1
|
Lu F, Kitanosono T, Yamashita Y, Kobayashi S. Small-Molecule-Based Strategy for Mitigating Deactivation of Chiral Lewis Acid Catalysis. J Am Chem Soc 2024; 146:22918-22922. [PMID: 39106440 DOI: 10.1021/jacs.4c07449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Chiral Lewis acid catalysts are widely used in organic synthesis due to their diverse applications. However, their high Lewis acidity makes them susceptible to deactivation by basic Lewis reagents and water. Here, we present a novel strategy for mitigating this deactivation using small molecules. By incorporating weakly coordinating anions into the secondary coordination sphere of the metal center, we designed a highly reusable chiral Lewis acid complex. This complex exhibits excellent thermal stability and allows for the use of electron-poor nucleophiles in the reactions. Spectroscopic and titration studies confirmed the robustness of the optimized complex. This work provides valuable insights for overcoming the limitations of chiral Lewis acids in Lewis basic environments, expanding their potential for chemical synthesis.
Collapse
Affiliation(s)
- Fangqiu Lu
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taku Kitanosono
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuhiro Yamashita
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shu Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
KITANOSONO T, KAWASE T, YAMASHITA Y, KOBAYASHI S. Highly enantioselective hydroxymethylation of unmodified α-substituted aryl ketones in water. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:328-333. [PMID: 37673660 PMCID: PMC10749394 DOI: 10.2183/pjab.99.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023]
Abstract
Catalytic asymmetric direct-type aldol reactions of ketones with aldehydes are a perennial puzzle for organic chemists. Notwithstanding the emergence of a myriad of chiral catalysts to address the inherent reversibility of the aldol products, a general method to access acyclic α-chiral ketones from prochiral aryl ketones has remained an unmet synthetic challenge. The approach outlined herein is fundamentally different to that used in conventional catalysis, which typically commences with an α-proton abstraction by a Brønsted base. The use of a chiral 2,2'-bipyridine scandium complex enabled the hydroxymethylation of propiophenone to be run under base-free conditions, which avails effectual suppression of hydrolytic deactivation of the Lewis acid catalyst. Intriguingly, the use of water as a reaction medium had an overriding effect on the progress of the reaction. The sagacious selection of sodium dodecyl sulfate and lithium dodecyl sulfate as surfactants allowed a variety of propiophenone derivatives to react in a highly enantioselective manner.
Collapse
Affiliation(s)
- Taku KITANOSONO
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomoya KAWASE
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuhiro YAMASHITA
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shū KOBAYASHI
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
3
|
Sharma H, Tewari T, Chikkali SH, Vanka K. Computational Insights into the Iron-Catalyzed Magnesium-Mediated Hydroformylation of Alkynes. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
Sameera W, Takeda Y, Ohki Y. Transition metal catalyzed cross-coupling and nitrogen reduction reactions: Lessons from computational studies. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Zheng L, Yan Z, Ren Q. DFT study on the mechanisms of α‐C cross coupling of π‐bonds catalyzed by iron complexes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lin Zheng
- Department of Chemistry, Innovative Drug Research Center Shanghai University Shanghai China
| | - Zhengwei Yan
- Department of Chemistry, Innovative Drug Research Center Shanghai University Shanghai China
| | - Qinghua Ren
- Department of Chemistry, Innovative Drug Research Center Shanghai University Shanghai China
| |
Collapse
|
6
|
Li X, Li Y, Sun Y, Meng L, Zeng Y. BF 3 -Catalyzed Mukaiyama aldol reaction of acetaldehyde with 2-siloxy-1-propene. J Comput Chem 2021; 43:402-412. [PMID: 34931704 DOI: 10.1002/jcc.26800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/12/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022]
Abstract
The Mukaiyama aldol reaction is a powerful tool for the construction of the carbon-carbon bond and the formation of β-hydroxycarbonyl compounds. In this work, the mechanism of acetaldehyde and 2-siloxy-1-propene both in the absence and presence of the catalyst BF3 was investigated based on density functional theory. The mechanism includes two major steps: the formation of the carbon-carbon bond and the removal of SiH3 /BF2 by water. The energy barrier of the carbon-carbon bond formation process in the presence of BF3 is obviously lower, indicating that BF3 is a good catalyst for this reaction. In terms of molecular configuration, the different tensions between the five-membered-ring and six-membered-ring can be considered as the possible reason for the catalytic effect of BF3 . In terms of charge transfer, the charges of natural population analysis in the carbon atom of the carbonyl group in acetaldehyde becomes more positive, which is easier to attack by nucleophiles and promote the nucleophilic process.
Collapse
Affiliation(s)
- Xuening Li
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, China
| | - Ying Li
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, China
| | - Yuanyuan Sun
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, China
| | - Lingpeng Meng
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, China.,Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
7
|
Kitanosono T, Kobayashi S. Synthetic Organic "Aquachemistry" that Relies on Neither Cosolvents nor Surfactants. ACS CENTRAL SCIENCE 2021; 7:739-747. [PMID: 34079894 PMCID: PMC8161484 DOI: 10.1021/acscentsci.1c00045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Indexed: 06/12/2023]
Abstract
There is a growing awareness of the underlying power of catalytic reactions in water that is not limited to innate sustainability alone. Some Type III reactions are catalytically accelerated without dissolution of reactants and are occasionally highly selective, as shown by comparison with the corresponding reactions run in organic solvents or under solvent-free conditions. Such catalysts are highly diversified, including hydrophilic, lipophilic, and even solid catalysts. In this Outlook, we highlight the impressive characteristics of illustrative catalysis that is exerted despite the immiscibility of the substrates and reveal the intrinsic benefits of these enigmatic reactions for synthetic organic chemistry, albeit with many details remaining unclear. We hope that this brief introduction to the expanding field of synthetic organic "aquachemistry" will inspire organic chemists to use the platform to invent new transformations.
Collapse
Affiliation(s)
- Taku Kitanosono
- Department of Chemistry,
School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shu Kobayashi
- Department of Chemistry,
School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Chiou MF, Xiong H, Li Y, Bao H, Zhang X. Revealing the Iron-Catalyzed β-Methyl Scission of tert-Butoxyl Radicals via the Mechanistic Studies of Carboazidation of Alkenes. Molecules 2020; 25:molecules25051224. [PMID: 32182775 PMCID: PMC7179474 DOI: 10.3390/molecules25051224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/01/2022] Open
Abstract
We describe here a mechanistic study of the iron-catalyzed carboazidation of alkenes involving an intriguing metal-assisted β-methyl scission process. Although t-BuO radical has frequently been observed in experiments, the β-methyl scission from a t-BuO radical into a methyl radical and acetone is still broadly believed to be thermodynamically spontaneous and difficult to control. An iron-catalyzed β-methyl scission of t-BuO is investigated in this work. Compared to a free t-BuO radical, the coordination at the iron atom reduces the activation energy for the scission from 9.3 to 3.9 ~ 5.2 kcal/mol. The low activation energy makes the iron-catalyzed β-methyl scission of t-BuO radicals almost an incomparably facile process and explains the selective formation of methyl radicals at low temperature in the presence of some iron catalysts. In addition, a radical relay process and an outer-sphere radical azidation process in the iron-catalyzed carboazidation of alkenes are suggested by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Mong-Feng Chiou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, Fujian, China; (M.-F.C.); (H.X.); (Y.L.)
| | - Haigen Xiong
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, Fujian, China; (M.-F.C.); (H.X.); (Y.L.)
- School of Chemistry and Chemical Engineering of University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, Fujian, China; (M.-F.C.); (H.X.); (Y.L.)
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, Fujian, China; (M.-F.C.); (H.X.); (Y.L.)
- School of Chemistry and Chemical Engineering of University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (H.B.); (X.Z.); Tel.: +86-0591-63179307 (H.B.); +86-0755-26037219 (X.Z.)
| | - Xinhao Zhang
- Lab of Computational Chemistry and Drug Design, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Correspondence: (H.B.); (X.Z.); Tel.: +86-0591-63179307 (H.B.); +86-0755-26037219 (X.Z.)
| |
Collapse
|
9
|
Applications of Bolm's Ligand in Enantioselective Synthesis. Molecules 2020; 25:molecules25040958. [PMID: 32093413 PMCID: PMC7070505 DOI: 10.3390/molecules25040958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 11/16/2022] Open
Abstract
One pathway for the preparation of enantiomerically pure compounds from prochiral substrates is the use of metal complex catalysis with chiral ligands. Compared to the other frequently used chiral ligands, chiral 2,2'-bipyridines have been underexploited, despite the data indicating that such ligands have considerable potential in synthetic chemistry. One of those is the so-called Bolm's ligand, a compound possessing chiral alcohol moieties in the side chains attached to the 2,2'-bipyridine scaffold. Various metal salts have been used in combination with Bolm's ligand as potent catalysts able to bring about enantioselective alkylations, allylations, conjugate additions, desymmetrization of meso-epoxides, aldol reactions, etc. This review aims to summarize Bolm's ligand applications in the area of enantioselective synthesis over the last three decades since its preparation.
Collapse
|
10
|
Artificial Force-Induced Reaction Method for Systematic Elucidation of Mechanism and Selectivity in Organometallic Reactions. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Cozzi PG, Gualandi A, Potenti S, Calogero F, Rodeghiero G. Asymmetric Reactions Enabled by Cooperative Enantioselective Amino- and Lewis Acid Catalysis. Top Curr Chem (Cham) 2019; 378:1. [PMID: 31761979 DOI: 10.1007/s41061-019-0261-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/22/2019] [Indexed: 01/04/2023]
Abstract
Organocatalysis-the branch of catalysis featuring small organic molecules as the catalysts-has, in the last decade, become of central importance in the field of asymmetric catalysis, so much that it is now comparable to metal catalysis and biocatalysis. Organocatalysis is rationalized and classified by a number of so-called activation modes, based on the formation of a covalent or not-covalent intermediate between the organocatalyst and the organic substrate. Among all the organocatalytic activation modes, enamine and iminium catalysis are widely used for the practical preparation of valuable products and intermediates, both in academic and industrial contexts. In both cases, chiral amines are employed as catalysts. Enamine activation mode is generally employed in the reaction with electrophiles, while nucleophiles require the iminium activation mode. Commonly, in both modes, the reaction occurs through well-organized transitions states. A large variety of partners can react with enamines and iminium ions, due to their sufficient nucleophilicity and electrophilicity, respectively. However, despite the success, organocatalysis still suffers from narrow scopes and applications. Multicatalysis is a possible solution for these drawbacks because the two different catalysts can synergistically activate the substrates, with a simultaneous activation of the two different reaction partners. In particular, in this review we will summarize the reported processes featuring Lewis acid catalysis and organocatalytic activation modes synergically acting and not interfering with each other. We will focus our attention on the description of processes in which good results cannot be achieved independently by organocatalysis or Lewis acid catalysis. In these examples of cooperative dual catalysis, a number of new organic transformations have been developed. The review will focus on the possible strategies, the choice of the Lewis acid and the catalytic cycles involved in the effective reported combination. Additionally, some important key points regarding the rationale for the effective combinations will be also included. π-Activation of organic substrates by Lewis acids, via formation of electrophilic intermediates, and their reaction with enamines will be also discussed in this review.
Collapse
Affiliation(s)
- Pier Giorgio Cozzi
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum, Università di Bologna, Via Selmi 2, Bologna, Italy.
| | - Andrea Gualandi
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum, Università di Bologna, Via Selmi 2, Bologna, Italy
| | - Simone Potenti
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Francesco Calogero
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum, Università di Bologna, Via Selmi 2, Bologna, Italy
| | - Giacomo Rodeghiero
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum, Università di Bologna, Via Selmi 2, Bologna, Italy
- Cyanagen Srl, Via Stradelli Guelfi 40/C, 40138, Bologna, Italy
| |
Collapse
|
12
|
Miyazaki A, Hatanaka M. The Origins of the Stereoselectivity and Enantioswitch in the Rare‐Earth‐Catalyzed Michael Addition: A Computational Study. ChemCatChem 2019. [DOI: 10.1002/cctc.201900555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Aya Miyazaki
- Graduate School of Material ScienceNara Institute of Science and Technology 8916-5, Takayamacho, Ikoma, Nara 630-0192 Japan
| | - Miho Hatanaka
- Graduate School of Material ScienceNara Institute of Science and Technology 8916-5, Takayamacho, Ikoma, Nara 630-0192 Japan
- Institute for Research Initiatives, Division for Research Strategy, and Data Science CenterNara Institute of Science and Technology 8916-5, Takayamacho, Ikoma, Nara 630-0192 Japan
- PRESTO Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 Japan
| |
Collapse
|
13
|
Ren Q, An S, Wang Y, Tong W. Density Functional Theory Study of the Mechanisms of Iron‐Catalyzed Regioselective Anti‐Markovnikov Addition of C‐H Bonds in Aromatic Ketones to Alkenes. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Qinghua Ren
- Department of ChemistryShanghai University 99 Shangda Road Shanghai 200444 China
| | - Shanshan An
- Department of ChemistryShanghai University 99 Shangda Road Shanghai 200444 China
| | - Yuling Wang
- Department of ChemistryShanghai University 99 Shangda Road Shanghai 200444 China
| | - Weiqi Tong
- Department of ChemistryShanghai University 99 Shangda Road Shanghai 200444 China
| |
Collapse
|
14
|
Li J, Li Y, Sun J, Gui Y, Huang Y, Zha Z, Wang Z. Copper-catalyzed enantioselective Mukaiyama aldol reaction of silyl enol ethers with isatins. Chem Commun (Camb) 2019; 55:6309-6312. [PMID: 31089588 DOI: 10.1039/c9cc02159k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A highly enantioselective Mukaiyama aldol reaction of silyl enol ethers with isatins catalyzed by chiral copper complexes was developed. A series of chiral 3-substituted 3-hydroxy-2-oxindoles bearing a tetra-substituted center could be obtained exclusively with high yields (up to 95%) and excellent enantioselectivities (up to 99%). In particular, water was essential to improve the diastereoselectivity.
Collapse
Affiliation(s)
- Jindong Li
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials Science in University of Science and Technology of China, Hefei, 230026, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Sharma AK, Sameera WMC, Takeda Y, Minakata S. Computational Study on the Mechanism and Origin of the Regioselectivity and Stereospecificity in Pd/SIPr-Catalyzed Ring-Opening Cross-Coupling of 2-Arylaziridines with Arylboronic Acids. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Akhilesh K. Sharma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishishiraki-cho, 34-4, Sakyo-ku, Kyoto 606-8103, Japan
| | - W. M. C. Sameera
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan
| | - Youhei Takeda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Satoshi Minakata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Yang MC, Su MD. A Theoretical Study on the Stability of PtL 2 Complexes of Endohedral Fullerenes: The Influence of Encapsulated Ions, Cage Sizes, and Ligands. ACS OMEGA 2019; 4:3105-3113. [PMID: 31459530 PMCID: PMC6649168 DOI: 10.1021/acsomega.8b02469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/04/2019] [Indexed: 06/10/2023]
Abstract
The {η2-(X@C n )}PtL2 complexes possessing three kinds of encapsulated ions (X = F-, Ø, Li+), three various ligands (L = CO, PPh3, NHCMe), and twelve cage sizes (C60, C70, C72, C74, C76, C78, C80, C84, C86, C90, C96, C100) are theoretically examined by using the density functional theory (M06/LANL2DZ). The present computational results demonstrate that the backward-bonding orbital interactions, rather than the forward-bonding orbital interactions, play a dominant role in the stability of {η2-(X@C n )}PtL2 complexes. Additionally, our theoretical study shows that the presence of the encapsulated Li+ ion can greatly improve the stability of {η2-(X@C n )}PtL2 complexes, whereas the existence of the encapsulated F- ion can heavily reduce the stability of {η2-(X@C n )}PtL2 complexes. Moreover, the theoretical evidence strongly suggests that the backward-bonding orbital interactions as well as the stability increase in the order {η2-(X@C n )}Pt(CO)2 < {η2-(X@C n )}Pt(PPh3)2 < {η2-(X@C n )}Pt(NHCMe)2. As a result, these theoretical observations can provide experimental chemists a promising synthetic direction.
Collapse
Affiliation(s)
- Ming-Chung Yang
- Department
of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department
of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
17
|
Tafida UI, Uzairu A, Abechi SE. Mechanism and rate constant of proline-catalysed asymmetric aldol reaction of acetone and p-nitrobenzaldehyde in solution medium: Density-functional theory computation. J Adv Res 2018; 12:11-19. [PMID: 30013799 PMCID: PMC6045567 DOI: 10.1016/j.jare.2018.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/01/2018] [Accepted: 03/03/2018] [Indexed: 12/26/2022] Open
Abstract
In search of new ways to improve catalyst design, the current research focused on using quantum mechanical descriptors to investigate the effect of proline as a catalyst for mechanism and rate of asymmetric aldol reaction. A plausible mechanism of reaction between acetone and 4-nitrobenzaldehyde in acetone medium was developed using highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies calculated via density functional theory (DFT) at the 6-31G∗/B3LYP level of theory. New mechanistic steps were proposed and found to follow, with expansion, the previously reported iminium-enamine route of typical class 1 aldolase enzymes. From the elementary steps, the first step which involves a bimolecular collision of acetone and proline was considered as the rate-determining step, having the highest activation energy of 59.07 kJ mol-1. The mechanism was used to develop the rate law from which the overall rate constant was calculated and found to be 4.04×10-8dm3mol-1s-1 . The new mechanistic insights and the explicit computation of the rate constant further improve the kinetic knowledge of the reaction.
Collapse
Affiliation(s)
- Usman I Tafida
- Department of Chemistry, Faculty of Science, Abubakar Tafawa Balewa University, Bauchi, PMB: 0248 Bauchi, Bauchi State, Nigeria.,Department of Chemistry, Faculty of Science, Ahmadu Bello University, Zaria, PMB: 1044 Zaria, Kaduna State, Nigeria
| | - Adamu Uzairu
- Department of Chemistry, Faculty of Science, Ahmadu Bello University, Zaria, PMB: 1044 Zaria, Kaduna State, Nigeria
| | - Stephen E Abechi
- Department of Chemistry, Faculty of Science, Ahmadu Bello University, Zaria, PMB: 1044 Zaria, Kaduna State, Nigeria
| |
Collapse
|
18
|
Mikhailov KI, Galenko EE, Galenko AV, Novikov MS, Ivanov AY, Starova GL, Khlebnikov AF. Fe(II)-Catalyzed Isomerization of 5-Chloroisoxazoles to 2H-Azirine-2-carbonyl Chlorides as a Key Stage in the Synthesis of Pyrazole–Nitrogen Heterocycle Dyads. J Org Chem 2018; 83:3177-3187. [DOI: 10.1021/acs.joc.8b00069] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kirill I. Mikhailov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Ekaterina E. Galenko
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Alexey V. Galenko
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Mikhail S. Novikov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Alexander Yu. Ivanov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Galina L. Starova
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Alexander F. Khlebnikov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
19
|
Yamashita Y, Yasukawa T, Yoo WJ, Kitanosono T, Kobayashi S. Catalytic enantioselective aldol reactions. Chem Soc Rev 2018; 47:4388-4480. [DOI: 10.1039/c7cs00824d] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent developments in catalytic asymmetric aldol reactions have been summarized.
Collapse
Affiliation(s)
- Yasuhiro Yamashita
- Department of Chemistry
- School of Science
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Tomohiro Yasukawa
- Department of Chemistry
- School of Science
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Woo-Jin Yoo
- Department of Chemistry
- School of Science
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Taku Kitanosono
- Department of Chemistry
- School of Science
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Shū Kobayashi
- Department of Chemistry
- School of Science
- The University of Tokyo
- Bunkyo-ku
- Japan
| |
Collapse
|
20
|
Lauzon S, Keipour H, Gandon V, Ollevier T. Asymmetric Fe II-Catalyzed Thia-Michael Addition Reaction to α,β-Unsaturated Oxazolidin-2-one Derivatives. Org Lett 2017; 19:6324-6327. [PMID: 29152981 DOI: 10.1021/acs.orglett.7b03118] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A highly enantioselective FeII-catalyzed thia-Michael addition to α,β-unsaturated carbonyl derivatives was developed. The scope of the reaction was demonstrated with a selection of aromatic, heterocyclic and aliphatic thiols, and various Michael acceptors. The corresponding β-thioethers were obtained in good to excellent yields (up to 98%) and moderate to excellent enantioselectivities (up to 96:4 er). Unusual hepta-coordination of the metal and chelation to α,β-unsaturated oxazolidin-2-one derivatives allowed the construction of a coherent model rationalizing the enantioselective event. DFT calculations support the proposed model for observed stereoselectivities.
Collapse
Affiliation(s)
- Samuel Lauzon
- Département de chimie, Université Laval , 1045 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Hoda Keipour
- Département de chimie, Université Laval , 1045 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Univ. Paris-Sud, Université Paris-Saclay , Orsay 91405 Cedex, France.,Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay , 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Thierry Ollevier
- Département de chimie, Université Laval , 1045 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| |
Collapse
|
21
|
Lee W, Zhou J, Gutierrez O. Mechanism of Nakamura’s Bisphosphine-Iron-Catalyzed Asymmetric C(sp2)–C(sp3) Cross-Coupling Reaction: The Role of Spin in Controlling Arylation Pathways. J Am Chem Soc 2017; 139:16126-16133. [DOI: 10.1021/jacs.7b06377] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wes Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jun Zhou
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
22
|
Ren Q, An S, Huang Z, Wu N, Shen X. Halogen atom transfer mechanism of iron-catalyzed direct arylation to form biaryl using Density Functional Theory calculations. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.05.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Galenko EE, Bodunov VA, Galenko AV, Novikov MS, Khlebnikov AF. Fe(II)-Catalyzed Isomerization of 4-Vinylisoxazoles into Pyrroles. J Org Chem 2017; 82:8568-8579. [PMID: 28726412 DOI: 10.1021/acs.joc.7b01351] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The first synthesis of pyrroles by Fe(II)-catalyzed isomerization of 4-vinylisoxazoles is reported. 5-Alkoxy, amino, and N,N-dialkylamino-3-aryl/alkyl-4-(2-R-vinyl)isoxazoles afford 2-aryl/alkyl-5-aryl/alkyl/methoxycarbonyl-1H-pyrrol-3-carboxylic acid derivatives typically under mild conditions with cheap and available FeCl2·4H2O as a catalyst. The isomerization of 5-alkoxy/amino-3-arylisoxazoles, bearing unsaturated carbo and heterocyclic substituents at the position 4, gives the corresponding fused pyrrolecarboxylic acid derivatives in high yields. DFT calculations were used to elucidate a probable mechanism of the isomerization and explain the influence of steric congestion of the vinyl moiety on the isomerization pathway.
Collapse
Affiliation(s)
- Ekaterina E Galenko
- Saint Petersburg State University , Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034 Russia
| | - Vladimir A Bodunov
- Saint Petersburg State University , Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034 Russia
| | - Alexey V Galenko
- Saint Petersburg State University , Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034 Russia
| | - Mikhail S Novikov
- Saint Petersburg State University , Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034 Russia
| | - Alexander F Khlebnikov
- Saint Petersburg State University , Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034 Russia
| |
Collapse
|
24
|
Isegawa M, Sameera WMC, Sharma AK, Kitanosono T, Kato M, Kobayashi S, Morokuma K. Copper-Catalyzed Enantioselective Boron Conjugate Addition: DFT and AFIR Study on Different Selectivities of Cu(I) and Cu(II) Catalysts. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01152] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miho Isegawa
- Fukui
Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - W. M. C. Sameera
- Fukui
Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
- Department
of Chemistry, Faculty of Science, Hokkaido University, Kita-Ku, Sapporo 060-0810, Japan
| | - Akhilesh K. Sharma
- Fukui
Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Taku Kitanosono
- Department
of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masako Kato
- Department
of Chemistry, Faculty of Science, Hokkaido University, Kita-Ku, Sapporo 060-0810, Japan
| | - Shu̅ Kobayashi
- Department
of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiji Morokuma
- Fukui
Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
25
|
Bellam R, Sivamadhavi S, Ramakrishna S, Mambanda A, Jaganyi D, Anipindi N. Octahedral iron(II) complexes with pyridyl triazine and bipyridine ligands – synthesis, computational studies, mechanisms and kinetics with 1,10-phenanthroline and 2,2′,6,2″-terpyridine. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1324954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rajesh Bellam
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Department of Physical and Nuclear Chemistry and Chemical Oceanography, Andhra University, Visakhapatnam, India
| | - Surapureddy Sivamadhavi
- Department of Physical and Nuclear Chemistry and Chemical Oceanography, Andhra University, Visakhapatnam, India
| | - Saladi Ramakrishna
- Department of Physical and Nuclear Chemistry and Chemical Oceanography, Andhra University, Visakhapatnam, India
- Department of Chemistry, Adikavi Nannaya University, Rajamahendravaram, India
| | - Allen Mambanda
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Deogratius Jaganyi
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Nageswararao Anipindi
- Department of Physical and Nuclear Chemistry and Chemical Oceanography, Andhra University, Visakhapatnam, India
| |
Collapse
|
26
|
Yang MC, Sharma AK, Sameera WMC, Morokuma K, Su MD. Theoretical Study of Addition Reactions of L 4M(M = Rh, Ir) and L 2M(M = Pd, Pt) to Li +@C 60. J Phys Chem A 2017; 121:2665-2673. [PMID: 28301165 DOI: 10.1021/acs.jpca.7b01086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The addition reaction of M(Cl)(CO)(PPh3)2 (M = Rh, Ir) and M(PPh3)2 (M = Pd, Pt) fragments with X@C60 (X = 0, Li+) were characterized by density functional theory (DFT) and the artificial force-induced reaction (AFIR) method. The calculated free energy profiles suggested that the η2[6:6]-addition is the most favorable reaction, which is consistent with the experimental observations. In the presence of Li+ ion, the reaction is highly exothermic, leading to η2[6:6] product of L4IrLi+@C60. In contrast, an endothermic reaction was observed in the absence of a Li+ ion. The encapsulated Li+ ion can enhance the thermodynamic stability of the η2[6:6] product. The energy decomposition analysis showed that the interaction between metal fragment and X@C60 fragment is the key for the thermodynamic stability. Among the group IA and IIA metal cations, Be2+ encapsulation is the best candidate for the development of new fullerene-transition metal complexes, which will be useful for future potential applications such as solar cells, catalysts, and electronic devices.
Collapse
Affiliation(s)
- Ming-Chung Yang
- Department of Applied Chemistry, National Chiayi University , Chiayi 60004, Taiwan.,Fukui Institute for Fundamental Chemistry, Kyoto University , Kyoto 606-8103, Japan
| | - Akhilesh K Sharma
- Fukui Institute for Fundamental Chemistry, Kyoto University , Kyoto 606-8103, Japan
| | - W M C Sameera
- Fukui Institute for Fundamental Chemistry, Kyoto University , Kyoto 606-8103, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University , North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University , Kyoto 606-8103, Japan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University , Chiayi 60004, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University , Kaohsiung 80708, Taiwan
| |
Collapse
|
27
|
Bellam R, Jaganyi D. Substitution Kinetics of [Fe(PDT/PPDT)n(phen)m]2+(n≠m;n,m= 1,2) with 2,2′-Bipyridine, 1,10-Phenanthroline, and 2,2′,6,2″-Terpyridine. INT J CHEM KINET 2017. [DOI: 10.1002/kin.21066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rajesh Bellam
- School of Chemistry and Physics; University of KwaZulu-Natal; Private Bag X01 Scottsville Pietermaritzburg 3209 South Africa
| | - Deogratius Jaganyi
- School of Chemistry and Physics; University of KwaZulu-Natal; Private Bag X01 Scottsville Pietermaritzburg 3209 South Africa
| |
Collapse
|
28
|
Ren Q, Wu N, Cai Y, Fang J. DFT Study of the Mechanisms of Iron-Catalyzed Regioselective Synthesis of α-Aryl Carboxylic Acids from Styrene Derivatives and CO2. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00681] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qinghua Ren
- Department of Chemistry,
Innovative Drug Research Center, Shanghai University, 99 Shangda
Road, Shanghai 200444, People’s Republic of China
| | - Ningning Wu
- Department of Chemistry,
Innovative Drug Research Center, Shanghai University, 99 Shangda
Road, Shanghai 200444, People’s Republic of China
| | - Ying Cai
- Department of Chemistry,
Innovative Drug Research Center, Shanghai University, 99 Shangda
Road, Shanghai 200444, People’s Republic of China
| | - Jianhui Fang
- Department of Chemistry,
Innovative Drug Research Center, Shanghai University, 99 Shangda
Road, Shanghai 200444, People’s Republic of China
| |
Collapse
|
29
|
Sameera WMC, Kumar Sharma A, Maeda S, Morokuma K. Artificial Force Induced Reaction Method for Systematic Determination of Complex Reaction Mechanisms. CHEM REC 2016; 16:2349-2363. [PMID: 27492586 DOI: 10.1002/tcr.201600052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 01/07/2023]
Abstract
Nowadays, computational studies are very important for the elucidation of reaction mechanisms and selectivity of complex reactions. However, traditional computational methods usually require an estimated reaction path, mainly driven by limited experimental implications, intuition, and assumptions of stationary points. However, the artificial force induced reaction (AFIR) method in the global reaction route mapping (GRRM) strategy can be used for unbiased and automatic reaction path searches for complex reactions. In this account, we highlight applications of the AFIR method to a variety of reactions (organic, organometallic, enzymatic, and photochemical) of complex molecular systems. In addition, the AFIR method has been successfully used to rationalise the origin of stereo- and regioselectivity. The AFIR method can be applied from small to large molecular systems, and will be a very useful tool for the study of complex molecular problems in many areas of chemistry, biology, and material sciences.
Collapse
Affiliation(s)
- W M C Sameera
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, 606-8103, Japan
| | | | - Satoshi Maeda
- Department of Chemistry, Hokkaido University, Sapporo, 060-0810, Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, 606-8103, Japan.
| |
Collapse
|
30
|
Lee JM, Zhang X, Norrby PO, Helquist P, Wiest O. Stereoselectivity in (Acyloxy)borane-Catalyzed Mukaiyama Aldol Reactions. J Org Chem 2016; 81:5314-21. [PMID: 27247023 DOI: 10.1021/acs.joc.6b00594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The origin of diastereo- and enantioselectivity in a Lewis acid-catalyzed Mukaiyama aldol reaction is investigated using a combination of dispersion corrected DFT calculations and transition state force fields (TSFF) developed using the quantum guided molecular mechanics (Q2MM) method. The reaction proceeds via a closed transition structure involving a nontraditional hydrogen bond that is 3.3 kJ/mol lower in energy than the corresponding open transition structure. The correct prediction of the diastereoselectivity of a Mukaiyama aldol reaction catalyzed by the conformationally flexible Yamamoto chiral (acyloxy) borane (CAB) requires extensive conformational sampling at the transition structure, which is achieved using a Q2MM-derived TSFF, followed by DFT calculations of the low energy conformational clusters. Finally, a conceptual model for the rationalization of the observed diastereo- and enantioselectivity of the reaction using a closed transition state model is proposed.
Collapse
Affiliation(s)
- Joshua M Lee
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Xin Zhang
- Lab of Computational Chemistry and Drug Design, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School , Shenzhen 518055, China
| | - Per-Ola Norrby
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States.,Department of Chemistry and Molecular Biology, University of Gothenburg , Kemigården 4, SE 412 96 Göteborg, Sweden.,Pharmaceutical Technology and Development, AstraZeneca , Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Paul Helquist
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
31
|
Maeda S, Harabuchi Y, Takagi M, Taketsugu T, Morokuma K. Artificial Force Induced Reaction (AFIR) Method for Exploring Quantum Chemical Potential Energy Surfaces. CHEM REC 2016; 16:2232-2248. [DOI: 10.1002/tcr.201600043] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Satoshi Maeda
- Department of Chemistry, Faculty of Science; Hokkaido University; Sapporo 060-0810 Japan
| | - Yu Harabuchi
- Department of Chemistry, Faculty of Science; Hokkaido University; Sapporo 060-0810 Japan
| | - Makito Takagi
- Graduate School of Chemical Sciences and Engineering; Hokkaido University; Sapporo 060-8628 Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science; Hokkaido University; Sapporo 060-0810 Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University; Kyoto 606-8103 Japan
| |
Collapse
|
32
|
Sameera WMC, Maeda S, Morokuma K. Computational Catalysis Using the Artificial Force Induced Reaction Method. Acc Chem Res 2016; 49:763-73. [PMID: 27023677 DOI: 10.1021/acs.accounts.6b00023] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The artificial force induced reaction (AFIR) method in the global reaction route mapping (GRRM) strategy is an automatic approach to explore all important reaction paths of complex reactions. Most traditional methods in computational catalysis require guess reaction paths. On the other hand, the AFIR approach locates local minima (LMs) and transition states (TSs) of reaction paths without a guess, and therefore finds unanticipated as well as anticipated reaction paths. The AFIR method has been applied for multicomponent organic reactions, such as the aldol reaction, Passerini reaction, Biginelli reaction, and phase-transfer catalysis. In the presence of several reactants, many equilibrium structures are possible, leading to a number of reaction pathways. The AFIR method in the GRRM strategy determines all of the important equilibrium structures and subsequent reaction paths systematically. As the AFIR search is fully automatic, exhaustive trial-and-error and guess-and-check processes by the user can be eliminated. At the same time, the AFIR search is systematic, and therefore a more accurate and comprehensive description of the reaction mechanism can be determined. The AFIR method has been used for the study of full catalytic cycles and reaction steps in transition metal catalysis, such as cobalt-catalyzed hydroformylation and iron-catalyzed carbon-carbon bond formation reactions in aqueous media. Some AFIR applications have targeted the selectivity-determining step of transition-metal-catalyzed asymmetric reactions, including stereoselective water-tolerant lanthanide Lewis acid-catalyzed Mukaiyama aldol reactions. In terms of establishing the selectivity of a reaction, systematic sampling of the transition states is critical. In this direction, AFIR is very useful for performing a systematic and automatic determination of TSs. In the presence of a comprehensive description of the transition states, the selectivity of the reaction can be calculated more accurately. For relatively large molecular systems, the computational cost of AFIR searches can be reduced by using the ONIOM(QM:QM) or ONIOM(QM:MM) methods. In common practice, density functional theory (DFT) with a relatively small basis set is used for the high-level calculation, while a semiempirical approach or a force field description is used for the low-level calculation. After approximate LMs and TSs are determined, standard computational methods (e.g., DFT with a large basis set) are used for the full molecular system to determine the true LMs and TSs and to rationalize the reaction mechanism and selectivity of the catalytic reaction. The examples in this Account evidence that the AFIR method is a powerful approach for accurate prediction of the reaction mechanisms and selectivities of complex catalytic reactions. Therefore, the AFIR approach in the GRRM strategy is very useful for computational catalysis.
Collapse
Affiliation(s)
- W. M. C. Sameera
- Fukui
Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Satoshi Maeda
- Department
of Chemistry, Hokkaido University, Sapporo 060-0810, Japan
| | - Keiji Morokuma
- Fukui
Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
33
|
Gualandi A, Mengozzi L, Manoni E, Giorgio Cozzi P. From QCA (Quantum Cellular Automata) to Organocatalytic Reactions with Stabilized Carbenium Ions. CHEM REC 2016; 16:1228-43. [DOI: 10.1002/tcr.201500299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Andrea Gualandi
- Alma Mater Studiorum Università di Bologna, Dipartimento di Chimica “G. Ciamician”; Via Selmi 2 40126 Bologna Italy
| | - Luca Mengozzi
- Alma Mater Studiorum Università di Bologna, Dipartimento di Chimica “G. Ciamician”; Via Selmi 2 40126 Bologna Italy
| | - Elisabetta Manoni
- Alma Mater Studiorum Università di Bologna, Dipartimento di Chimica “G. Ciamician”; Via Selmi 2 40126 Bologna Italy
| | - Pier Giorgio Cozzi
- Alma Mater Studiorum Università di Bologna, Dipartimento di Chimica “G. Ciamician”; Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
34
|
Chen J, Guo W, Xia Y. Computational Revisit to the β-Carbon Elimination Step in Rh(III)-Catalyzed C–H Activation/Cycloaddition Reactions of N-Phenoxyacetamide and Cyclopropenes. J Org Chem 2016; 81:2635-8. [DOI: 10.1021/acs.joc.6b00003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jiajia Chen
- College of Chemistry and
Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Wei Guo
- College of Chemistry and
Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yuanzhi Xia
- College of Chemistry and
Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
35
|
Ariafard A, Ghari H, Khaledi Y, Hossein Bagi A, Wierenga TS, Gardiner MG, Canty AJ. Theoretical Investigation into the Mechanism of Cyanomethylation of Aldehydes Catalyzed by a Nickel Pincer Complex in the Absence of Base Additives. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01642] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alireza Ariafard
- Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Shahrak Gharb, Tehran, Iran
- School of Physical Sciences (Chemistry), University of Tasmania, Private Bag 75, Hobart TAS 7001, Australia
| | - Hossein Ghari
- Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Shahrak Gharb, Tehran, Iran
| | - Yousef Khaledi
- Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Shahrak Gharb, Tehran, Iran
| | - Amin Hossein Bagi
- Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Shahrak Gharb, Tehran, Iran
| | - Tanita S. Wierenga
- School of Physical Sciences (Chemistry), University of Tasmania, Private Bag 75, Hobart TAS 7001, Australia
| | - Michael G. Gardiner
- School of Physical Sciences (Chemistry), University of Tasmania, Private Bag 75, Hobart TAS 7001, Australia
| | - Allan J. Canty
- School of Physical Sciences (Chemistry), University of Tasmania, Private Bag 75, Hobart TAS 7001, Australia
| |
Collapse
|