1
|
Johansen CM, Boyd EA, Tarnopol DE, Peters JC. Photodriven Sm(III)-to-Sm(II) Reduction for Catalytic Applications. J Am Chem Soc 2024; 146:25456-25461. [PMID: 39226072 PMCID: PMC11421001 DOI: 10.1021/jacs.4c10053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The selectivity of SmI2 as a one electron-reductant motivates the development of methods for reductive Sm-catalysis. Photochemical methods for SmI2 regeneration are desired for catalytic transformations. In particular, returning SmIII-alkoxides to SmII is a crucial step for Sm-turnover in many potential applications. To this end, photochemical conditions for reduction of both SmI3 and a model SmIII-alkoxide to SmI2(THF)n are described here. The Hantzsch ester can serve either as a direct photoreductant or as the reductive quencher for an Ir-based photoredox catalyst. In contrast to previous SmIII reduction methodologies, no Lewis acidic additives or byproducts are involved, facilitating selective ligand coordination to Sm. Accordingly, SmII species can be generated photochemically from SmI3 in the presence of protic, chiral, and/or Lewis basic additives. Both the photoreductant and photoredox methods for SmI2 generation translate to intermolecular ketone-acrylate coupling as a proof-of-concept demonstration of a photodriven, Sm-catalyzed reductive cross-coupling reaction.
Collapse
Affiliation(s)
- Christian M Johansen
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Emily A Boyd
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Drew E Tarnopol
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| |
Collapse
|
2
|
Rosales J, Jiménez T, Chahboun R, Huertos MA, Millán A, Justicia J. Mild and Selective Hydrogenation of Unsaturated Compounds Using Mn/Water as a Hydrogen Gas Source. Org Lett 2024; 26:2147-2151. [PMID: 38096174 DOI: 10.1021/acs.orglett.3c03664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
A mild and highly selective reduction of alkenes and alkynes using Mn/water is described. The highly controlled generation of H2 allows the selective reduction of these compounds in the presence of labile functional groups under mild and environmentally acceptable conditions.
Collapse
Affiliation(s)
- Jennifer Rosales
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, C. U. Fuentenueva s/n, 18071 Granada, Spain
| | - Tania Jiménez
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, C. U. Fuentenueva s/n, 18071 Granada, Spain
| | - Rachid Chahboun
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, C. U. Fuentenueva s/n, 18071 Granada, Spain
| | - Miguel A Huertos
- University of Basque Country (UPV/EHU), 20018 Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Alba Millán
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, C. U. Fuentenueva s/n, 18071 Granada, Spain
| | - José Justicia
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, C. U. Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
3
|
Kang WJ, Pan Y, Ding A, Guo H. Organophotocatalytic Alkene Reduction Using Water as a Hydrogen Donor. Org Lett 2023; 25:7633-7638. [PMID: 37844204 DOI: 10.1021/acs.orglett.3c02920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The chemical activation and functionalization of water are considered an ideal method for converting earth-abundant sources into valuable chemicals. Here, we show that a non-activated free water molecule can be applied directly as a hydrogen donor to achieve the carbanion-mediated alkene reduction with 9-HTXTF serving as an organophotocatalyst. Notably, direct syntheses of high-value-added drugs and bioactive molecules are readily achieved by utilizing plentiful energy and an earth-abundant resource, showcasing the usefulness of the protocol in chemical synthesis.
Collapse
Affiliation(s)
- Wen-Jie Kang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Yuze Pan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Aishun Ding
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Hao Guo
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| |
Collapse
|
4
|
Zhang J, Mück-Lichtenfeld C, Studer A. Photocatalytic phosphine-mediated water activation for radical hydrogenation. Nature 2023; 619:506-513. [PMID: 37380779 PMCID: PMC10356606 DOI: 10.1038/s41586-023-06141-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/27/2023] [Indexed: 06/30/2023]
Abstract
The chemical activation of water would allow this earth-abundant resource to be transferred into value-added compounds, and is a topic of keen interest in energy research1,2. Here, we demonstrate water activation with a photocatalytic phosphine-mediated radical process under mild conditions. This reaction generates a metal-free PR3-H2O radical cation intermediate, in which both hydrogen atoms are used in the subsequent chemical transformation through sequential heterolytic (H+) and homolytic (H•) cleavage of the two O-H bonds. The PR3-OH radical intermediate provides an ideal platform that mimics the reactivity of a 'free' hydrogen atom, and which can be directly transferred to closed-shell π systems, such as activated alkenes, unactivated alkenes, naphthalenes and quinoline derivatives. The resulting H adduct C radicals are eventually reduced by a thiol co-catalyst, leading to overall transfer hydrogenation of the π system, with the two H atoms of water ending up in the product. The thermodynamic driving force is the strong P=O bond formed in the phosphine oxide by-product. Experimental mechanistic studies and density functional theory calculations support the hydrogen atom transfer of the PR3-OH intermediate as a key step in the radical hydrogenation process.
Collapse
Affiliation(s)
- Jingjing Zhang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Münster, Germany
| | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Münster, Germany.
| |
Collapse
|
5
|
Boyd EA, Peters JC. Highly Selective Fe-Catalyzed Nitrogen Fixation to Hydrazine Enabled by Sm(II) Reagents with Tailored Redox Potential and p Ka. J Am Chem Soc 2023. [PMID: 37376713 DOI: 10.1021/jacs.3c03352] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Controlling product selectivity in multiproton, multielectron reductions of unsaturated small molecules is of fundamental interest in catalysis. For the N2 reduction reaction (N2RR) in particular, parameters that dictate selectivity for either the 6H+/6e- product ammonia (NH3) or the 4H+/4e- product hydrazine (N2H4) are poorly understood. To probe this issue, we have developed conditions to invert the selectivity of a tris(phosphino)borane iron catalyst (Fe), with which NH3 is typically the major product of N2R, to instead favor N2H4 as the sole observed fixed-N product (>99:1). This dramatic shift is achieved by replacing moderate reductants and strong acids with a very strongly reducing but weakly acidic SmII-(2-pyrrolidone) core supported by a hexadentate dianionic macrocyclic ligand (SmII-PH) as the net hydrogen-atom donor. The activity and efficiency of the catalyst with this reagent remain high (up to 69 equiv of N2H4 per Fe and 67% fixed-N yield per H+). However, by generating N2H4 as the kinetic product, the overpotential of this Sm-driven reaction is 700 mV lower than that of the mildest reported set of NH3-selective conditions with Fe. Mechanistic data support assignment of iron hydrazido(2-) species FeNNH2 as selectivity-determining: we infer that protonation of FeNNH2 at Nβ, favored by strong acids, releases NH3, whereas one-electron reduction to FeNNH2-, favored by strong reductants such as SmII-PH, produces N2H4 via reactivity initiated at Nα. Spectroscopic data also implicate a role for SmIII-binding to anionic FeN2- (via an Fe-N2- -SmIII species) with respect to catalytic efficacy.
Collapse
Affiliation(s)
- Emily A Boyd
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| |
Collapse
|
6
|
Boekell NG, Bartulovich CO, Maity S, Flowers RA. Accessing Unusual Reactivity through Chelation-Promoted Bond Weakening. Inorg Chem 2023; 62:5040-5045. [PMID: 36912617 DOI: 10.1021/acs.inorgchem.3c00298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Highly reducing Sm(II) reductants and protic ligands were used as a platform to ascertain the relationship between low-valent metal-protic ligand affinity and degree of ligand X-H bond weakening with the goal of forming potent proton-coupled electron transfer (PCET) reductants. Among the Sm(II)-protic ligand reductant systems investigated, the samarium dibromide N-methylethanolamine (SmBr2-NMEA) reagent system displayed the best combination of metal-ligand affinity and stability against H2 evolution. The use of SmBr2-NMEA afforded the reduction of a range of substrates that are typically recalcitrant to single-electron reduction including alkynes, lactones, and arenes as stable as biphenyl. Moreover, the unique role of NMEA as a chelating ligand for Sm(II) was demonstrated by the reductive cyclization of unactivated esters bearing pendant olefins in contrast to the SmBr2-water-amine system. Finally, the SmBr2-NMEA reagent system was found to reduce substrates analogous to key intermediates in the nitrogen fixation process. These results reveal SmBr2-NMEA to be a powerful reductant for a wide range of challenging substrates and demonstrate the potential for the rational design of PCET reagents with exceptionally weak X-H bonds.
Collapse
Affiliation(s)
- Nicholas G Boekell
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Caroline O Bartulovich
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Sandeepan Maity
- Department of Chemistry, C. V. Raman Global University, Bhubaneswar, Odisha 752054, India
| | - Robert A Flowers
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
7
|
Yamamoto A, Liu X, Arashiba K, Konomi A, Tanaka H, Yoshizawa K, Nishibayashi Y, Yoshida H. Coordination Structure of Samarium Diiodide in a Tetrahydrofuran-Water Mixture. Inorg Chem 2023; 62:5348-5356. [PMID: 36728764 DOI: 10.1021/acs.inorgchem.2c03752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chemoselective reductive conversion of organic and inorganic compounds has been developed by the combination of samarium(II) diiodide (SmI2) and water. Despite the extensive previous studies to elucidate the role of water in the reactivity of SmI2, the direct structural data of the reactive Sm2+-water complexes, SmI2(H2O)n, in an organic solvent-water mixture have not been reported experimentally so far. Herein, we performed the structure analysis of the Sm2+-water complex in tetrahydrofuran (THF) in the presence of water by in situ X-ray absorption spectroscopy using high-energy X-rays (Sm K-edge, 46.8 keV). The analysis revealed the dissociation of the Sm2+-I bonds in the presence of ≥ eight equivalents of water in the THF-water mixture. The origin of the peak shift in the UV/visible absorption spectra after the addition of water into SmI2/THF solution was proposed based on electron transitions simulated with time-dependent density-functional-theory calculations using optimized structures in THF or water. The obtained structural information provides the fundamental insights for elucidating the reactivity and chemoselectivity in the Sm2+-water complex system.
Collapse
Affiliation(s)
- Akira Yamamoto
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto606-8501, Japan.,Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8520, Japan
| | - Xueshi Liu
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto606-8501, Japan
| | - Kazuya Arashiba
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-8656, Japan
| | - Asuka Konomi
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka819-0395, Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Minami-ku, Nagoya457-8530, Japan
| | - Kazunari Yoshizawa
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8520, Japan.,Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka819-0395, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-8656, Japan
| | - Hisao Yoshida
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto606-8501, Japan.,Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8520, Japan
| |
Collapse
|
8
|
Tanabe Y, Nishibayashi Y. Recent advances in catalytic nitrogen fixation using transition metal–dinitrogen complexes under mild reaction conditions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Boyd EA, Peters JC. Sm(II)-Mediated Proton-Coupled Electron Transfer: Quantifying Very Weak N-H and O-H Homolytic Bond Strengths and Factors Controlling Them. J Am Chem Soc 2022; 144:21337-21346. [PMID: 36346706 PMCID: PMC10281198 DOI: 10.1021/jacs.2c09580] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coordination of alcohols to the single-electron reductant samarium diiodide (SmI2) results in substantial O-H bond weakening, affording potent proton-coupled electron transfer (PCET) reagents. However, poorly defined speciation of SmI2 in tetrahydrofuran (THF)/alcohol mixtures limits reliable thermodynamic analyses of such systems. Rigorous determination of bond dissociation free energy (BDFE) values in such Sm systems, important to evaluating their reactivity profiles, motivates studies of model Sm systems where contributing factors can be teased apart. Here, a bulky and strongly chelating macrocyclic ligand ((tBu2ArOH)2Me2cyclam) maintains solubility, eliminates dimerization pathways, and facilitates clean electrochemical behavior in a well-defined functional model for the PCET reactivity of SmII with coordinating proton sources. Direct measurement of thermodynamic parameters enables reliable experimental estimation of the BDFEs in 2-pyrrolidone and MeOH complexes of ((tBu2ArO)2Me2cyclam)SmII, thereby revealing exceptionally weak N-H and O-H BDFEs of 27.2 and <24.1 kcal mol-1, respectively. Expanded thermochemical cycles reveal that this bond weakening stems from the very strongly reducing SmII center and the formation of strong SmIII-alkoxide (and -pyrrolidonate) interactions in the PCET products. We provide a detailed analysis comparing these BDFE values with those that have been put forward for SmI2 in THF in the presence of related proton donors. We suggest that BDFE values for the latter systems may in fact be appreciably higher than the system described herein. Finally, protonation and electrochemical reduction steps necessary for the regeneration of the PCET donors from SmIII-alkoxides are demonstrated, pointing to future strategies aimed at achieving (electro)catalytic turnover using SmII-based PCET reagents.
Collapse
Affiliation(s)
- Emily A Boyd
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| |
Collapse
|
10
|
Ali T, Wang H, Iqbal W, Bashir T, Shah R, Hu Y. Electro-Synthesis of Organic Compounds with Heterogeneous Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2205077. [PMID: 36398622 PMCID: PMC9811472 DOI: 10.1002/advs.202205077] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Electro-organic synthesis has attracted a lot of attention in pharmaceutical science, medicinal chemistry, and future industrial applications in energy storage and conversion. To date, there has not been a detailed review on electro-organic synthesis with the strategy of heterogeneous catalysis. In this review, the most recent advances in synthesizing value-added chemicals by heterogeneous catalysis are summarized. An overview of electrocatalytic oxidation and reduction processes as well as paired electrocatalysis is provided, and the anodic oxidation of alcohols (monohydric and polyhydric), aldehydes, and amines are discussed. This review also provides in-depth insight into the cathodic reduction of carboxylates, carbon dioxide, CC, C≡C, and reductive coupling reactions. Moreover, the electrocatalytic paired electro-synthesis methods, including parallel paired, sequential divergent paired, and convergent paired electrolysis, are summarized. Additionally, the strategies developed to achieve high electrosynthesis efficiency and the associated challenges are also addressed. It is believed that electro-organic synthesis is a promising direction of organic electrochemistry, offering numerous opportunities to develop new organic reaction methods.
Collapse
Affiliation(s)
- Tariq Ali
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
| | - Haiyan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
| | - Waseem Iqbal
- Dipartimento di Chimica e Tecnologie ChimicheUniversità della CalabriaRendeCS87036Italy
| | - Tariq Bashir
- Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy TechnologiesSoochow UniversitySuzhou215006China
| | - Rahim Shah
- Institute of Chemical SciencesUniversity of SwatSwatKhyber Pakhtunkhwa19130Pakistan
| | - Yong Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
- Hangzhou Institute of Advanced StudiesZhejiang Normal UniversityHangzhou311231China
| |
Collapse
|
11
|
Kolin G, Schwartz R, Shuster D, Major DT, Hoz S. Cooperative Intrinsic Basicity and Hydrogen Bonding Render SmI 2 More Azaphilic than Oxophilic. ACS OMEGA 2022; 7:40021-40024. [PMID: 36385862 PMCID: PMC9647864 DOI: 10.1021/acsomega.2c04680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
It has been recently shown that SmI2 is more azaphilic than oxophilic. Density functional theory calculations reveal that coordination of 1-3 molecules of ethylenediamine is more exothermic by up to 10 kcal/mol than coordination of the corresponding number of ethylene glycol molecules. Taking into account also hydrogen bonds between ligands and tetrahydrofuran doubles this preference. The intrinsic affinity parallels the order of basicity. The cooperativity with the hydrogen bonding makes SmI2 more azaphilic than oxophilic.
Collapse
|
12
|
Abstract
Coordination-induced bond weakening is a phenomenon wherein ligand X-H bond homolysis occurs in concert with the energetically favorable oxidation of a coordinating metal complex. The coupling of these two processes enables thermodynamically favorable proton-coupled electron transfer reductions to form weak bonds upon formal hydrogen atom transfer to substrates. Moreover, systems utilizing coordination-induced bond weakening have been shown to facilitate the dehydrogenation of feedstock molecules including water, ammonia, and primary alcohols under mild conditions. The formation of exceptionally weak substrate X-H bonds via small molecule homolysis is a powerful strategy in synthesis and has been shown to enable nitrogen fixation under mild conditions. Coordination-induced bond weakening has also been identified as an integral process in biophotosynthesis and has promising applications in renewable chemical fuel storage systems. This review presents a discussion of the advances made in the study of coordination-induced bond weakening to date. Because of the broad range of metal and ligand species implicated in coordination-induced bond weakening, each literature report is discussed individually and ordered by the identity of the low-valent metal. We then offer mechanistic insights into the basis of coordination-induced bond weakening and conclude with a discussion of opportunities for further research into the development and applications of coordination-induced bond weakening systems.
Collapse
Affiliation(s)
- Nicholas G Boekell
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Robert A Flowers
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
13
|
Park Y, Tian L, Kim S, Pabst TP, Kim J, Scholes GD, Chirik PJ. Visible-Light-Driven, Iridium-Catalyzed Hydrogen Atom Transfer: Mechanistic Studies, Identification of Intermediates, and Catalyst Improvements. JACS AU 2022; 2:407-418. [PMID: 35252990 PMCID: PMC8889617 DOI: 10.1021/jacsau.1c00460] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 06/14/2023]
Abstract
The harvesting of visible light is a powerful strategy for the synthesis of weak chemical bonds involving hydrogen that are below the thermodynamic threshold for spontaneous H2 evolution. Piano-stool iridium hydride complexes are effective for the blue-light-driven hydrogenation of organic substrates and contra-thermodynamic dearomative isomerization. In this work, a combination of spectroscopic measurements, isotopic labeling, structure-reactivity relationships, and computational studies has been used to explore the mechanism of these stoichiometric and catalytic reactions. Photophysical measurements on the iridium hydride catalysts demonstrated the generation of long-lived excited states with principally metal-to-ligand charge transfer (MLCT) character. Transient absorption spectroscopic studies with a representative substrate, anthracene revealed a diffusion-controlled dynamic quenching of the MLCT state. The triplet state of anthracene was detected immediately after the quenching events, suggesting that triplet-triplet energy transfer initiated the photocatalytic process. The key role of triplet anthracene on the post-energy transfer step was further demonstrated by employing photocatalytic hydrogenation with a triplet photosensitizer and a HAT agent, hydroquinone. DFT calculations support a concerted hydrogen atom transfer mechanism in lieu of stepwise electron/proton or proton/electron transfer pathways. Kinetic monitoring of the deactivation channel established an inverse kinetic isotope effect, supporting reversible C(sp2)-H reductive coupling followed by rate-limiting ligand dissociation. Mechanistic insights enabled design of a piano-stool iridium hydride catalyst with a rationally modified supporting ligand that exhibited improved photostability under blue light irradiation. The complex also provided improved catalytic performance toward photoinduced hydrogenation with H2 and contra-thermodynamic isomerization.
Collapse
|
14
|
Maity S. Tools and techniques for solution‐phase structural understanding of SmI
2
–additive complexes. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sandeepan Maity
- Department of Chemistry C. V. Raman Global University Bhubaneswar Odisha India
| |
Collapse
|
15
|
|
16
|
Ramírez-Solís A, Boekell NG, León-Pimentel CI, Saint-Martin H, Bartulovich CO, Flowers RA. Ammonia Solvation vs Aqueous Solvation of Samarium Diiodide. A Theoretical and Experimental Approach to Understanding Bond Activation Upon Coordination to Sm(II). J Org Chem 2021; 87:1689-1697. [PMID: 34775764 DOI: 10.1021/acs.joc.1c01771] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coordination-induced desolvation or ligand displacement by cosolvents and additives is a key feature responsible for the reactivity of Sm(II)-based reagent systems. High-affinity proton donor cosolvents such as water and glycols also demonstrate coordination-induced bond weakening of the O-H bond, facilitating reduction of a broad range of substrates. In the present work, the coordination of ammonia to SmI2 was examined using Born-Oppenheimer molecular dynamics simulations and mechanistic studies, and the SmI2-ammonia system is compared to the SmI2-water system. The coordination number and reactivity of the SmI2-ammonia solvent system were found to be similar to those of SmI2-water but exhibited an order of magnitude greater rate of arene reduction by SmI2-ammonia than by SmI2-water at the same concentrations of cosolvent. In addition, upon coordination of ammonia to SmI2, the Sm(II)-ammonia solvate demonstrates one of the largest degrees of N-H bond weakening reported in the literature compared to known low-valent transition metal ammonia complexes.
Collapse
Affiliation(s)
- Alejandro Ramírez-Solís
- Depto. de Física, Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, México
| | - Nicholas G Boekell
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | | | | | - Caroline O Bartulovich
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Robert A Flowers
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
17
|
Affiliation(s)
- Sandeepan Maity
- Department of Applied Sciences and Humanities Invertis University Bareilly Uttar Pradesh 243123 India
| |
Collapse
|
18
|
Visible light enables catalytic formation of weak chemical bonds with molecular hydrogen. Nat Chem 2021; 13:969-976. [PMID: 34253889 DOI: 10.1038/s41557-021-00732-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/13/2021] [Indexed: 02/08/2023]
Abstract
The synthesis of weak chemical bonds at or near thermodynamic potential is a fundamental challenge in chemistry, with applications ranging from catalysis to biology to energy science. Proton-coupled electron transfer using molecular hydrogen is an attractive strategy for synthesizing weak element-hydrogen bonds, but the intrinsic thermodynamics presents a challenge for reactivity. Here we describe the direct photocatalytic synthesis of extremely weak element-hydrogen bonds of metal amido and metal imido complexes, as well as organic compounds with bond dissociation free energies as low as 31 kcal mol-1. Key to this approach is the bifunctional behaviour of the chromophoric iridium hydride photocatalyst. Activation of molecular hydrogen occurs in the ground state and the resulting iridium hydride harvests visible light to enable spontaneous formation of weak chemical bonds near thermodynamic potential with no by-products. Photophysical and mechanistic studies corroborate radical-based reaction pathways and highlight the uniqueness of this photodriven approach in promoting new catalytic chemistry.
Collapse
|
19
|
Derosa J, Garrido-Barros P, Peters JC. Electrocatalytic Reduction of C-C π-Bonds via a Cobaltocene-Derived Concerted Proton-Electron Transfer Mediator: Fumarate Hydrogenation as a Model Study. J Am Chem Soc 2021; 143:9303-9307. [PMID: 34138550 DOI: 10.1021/jacs.1c03335] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reductive concerted proton-electron transfer (CPET) is poorly developed for the reduction of C-C π-bonds, including for activated alkenes that can succumb to deleterious pathways (e.g., a competing hydrogen evolution reaction or oligomerization) in a standard electrochemical reduction. We demonstrate herein that selective hydrogenation of the C-C π-bond of fumarate esters can be achieved via electrocatalytic CPET (eCPET) using a CPET mediator comprising cobaltocene with a tethered Brønsted base. High selectivity for electrocatalytic hydrogenation is observed only when the mediator is present. Mechanistic analysis sheds light on two distinct kinetic regimes based on the substrate concentration: low fumarate concentrations operate via rate-limiting CPET followed by an electron-transfer/proton-transfer (ET/PT) step, whereas high concentrations operate via CPET followed by a rate-limiting ET/PT step.
Collapse
Affiliation(s)
- Joseph Derosa
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Pablo Garrido-Barros
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| |
Collapse
|
20
|
Tanabe Y, Nishibayashi Y. Comprehensive insights into synthetic nitrogen fixation assisted by molecular catalysts under ambient or mild conditions. Chem Soc Rev 2021; 50:5201-5242. [PMID: 33651046 DOI: 10.1039/d0cs01341b] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
N2 is fixed as NH3 industrially by the Haber-Bosch process under harsh conditions, whereas biological nitrogen fixation is achieved under ambient conditions, which has prompted development of alternative methods to fix N2 catalyzed by transition metal molecular complexes. Since the early 21st century, catalytic conversion of N2 into NH3 under ambient conditions has been achieved by using molecular catalysts, and now H2O has been utilized as a proton source with turnover frequencies reaching the values found for biological nitrogen fixation. In this review, recent advances in the development of molecular catalysts for synthetic N2 fixation under ambient or mild conditions are summarized, and potential directions for future research are also discussed.
Collapse
Affiliation(s)
- Yoshiaki Tanabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
21
|
Ashida Y, Nishibayashi Y. Catalytic conversion of nitrogen molecule into ammonia using molybdenum complexes under ambient reaction conditions. Chem Commun (Camb) 2021; 57:1176-1189. [PMID: 33443504 DOI: 10.1039/d0cc07146c] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen fixation using homogeneous transition metal complexes under mild reaction conditions is a challenging topic in the field of chemistry. Several successful examples of the catalytic conversion of nitrogen molecule into ammonia using various transition metal complexes in the presence of reductants and proton sources have been reported so far, together with detailed investigations on the reaction mechanism. Among these, only molybdenum complexes have been shown to serve as effective catalysts under ambient reaction conditions, in stark contrast with other transition metal-catalysed reactions that proceed at low reaction temperature such as -78 °C. In this feature article, we classify the molybdenum-catalysed reactions into four types: reactions via the Schrock cycle, reactions via dinuclear reaction systems, reactions via direct cleavage of the nitrogen-nitrogen triple bond of dinitrogen, and reactions via the Chatt-type cycle. We describe these catalytic systems focusing on the catalytic activity and mechanistic investigations. We hope that the present feature article provides useful information to develop more efficient nitrogen fixation systems under mild reaction conditions.
Collapse
Affiliation(s)
- Yuya Ashida
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
22
|
Tomanik M, Hsu IT, Herzon SB. Fragment Coupling Reactions in Total Synthesis That Form Carbon-Carbon Bonds via Carbanionic or Free Radical Intermediates. Angew Chem Int Ed Engl 2021; 60:1116-1150. [PMID: 31869476 DOI: 10.1002/anie.201913645] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Fragment coupling reactions that form carbon-carbon bonds are valuable transformations in synthetic design. Advances in metal-catalyzed cross-coupling reactions in the early 2000s brought a high level of predictability and reliability to carbon-carbon bond constructions involving the union of unsaturated fragments. By comparison, recent years have witnessed an increase in fragment couplings proceeding via carbanionic and open-shell (free radical) intermediates. The latter has been driven by advances in methods to generate and utilize carbon-centered radicals under mild conditions. In this Review, we survey a selection of recent syntheses that have implemented carbanion- or radical-based fragment couplings to form carbon-carbon bonds. We aim to highlight the strategic value of these disconnections in their respective settings and to identify extensible lessons from each example that might be instructive to students.
Collapse
Affiliation(s)
- Martin Tomanik
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA
| | - Ian Tingyung Hsu
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA.,Department of Pharmacology, Yale University, 333 Cedar St, New Haven, CT, USA
| |
Collapse
|
23
|
Tomanik M, Hsu IT, Herzon SB. Fragmentverknüpfungen in der Totalsynthese – Bildung von C‐C‐Bindungen über intermediäre Carbanionen oder freie Radikale. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201913645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Martin Tomanik
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
| | - Ian Tingyung Hsu
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
| | - Seth B. Herzon
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
- Department of Pharmacology Yale University 333 Cedar St New Haven CT USA
| |
Collapse
|
24
|
Maity S, Hoz S. Mechanistic Vistas of Trivalent Nitrogen Compound Reduction by Samarium Diiodide. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sandeepan Maity
- Department of Applied Science and Humanities Invertis University Bareilly UP 243123 India
| | - Shmaryahu Hoz
- Department of Chemistry Bar-Ilan University Ramat Gan 5290002 Israel
| |
Collapse
|
25
|
Bezdek MJ, Pelczer I, Chirik PJ. Coordination-Induced N–H Bond Weakening in a Molybdenum Pyrrolidine Complex: Isotopic Labeling Provides Insight into the Pathway for H 2 Evolution. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Máté J. Bezdek
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - István Pelczer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
26
|
Chalkley MJ, Garrido-Barros P, Peters JC. A molecular mediator for reductive concerted proton-electron transfers
via electrocatalysis. Science 2020; 369:850-854. [DOI: 10.1126/science.abc1607] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022]
Abstract
Electrocatalytic approaches to the activation of unsaturated substrates
via reductive concerted proton-electron transfer (CPET) must overcome
competing, often kinetically dominant hydrogen evolution. We introduce the
design of a molecular mediator for electrochemically triggered reductive
CPET through the synthetic integration of a Brønsted acid and a redox
mediator. Cathodic reduction at the cobaltocenium redox mediator
substantially weakens the homolytic nitrogen-hydrogen bond strength of a
Brønsted acidic anilinium tethered to one of the cyclopentadienyl rings. The
electrochemically generated molecular mediator is demonstrated to transform
a model substrate, acetophenone, to its corresponding neutral α-radical via
a rate-determining CPET.
Collapse
Affiliation(s)
- Matthew J. Chalkley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Pablo Garrido-Barros
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jonas C. Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
27
|
Chalkley MJ, Drover MW, Peters JC. Catalytic N 2-to-NH 3 (or -N 2H 4) Conversion by Well-Defined Molecular Coordination Complexes. Chem Rev 2020; 120:5582-5636. [PMID: 32352271 DOI: 10.1021/acs.chemrev.9b00638] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nitrogen fixation, the six-electron/six-proton reduction of N2, to give NH3, is one of the most challenging and important chemical transformations. Notwithstanding the barriers associated with this reaction, significant progress has been made in developing molecular complexes that reduce N2 into its bioavailable form, NH3. This progress is driven by the dual aims of better understanding biological nitrogenases and improving upon industrial nitrogen fixation. In this review, we highlight both mechanistic understanding of nitrogen fixation that has been developed, as well as advances in yields, efficiencies, and rates that make molecular alternatives to nitrogen fixation increasingly appealing. We begin with a historical discussion of N2 functionalization chemistry that traverses a timeline of events leading up to the discovery of the first bona fide molecular catalyst system and follow with a comprehensive overview of d-block compounds that have been targeted as catalysts up to and including 2019. We end with a summary of lessons learned from this significant research effort and last offer a discussion of key remaining challenges in the field.
Collapse
Affiliation(s)
- Matthew J Chalkley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Marcus W Drover
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
28
|
Jenks TC, Kuda-Wedagedara ANW, Bailey MD, Ward CL, Allen MJ. Spectroscopic and Electrochemical Trends in Divalent Lanthanides through Modulation of Coordination Environment. Inorg Chem 2020; 59:2613-2620. [PMID: 31999439 DOI: 10.1021/acs.inorgchem.0c00136] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Due to the importance of both visible-light luminescence and lanthanides in modern society, the influence of the ligand environment on complexes of YbII were studied and compared with analogous complexes of EuII. Four ligands with systematically varied electronic and steric characteristics were used to probe the coordination environment and electronic and redox properties of the corresponding YbII-containing complexes. Strong-field nitrogenous donors gave rise to bathochromic shifts, leading to visible-light absorption by YbII. Trends in properties across the series of YbII-containing complexes were compared to trends reported for the analogous EuII-containing complexes, revealing the translatability of coordination environment effects across the divalent lanthanide series. These studies provide valuable information regarding the behavior of small and medium-sized divalent lanthanides outside of the solid state.
Collapse
|
29
|
Kadassery KJ, Crawley MR, MacMillan SN, Lacy DC. A hemilabile manganese(i)–phenol complex and its coordination induced O–H bond weakening. Dalton Trans 2020; 49:16217-16225. [DOI: 10.1039/d0dt00973c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthesis and characterization of [(HPO)(PO)Mn(CO)2 (H1), a phenol bound first-row transition metal complex, is reported. Thermochemical analysis of H1 indicated the presence of coordination induced O–H bond weakening.
Collapse
Affiliation(s)
| | - Matthew R. Crawley
- Department of Chemistry
- University at Buffalo
- State University of New York
- Buffalo
- USA
| | | | - David C. Lacy
- Department of Chemistry
- University at Buffalo
- State University of New York
- Buffalo
- USA
| |
Collapse
|
30
|
Ramírez-Solís A, Bartulovich CO, León-Pimentel CI, Saint-Martin H, Boekell NG, Flowers RA. Proton donor effects on the reactivity of SmI2. Experimental and theoretical studies on methanol solvation vs. aqueous solvation. Dalton Trans 2020; 49:7897-7902. [DOI: 10.1039/d0dt01221a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Using both computational and experimental data the SmI2–MeOH system is directly compared to the SmI2–H2O system to uncover the basis for their drastic differences in reactivity.
Collapse
Affiliation(s)
- Alejandro Ramírez-Solís
- Depto. de Física
- Centro de Investigación en Ciencias-IICBA Universidad Autónoma del Estado de Morelos
- Cuernavaca
- Mexico
| | | | - César Iván León-Pimentel
- Depto. de Física
- Centro de Investigación en Ciencias-IICBA Universidad Autónoma del Estado de Morelos
- Cuernavaca
- Mexico
| | | | | | | |
Collapse
|
31
|
Sakai K, Oisaki K, Kanai M. Identification of Bond‐Weakening Spirosilane Catalyst for Photoredox α‐C−H Alkylation of Alcohols. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901253] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kentaro Sakai
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Kounosuke Oisaki
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
32
|
Bruch QJ, Connor GP, Chen CH, Holland PL, Mayer JM, Hasanayn F, Miller AJM. Dinitrogen Reduction to Ammonium at Rhenium Utilizing Light and Proton-Coupled Electron Transfer. J Am Chem Soc 2019; 141:20198-20208. [DOI: 10.1021/jacs.9b10031] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Quinton J. Bruch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Gannon P. Connor
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Chun-Hsing Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Patrick L. Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - James M. Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Faraj Hasanayn
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Alexander J. M. Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
33
|
Ramírez-Solís A, Bartulovich CO, León-Pimentel CI, Saint-Martin H, Anderson WR, Flowers RA. Experimental and Theoretical Studies on the Aqueous Solvation and Reactivity of SmCl2 and Comparison with SmBr2 and SmI2. Inorg Chem 2019; 58:13927-13932. [DOI: 10.1021/acs.inorgchem.9b01818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Alejandro Ramírez-Solís
- Departamento de Física, Centro de Investigación en Ciencias-IICBA Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | | | | | | | - William R. Anderson
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Robert A. Flowers
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
34
|
Nimkar A, Maity S, Flowers RA, Hoz S. Contrasting Effect of Additives on Photoinduced Reactions of SmI 2. Chemistry 2019; 25:10499-10504. [PMID: 31150561 DOI: 10.1002/chem.201901997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/30/2019] [Indexed: 11/07/2022]
Abstract
The work described herein compares the effect of additives (HMPA, methanol, ethylene glycol, pinacol, N-methylethanolamine) on thermal and photochemical reactions of samarium diiodide (SmI2 ). In thermal reactions, additives that coordinate to SmI2 induce a significant increase in reaction rate. In photochemical reactions, the presence of an electronegative atom with a highly localized negative charge on the substrate leads to a rate deceleration. In order to benefit from the columbic interaction with the positively charged samarium cation, these substrates react preferentially by an inner sphere reduction mechanism. The addition of ligands prevents this close interaction causing rate retardation. Furthermore, studies demonstrate that excited state quenching of SmII by ethylene glycol and other additives indicate that it is unlikely to be the major cause for the observed rate retardation. This effect provides a simple diagnostic tool to distinguish between an inner and an outer sphere reduction mechanism.
Collapse
Affiliation(s)
- Amey Nimkar
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Sandeepan Maity
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, 18015, USA
| | - Robert A Flowers
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, 18015, USA
| | - Shmaryahu Hoz
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel
| |
Collapse
|
35
|
Kim D, Rahaman SMW, Mercado BQ, Poli R, Holland PL. Roles of Iron Complexes in Catalytic Radical Alkene Cross-Coupling: A Computational and Mechanistic Study. J Am Chem Soc 2019; 141:7473-7485. [PMID: 31025567 PMCID: PMC6953484 DOI: 10.1021/jacs.9b02117] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A growing and useful class of alkene coupling reactions involve hydrogen atom transfer (HAT) from a metal-hydride species to an alkene to form a free radical, which is responsible for subsequent bond formation. Here, we use a combination of experimental and computational investigations to map out the mechanistic details of iron-catalyzed reductive alkene cross-coupling, an important representative of the HAT alkene reactions. We are able to explain several observations that were previously mysterious. First, the rate-limiting step in the catalytic cycle is the formation of the reactive Fe-H intermediate, elucidating the importance of the choice of reductant. Second, the success of the catalytic system is attributable to the exceptionally weak (17 kcal/mol) Fe-H bond, which performs irreversible HAT to alkenes in contrast to previous studies on isolable hydride complexes where this addition was reversible. Third, the organic radical intermediates can reversibly form organometallic species, which helps to protect the free radicals from side reactions. Fourth, the previously accepted quenching of the postcoupling radical through stepwise electron transfer/proton transfer is not as favorable as alternative mechanisms. We find that there are two feasible pathways. One uses concerted proton-coupled electron transfer (PCET) from an iron(II) ethanol complex, which is facilitated because the O-H bond dissociation free energy is lowered by 30 kcal/mol upon metal binding. In an alternative pathway, an O-bound enolate-iron(III) complex undergoes proton shuttling from an iron-bound alcohol. These kinetic, spectroscopic, and computational studies identify key organometallic species and PCET steps that control selectivity and reactivity in metal-catalyzed HAT alkene coupling, and create a firm basis for elucidation of mechanisms in the growing class of HAT alkene cross-coupling reactions.
Collapse
Affiliation(s)
- Dongyoung Kim
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - S. M. Wahidur Rahaman
- LCC-CNRS, Université de Toulouse, INPT, 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Rinaldo Poli
- LCC-CNRS, Université de Toulouse, INPT, 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
| | - Patrick L. Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
36
|
|
37
|
Chalkley MJ, Oyala PH, Peters JC. Cp* Noninnocence Leads to a Remarkably Weak C–H Bond via Metallocene Protonation. J Am Chem Soc 2019; 141:4721-4729. [DOI: 10.1021/jacs.9b00193] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Matthew J. Chalkley
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Paul H. Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Jonas C. Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| |
Collapse
|
38
|
Abstract
Ligation plays a multifaceted role in the chemistry of SmI2. Depending on the ligand, two of its major effects are increasing the reduction potential of SmI2, and in the case of a ligand, which is also a proton donor, it may also enhance the reaction by protonation of the radical anion generated in the preceding step. It turns out that the number of ligand molecules that are needed to maximize the reduction potential of SmI2 is significantly smaller than the number of ligand molecules needed for a maximal enhancement of the protonation rate. In addition to the economical use of the ligand, this information can also be utilized as a diagnostic tool for the reaction mechanism in differentiating between single and multistep processes. The possible pitfalls in applying this diagnostic tool to PCET and cyclization reactions are discussed.
Collapse
Affiliation(s)
- Sandeepan Maity
- Department of Chemistry , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Amey Nimkar
- Department of Chemistry , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Shmaryahu Hoz
- Department of Chemistry , Bar-Ilan University , Ramat Gan 5290002 , Israel
| |
Collapse
|
39
|
Resa S, Millán A, Fuentes N, Crovetto L, Luisa Marcos M, Lezama L, Choquesillo-Lazarte D, Blanco V, Campaña AG, Cárdenas DJ, Cuerva JM. O–H and (CO)N–H bond weakening by coordination to Fe(ii). Dalton Trans 2019; 48:2179-2189. [DOI: 10.1039/c8dt04689a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Coordination of hydroxyl/amide groups to Fe(ii) diminishes BDFEs of O–H and (CO)N–H bonds down to 76.0 and 80.5 kcal mol−1 respectively.
Collapse
|
40
|
Bartulovich CO, Flowers RA. Coordination-induced O–H bond weakening in Sm(ii)-water complexes. Dalton Trans 2019; 48:16142-16147. [DOI: 10.1039/c9dt03352a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coordination of water to low-valent Sm leads to O–H bond-weakening that enables PCET to substrates.
Collapse
Affiliation(s)
| | - R. A. Flowers
- Department of Chemistry Lehigh University
- Bethlehem
- USA
| |
Collapse
|
41
|
Transition metal-free regioselective access to 9,10-dihydroanthracenes via the reaction of anthracenes with elemental phosphorus in the KOH/DMSO system. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Ramírez-Solís A, Bartulovich CO, Chciuk TV, Hernández-Cobos J, Saint-Martin H, Maron L, Anderson WR, Li AM, Flowers RA. Experimental and Theoretical Studies on the Implications of Halide-Dependent Aqueous Solvation of Sm(II). J Am Chem Soc 2018; 140:16731-16739. [DOI: 10.1021/jacs.8b09857] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alejandro Ramírez-Solís
- Departamento de Física, Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209 México
| | | | - Tesia V. Chciuk
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jorge Hernández-Cobos
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Humberto Saint-Martin
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Laurent Maron
- Laboratoire de Physique et Chimie de Nano-objets, Université de Toulouse, INSA-CNRS-UPS, 135, Avenue de Rangueil, 31077 Toulouse, France
| | - William R. Anderson
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Anna M. Li
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Robert A. Flowers
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
43
|
Yoo BI, Kim YJ, You Y, Yang JW, Kim SW. Birch Reduction of Aromatic Compounds by Inorganic Electride [Ca 2N] +•e - in an Alcoholic Solvent: An Analogue of Solvated Electrons. J Org Chem 2018; 83:13847-13853. [PMID: 30351945 DOI: 10.1021/acs.joc.8b02094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Birch reduction of aromatic systems by solvated electrons in alkali metal-ammonia solutions is widely recognized as a key reaction that functionalizes highly stable π-conjugated organic systems. In spite of recent advances in Birch reduction with regard to reducing agent and reaction conditions, there remains an ongoing challenge to develop a simple and efficient Birch reaction under mild conditions. Here, we demonstrate that the inorganic electride [Ca2N]+•e- promotes the Birch reduction of polycyclic aromatic hydrocarbons (PAHs) and naphthalene under alcoholic solvent in the vicinity of room temperature as a solid-type analogy to solvated electrons in alkali metal ammonia solutions. The anionic electrons from electride [Ca2N]+•e- are transferred to PAHs and naphthalene via alcoholysis in a polar cosolvent medium. It is noteworthy that a high conversion yield to the hydrogenated products is ascribed to the extremely high electron transfer efficiency of 98%. This simple protocol utilizing an inorganic electride offers a direct and practical strategy for the reduction of aromatic compounds and provides an outstanding reducing agent for synthetic chemistry.
Collapse
Affiliation(s)
- Byung Il Yoo
- Department of Energy Science , Sungkyunkwan University , Suwon 440-746 , Republic of Korea
| | - Ye Ji Kim
- Department of Energy Science , Sungkyunkwan University , Suwon 440-746 , Republic of Korea.,Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS) , Sungkyunkwan University , Suwon 440-746 , Republic of Korea
| | - YoungMin You
- Division of Chemical Engineering and Materials Science , Ewha Womans University , Seoul 120-750 , Republic of Korea
| | - Jung Woon Yang
- Department of Energy Science , Sungkyunkwan University , Suwon 440-746 , Republic of Korea
| | - Sung Wng Kim
- Department of Energy Science , Sungkyunkwan University , Suwon 440-746 , Republic of Korea
| |
Collapse
|
44
|
Chciuk TV, Anderson WR, Flowers RA. Interplay between Substrate and Proton Donor Coordination in Reductions of Carbonyls by SmI2–Water Through Proton-Coupled Electron-Transfer. J Am Chem Soc 2018; 140:15342-15352. [DOI: 10.1021/jacs.8b08890] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tesia V. Chciuk
- Department of Chemistry, Lehigh University, 6 E. Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - William R. Anderson
- Department of Chemistry, Lehigh University, 6 E. Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Robert A. Flowers
- Department of Chemistry, Lehigh University, 6 E. Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
45
|
Bezdek MJ, Chirik PJ. Proton-Coupled Electron Transfer to a Molybdenum Ethylene Complex Yields a β-Agostic Ethyl: Structure, Dynamics and Mechanism. J Am Chem Soc 2018; 140:13817-13826. [DOI: 10.1021/jacs.8b08460] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Máté J. Bezdek
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
46
|
Yang W, Chen C, Chan KS. Hydrodebromination of allylic and benzylic bromides with water catalyzed by a rhodium porphyrin complex. Dalton Trans 2018; 47:12879-12883. [PMID: 30168570 DOI: 10.1039/c8dt02168f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrodebromination of allylic and benzylic bromides was successfully achieved by a rhodium porphyrin complex catalyst using water as the hydrogen source without a sacrificial reductant. Mechanistic investigations suggest that bromine atom abstraction via a rhodium porphyrin metalloradical operates to give the rhodium porphyrin alkyl species and the subsequent hydrolysis of the rhodium porphyrin alkyl species to a hydrocarbon product is a key step to harness the hydrogen from water.
Collapse
Affiliation(s)
- Wu Yang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China.
| | | | | |
Collapse
|
47
|
Brand S, Elsen H, Langer J, Donaubauer WA, Hampel F, Harder S. Facile Benzene Reduction by a Ca2+
/AlI
Lewis Acid/Base Combination. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809236] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Steffen Brand
- Chair of Inorganic and Organometallic Chemistry; Universität Erlangen-Nürnberg; Egerlandstrasse 1 91058 Erlangen Germany
| | - Holger Elsen
- Chair of Inorganic and Organometallic Chemistry; Universität Erlangen-Nürnberg; Egerlandstrasse 1 91058 Erlangen Germany
| | - Jens Langer
- Chair of Inorganic and Organometallic Chemistry; Universität Erlangen-Nürnberg; Egerlandstrasse 1 91058 Erlangen Germany
| | - Wolfgang A. Donaubauer
- Chair of Organic Chemistry II; Department of Chemistry & Pharmacy; Universität Erlangen-Nürnberg; Nikolaus-Fiebiger-Straße 10 91058 Erlangen Germany
| | - Frank Hampel
- Chair of Organic Chemistry II; Department of Chemistry & Pharmacy; Universität Erlangen-Nürnberg; Nikolaus-Fiebiger-Straße 10 91058 Erlangen Germany
| | - Sjoerd Harder
- Chair of Inorganic and Organometallic Chemistry; Universität Erlangen-Nürnberg; Egerlandstrasse 1 91058 Erlangen Germany
| |
Collapse
|
48
|
Brand S, Elsen H, Langer J, Donaubauer WA, Hampel F, Harder S. Facile Benzene Reduction by a Ca2+
/AlI
Lewis Acid/Base Combination. Angew Chem Int Ed Engl 2018; 57:14169-14173. [DOI: 10.1002/anie.201809236] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Steffen Brand
- Chair of Inorganic and Organometallic Chemistry; Universität Erlangen-Nürnberg; Egerlandstrasse 1 91058 Erlangen Germany
| | - Holger Elsen
- Chair of Inorganic and Organometallic Chemistry; Universität Erlangen-Nürnberg; Egerlandstrasse 1 91058 Erlangen Germany
| | - Jens Langer
- Chair of Inorganic and Organometallic Chemistry; Universität Erlangen-Nürnberg; Egerlandstrasse 1 91058 Erlangen Germany
| | - Wolfgang A. Donaubauer
- Chair of Organic Chemistry II; Department of Chemistry & Pharmacy; Universität Erlangen-Nürnberg; Nikolaus-Fiebiger-Straße 10 91058 Erlangen Germany
| | - Frank Hampel
- Chair of Organic Chemistry II; Department of Chemistry & Pharmacy; Universität Erlangen-Nürnberg; Nikolaus-Fiebiger-Straße 10 91058 Erlangen Germany
| | - Sjoerd Harder
- Chair of Inorganic and Organometallic Chemistry; Universität Erlangen-Nürnberg; Egerlandstrasse 1 91058 Erlangen Germany
| |
Collapse
|
49
|
Huang HM, Procter DJ. Selective Electron Transfer Reduction of Urea-Type Carbonyls. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Huan-Ming Huang
- School of Chemistry; University of Manchester; Oxford Road Manchester, M13 9PL UK
| | - David J. Procter
- School of Chemistry; University of Manchester; Oxford Road Manchester, M13 9PL UK
| |
Collapse
|
50
|
You B, Shen M, Xie G, Mao H, Lv X, Wang X. Alternative Sm(II) Species-Mediated Cascade Coupling/Cyclization for the Synthesis of Oxobicyclo[3.1.0]hexane-1-ols. Org Lett 2018; 20:530-533. [DOI: 10.1021/acs.orglett.7b03613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bingxin You
- Department
of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
| | - Mengmeng Shen
- Department
of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
| | - Guanqun Xie
- Department
of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
- School
of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, People’s Republic of China
| | - Hui Mao
- Department
of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
| | - Xin Lv
- Department
of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
| | - Xiaoxia Wang
- Department
of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
- School
of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, People’s Republic of China
| |
Collapse
|