenalenyl radicals were utilized for the single electron transfer (SET) process resulting in redox catalysis. This emerging range of applications rejuvenates the more than six decades-old phenalenyl chemistry. This review captures such developments ranging from fundamental understanding to multidirectional applications of phenalenyl-based radicals.
Collapse
Affiliation(s)
- Jasimuddin Ahmed
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur 741246, India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur 741246, India
| |
Collapse
|
3
|
Gao FW, Li SB, Xu HL, Su ZM. Periodic B- and N-doped phenalenyl π-aggregates: unexpected nonlinear optical properties by tuning pancake π-π bonding. Phys Chem Chem Phys 2021; 23:23998-24003. [PMID: 34664046 DOI: 10.1039/d1cp03540a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Phenalenyl (PLY) and its derivatives could form one-dimensional π-aggregates through pancake π-π bonding, which would lead to exotic optoelectronic properties. We will highlight the key aspects of the PLY derivatives from the design strategies to exploration of the electronic properties. Here, we primarily construct alternating boron (B)- and nitrogen (N)-doped PLY π-aggregates: dimer[12], trimer[12-1], trimer[12-2], tetramer[12]2, pentamer[12]2-1, pentamer[12]2-2, and hexamer[12]3. The geometric and electronic structures show that the short intermolecular distances of the π-aggregates drive the formation of pancake π-π bonding. Significantly, the molecular structures show periodic changes in the π-aggregates, but the first hyperpolarizabilities (βtot) present unexpected changes, which are found to increase sharply with increasing even layer thickness due to intermolecular charge transfer. The βtot value of hexamer[12]3 (5.72 × 104 a.u.) is 6.4 times that of tetramer[12]2 (8.95 × 103 a.u.), and is 22.4 times that of dimer[12] (2.55 × 103 a.u.). Thus, constructing π-aggregates can significantly improve the second-order NLO response, which is mainly due to intermolecular charge transfer through pancake π-π bonding of the interlayers.
Collapse
Affiliation(s)
- Feng-Wei Gao
- School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China. .,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Shi-Bin Li
- School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China.
| | - Hong-Liang Xu
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China.
| | - Zhong-Min Su
- School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China. .,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| |
Collapse
|
4
|
|
5
|
2,7-Di-tert-butyl-9,9′(10H,10′H)-spirobiacridine-10,10′-dioxyl as a ground triplet biradical: The role of tert-butylation. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Zhong R, Gao F, Xu H, Su Z. Strong Pancake 2e/12c Bond in π‐Stacking Phenalenyl Derivatives Avoiding Bond Conversion. Chemphyschem 2019; 20:1879-1884. [DOI: 10.1002/cphc.201900280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/22/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Rong‐Lin Zhong
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical ChemistryJilin University Changchun 130023 P. R. China
| | - Feng‐Wei Gao
- Institute of Functional Material Chemistry, National & Local United Engineering Laboratory for Power Batteries, Department of ChemistryNortheast Normal University Changchun 130024 P. R. China
- School of Chemistry & Environmental EngineeringChangchun University of Science and Technology Changchun 130012 P. R. China
| | - Hong‐Liang Xu
- Institute of Functional Material Chemistry, National & Local United Engineering Laboratory for Power Batteries, Department of ChemistryNortheast Normal University Changchun 130024 P. R. China
| | - Zhong‐Min Su
- Institute of Functional Material Chemistry, National & Local United Engineering Laboratory for Power Batteries, Department of ChemistryNortheast Normal University Changchun 130024 P. R. China
- School of Chemistry & Environmental EngineeringChangchun University of Science and Technology Changchun 130012 P. R. China
| |
Collapse
|
7
|
Kanetomo T, Ichihashi K, Enomoto M, Ishida T. Ground Triplet Spirobiradical: 2,2',7,7'-Tetra( tert-butyl)-9,9'(10 H,10' H)-spirobiacridine-10,10'-dioxyl. Org Lett 2019; 21:3909-3912. [PMID: 30973232 DOI: 10.1021/acs.orglett.9b00901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new spirobiradical, 2,2',7,7'-tetra( tert-butyl)-9,9'(10 H,10' H)-spirobiacridine-10,10'-dioxyl, was prepared. The crystallographic analysis clarified the D2 d molecular structure, suggesting the degeneracy of SOMOs. The magnetic study revealed that intramolecular ferromagnetic coupling was operative with 2 J/ kB = +23(1) K. To the best of our knowledge, the ferromagnetic coupling parameter is the largest ever reported for a paramagnetic spiro compound.
Collapse
Affiliation(s)
- Takuya Kanetomo
- Tokyo University of Science , 1-3 Kagurazaka , Shinjuku-ku, Tokyo 162-8601 , Japan
| | - Kana Ichihashi
- The University of Electro-Communications , 1-5-1 Chofugaoka , Chofu, Tokyo 182-8585 , Japan
| | - Masaya Enomoto
- Tokyo University of Science , 1-3 Kagurazaka , Shinjuku-ku, Tokyo 162-8601 , Japan
| | - Takayuki Ishida
- The University of Electro-Communications , 1-5-1 Chofugaoka , Chofu, Tokyo 182-8585 , Japan
| |
Collapse
|
8
|
Stekovic D, Bag P, Shankhari P, Fokwa BPT, Itkis ME. Effect of Substitution on the Hysteretic Phase Transition in a Bistable Phenalenyl-Based Neutral Radical Molecular Conductor. Chemistry 2019; 25:4166-4174. [PMID: 30588670 DOI: 10.1002/chem.201805816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Indexed: 11/10/2022]
Abstract
The ability to tune the physical properties of bistable organic functional materials by means of chemistry can facilitate their development for molecular electronic switching components. The butylamine-containing biphenalenyl boron neutral radical, [Bu]2 B, crystalline compound has recently attracted significant attention by displaying a hysteretic phase transition accompanied by simultaneous bistability in magnetic, electrical, and optical properties close to room temperature. In this report, substitutional doping was applied to [Bu]2 B by crystallizing solid solutions of bistable [Bu]2 B and its non-radical-containing counterpart [Bu]2 Be. With increasing doping degree, the hysteretic phase transition is gradually suppressed in terms of reducing the height, but conserves the width of the hysteresis loop as observed through magnetic susceptibility and electrical conductivity measurements. At the critical doping level of about 6 %, the abrupt transformation of the crystal structure to that of the pure [Bu]2 Be crystal packing was observed, accompanied by a complete collapse of the hysteresis loop. Further study of the structure-properties relationships of bistable neutral radical conductors based on the [Bu]2 B host can be conducted utilizing a variety of biphenalenyl-based molecular conductors.
Collapse
Affiliation(s)
- Dejan Stekovic
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA.,Center for Nanoscale Science and Engineering, University of California, Riverside, Riverside, CA, 92521, USA
| | - Pradip Bag
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA.,Center for Nanoscale Science and Engineering, University of California, Riverside, Riverside, CA, 92521, USA
| | - Pritam Shankhari
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Boniface P T Fokwa
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA.,Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, 92521, USA
| | - Mikhail E Itkis
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA.,Center for Nanoscale Science and Engineering, University of California, Riverside, Riverside, CA, 92521, USA.,Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
9
|
Gao F, Zhong R, Xu H, Su Z. Constructing Stable π‐Dimers: Two Parallel Pancake π–π Bonds. Chemistry 2018; 24:16919-16924. [DOI: 10.1002/chem.201804598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Feng‐Wei Gao
- Institute of Functional Material Chemistry, National & Local United Engineering Laboratory for Power Batteries Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Rong‐Lin Zhong
- Institute of Theoretical Chemistry Jilin University Changchun 130023 P. R. China
| | - Hong‐Liang Xu
- Institute of Functional Material Chemistry, National & Local United Engineering Laboratory for Power Batteries Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Zhong‐Min Su
- Institute of Functional Material Chemistry, National & Local United Engineering Laboratory for Power Batteries Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
- School of Chemistry & Environmental Engineering Changchun University of Science and Technology Changchun 130012 P. R. China
| |
Collapse
|
10
|
Gao FW, Xu HL, Muhammad S, Su ZM. Stimulating intra- and intermolecular charge transfer and nonlinear optical response for biphenalenyl biradicaloid dimer under an external electric field. Phys Chem Chem Phys 2018; 20:18699-18706. [DOI: 10.1039/c8cp00416a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
External electric fields were found to induce intra- and intermolecular charge transfer and strengthen the second-order nonlinear optical responses of π-dimers.
Collapse
Affiliation(s)
- Feng-Wei Gao
- Institute of Functional Material Chemistry
- National & Local United Engineering Laboratory for Power Batteries
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
| | - Hong-Liang Xu
- Institute of Functional Material Chemistry
- National & Local United Engineering Laboratory for Power Batteries
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
| | - Shabbir Muhammad
- Department of Physics
- College of Science
- King Khalid University
- Abha 61413
- Saudi Arabia
| | - Zhong-Min Su
- Institute of Functional Material Chemistry
- National & Local United Engineering Laboratory for Power Batteries
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
| |
Collapse
|
11
|
Fumanal M, Novoa JJ, Ribas-Arino J. Origin of Bistability in the Butyl-Substituted Spirobiphenalenyl-Based Neutral Radical Material. Chemistry 2017; 23:7772-7784. [DOI: 10.1002/chem.201700946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Maria Fumanal
- Departament de Química Física and IQTCUB; Facultat de Química; Universitat de Barcelona; Av. Diagonal 645 08028 Barcelona Spain
- Current address: Laboratoire de Chimie Quantique; Institut de Chimie UMR7177; CNRS-Université de Strasbourg; 1 Rue Blaise Pascal BP 296/R8 67007 Strasbourg France
| | - Juan J. Novoa
- Departament de Química Física and IQTCUB; Facultat de Química; Universitat de Barcelona; Av. Diagonal 645 08028 Barcelona Spain
| | - Jordi Ribas-Arino
- Departament de Química Física and IQTCUB; Facultat de Química; Universitat de Barcelona; Av. Diagonal 645 08028 Barcelona Spain
| |
Collapse
|
12
|
Gautam R, Astashkin AV, Chang TM, Shearer J, Tomat E. Interactions of Metal-Based and Ligand-Based Electronic Spins in Neutral Tripyrrindione π Dimers. Inorg Chem 2017; 56:6755-6762. [PMID: 28497967 DOI: 10.1021/acs.inorgchem.7b01030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability of tetrapyrrolic macrocycles to stabilize unpaired electrons and engage in π-π interactions is essential for many electron-transfer processes in biology and materials engineering. Herein, we demonstrate that the formation of π dimers is recapitulated in complexes of a linear tripyrrolic analogue of naturally occurring pigments derived from heme decomposition. Hexaethyltripyrrindione (H3TD1) coordinates divalent transition metals (i.e., Pd, Cu, Ni) as a stable dianionic radical and was recently described as a robust redox-active ligand. The resulting planar complexes, which feature a delocalized ligand-based electronic spin, are stable at room temperature in air and support ligand-based one-electron processes. We detail the dimerization of neutral tripyrrindione complexes in solution through electron paramagnetic resonance (EPR) and visible absorption spectroscopic methods. Variable-temperature measurements using both EPR and absorption techniques allowed determination of the thermodynamic parameters of π dimerization, which resemble those previously reported for porphyrin radical cations. The inferred electronic structure, featuring coupling of ligand-based electronic spins in the π dimers, is supported by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Ritika Gautam
- Department of Chemistry and Biochemistry, The University of Arizona , Tucson, Arizona 85721, United States
| | - Andrei V Astashkin
- Department of Chemistry and Biochemistry, The University of Arizona , Tucson, Arizona 85721, United States
| | - Tsuhen M Chang
- Department of Chemistry and Biochemistry, The University of Arizona , Tucson, Arizona 85721, United States
| | - Jason Shearer
- Department of Chemistry, University of Nevada , Reno, Nevada 89577, United States
| | - Elisa Tomat
- Department of Chemistry and Biochemistry, The University of Arizona , Tucson, Arizona 85721, United States
| |
Collapse
|
13
|
Fumanal M, Deumal M. The quest for rationalizing the magnetism in purely organic semiquinone-bridged bisdithiazolyl molecular magnets. Phys Chem Chem Phys 2016; 18:20738-49. [PMID: 27412491 DOI: 10.1039/c6cp02699k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Semiquinone-bridged bisdithiazolyl-based radicals (XBBO) are appealing purely organic magnetic building blocks for the synthesis of new functional materials. Remarkably, for the phenyl-derivative PhBBO, the rationalization of its magnetism becomes a proof of concept that DFT can dramatically fail to evaluate JAB magnetic interactions between purely organic radical pairs. Instead, wavefunction-based methods are required. Once JAB's are fully characterized, the magnetic topology of PhBBO is disclosed to consist of ferromagnetic FM π-stacks that are very weakly coupled (by FM and AFM JAB interactions). The magnetic susceptibility χT(T) and magnetization M(H) of PhBBO are then calculated using a first-principles bottom-up approach. The study of the unit cell contraction upon cooling from room temperature to zero-Kelvin is relevant to propose a suitable model for the phase transition that occurs at 4.5 K. A simplistic picture tells us that the antiparallel-aligned 1D-FM-chains convert into domains of weakly either FM- or AFM-coupled 1D-FM-chains. Accordingly, the presence of these domains may introduce geometrical spin frustration below 4.5 K.
Collapse
Affiliation(s)
- Maria Fumanal
- Departament de Ciència de Materials i Química Física and IQTCUB, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain. and Laboratoire de Chimie Quantique, Université de Strasbourg, 4 rue Blaise Pascal, F-67000 Strasbourg, France
| | - Mercè Deumal
- Departament de Ciència de Materials i Química Física and IQTCUB, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain.
| |
Collapse
|