1
|
Guo M, Wu X, Wu H, Sun X. Ligand effect on Ru-centered species toward methane activation. Phys Chem Chem Phys 2024; 26:14329-14335. [PMID: 38695750 DOI: 10.1039/d4cp01420k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Ligands have been known to profoundly affect the chemical transformations of methane, yet significant challenges remain in shedding light on the underlying mechanisms. Here, we demonstrate that the conversion of methane can be regulated by Ru centered cations with a series of ligands (C, CH, CNH, CHCNH). Gas-phase experiments complemented by theoretical dynamic analysis were performed to explore the essences and principles governing the ligand effect. In contrast to the inert Ru+, [RuC]+, and [RuCNH]+ toward CH4, the dehydrogenation dominates the reaction of ligand-regulated systems [RuCH]+/CH4 and [RuCHCNH]+/CH4. In active cases, CH acts as active sites, and regulates the activation of CH4 assisted by the "seemingly inert" CNH ligand.
Collapse
Affiliation(s)
- Mengdi Guo
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China.
- Shandong Energy Institute, Qingdao 266101, P. R. China
| | - Xiaonan Wu
- East China Normal University, Shanghai 200241, P. R. China.
| | - Hechen Wu
- Fudan University, Shanghai 200240, P. R. China
| | - Xiaoyan Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China.
- Shandong Energy Institute, Qingdao 266101, P. R. China
| |
Collapse
|
2
|
Ibáñez-Ibáñez L, Mollar-Cuni A, Apaloo-Messan E, Sharma AK, Mata JA, Maseras F, Vicent C. Ion mobility mass spectrometry uncovers regioselectivity in the carboxylate-assisted C-H activation of palladium N-heterocyclic carbene complexes. Dalton Trans 2024; 53:656-665. [PMID: 38073605 DOI: 10.1039/d3dt02793g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Carboxylate-assisted Pd-catalyzed C-H bond activation constitutes a mild and versatile synthetic tool to efficiently and selectively cleave inert C-H bonds. Herein, we demonstrate a simple method to experimentally evaluate both reactivity and selectivity in such systems using mass spectrometry (MS) methods. The N-heterocyclic carbene (NHC) cations [(NHC)PdX]+, bearing as X- ligand bases commonly used to promote the C-H activation (carboxylates and bicarbonate), are generated in the gas-phase by ESI-MS. Their C-H bond activation at the N-bound groups of the NHC is then studied using Collision Induced Dissociation (CID) experiments. Ion Mobility Spectrometry (IM)-MS is exploited to identify a number of regioisomers associated with the distinctive site selective C-H activations. It is demonstrated that such C-H activation concomitant with acetic acid release occurs from a mixture of activated [(NHC-H)Pd(CH3CO2H)]+ and non-activated [(NHC)Pd(CH3CO2)]+ complexes. The identity of the X-type ligands (X = Cl-, carboxylates and bicarbonate) has a significant impact on the regioisomer branching ratio upon CID conditions. IM-MS in conjunction with a DFT mechanistic study is presented for the acetate-assisted C-H activation of the [(NHC)Pd(CH3CO2)]+ cation featuring butyl and aryl as N-donor groups.
Collapse
Affiliation(s)
- Laura Ibáñez-Ibáñez
- Institute of Advanced Materials (INAM), Net of organometallic chemistry for sustainable solutions (OASIS), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Andres Mollar-Cuni
- Institute of Advanced Materials (INAM), Net of organometallic chemistry for sustainable solutions (OASIS), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Edmond Apaloo-Messan
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain.
| | - Akhilesh K Sharma
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain.
| | - Jose A Mata
- Institute of Advanced Materials (INAM), Net of organometallic chemistry for sustainable solutions (OASIS), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain.
| | - Cristian Vicent
- Serveis Centrals d'Instrumentació Científica (SCIC). Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| |
Collapse
|
3
|
Lülf S, Guo L, Parchomyk T, Harvey JN, Koszinowski K. Microscopic Reactivity of Phenylferrate Ions toward Organyl Halides. Chemistry 2022; 28:e202202030. [PMID: 35948515 PMCID: PMC9826238 DOI: 10.1002/chem.202202030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 01/11/2023]
Abstract
Despite its practical importance, organoiron chemistry remains poorly understood due to its mechanistic complexity. Here, we focus on the oxidative addition of organyl halides to phenylferrate anions in the gas phase. By mass-selecting individual phenylferrate anions, we can determine the effect of the oxidation state, the ligation, and the nuclearity of the iron complex on its reactions with a series of organyl halides RX. We find that Ph2 Fe(I)- and other low-valent ferrates are more reactive than Ph3 Fe(II)- ; Ph4 Fe(III)- is inert. The coordination of a PPh3 ligand or the presence of a second iron center lower the reactivity. Besides direct cross-coupling reactions resulting in the formation of RPh, we also observe the abstraction of halogen atoms. This reaction channel shows the readiness of organoiron species to undergo radical-type processes. Complementary DFT calculations afford further insight and rationalize the high reactivity of the Ph2 Fe(I)- complex by the exothermicity of the oxidative addition and the low barriers associated with this reaction step. At the same time, they point to the importance of changes of the spin state in the reactions of Ph3 Fe(II)- .
Collapse
Affiliation(s)
- Stefan Lülf
- Institut für Organische und Biomolekulare ChemieUniversität GöttingenTammannstr. 237077GöttingenGermany
| | - Luxuan Guo
- Department of ChemistryKU LeuvenCelestijnenlaan 200FB-3001LeuvenBelgium
| | - Tobias Parchomyk
- Institut für Organische und Biomolekulare ChemieUniversität GöttingenTammannstr. 237077GöttingenGermany
| | - Jeremy N. Harvey
- Department of ChemistryKU LeuvenCelestijnenlaan 200FB-3001LeuvenBelgium
| | - Konrad Koszinowski
- Institut für Organische und Biomolekulare ChemieUniversität GöttingenTammannstr. 237077GöttingenGermany
- Wöhler Research Institute for Sustainable ChemistryUniversität GöttingenTammannstr. 237077GöttingenGermany
| |
Collapse
|
4
|
Schwarz B, Dürr M, Kastner K, Heber N, Ivanović-Burmazović I, Streb C. Solvent-Controlled Polymerization of Molecular Strontium Vanadate Monomers into 1D Strontium Vanadium Oxide Chains. Inorg Chem 2019; 58:11684-11688. [PMID: 31414798 DOI: 10.1021/acs.inorgchem.9b01665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the polymerization of a solvent-stabilized molecular strontium vanadium oxide monomer into infinite 1D chains. Supramolecular polymerization is triggered by controlled solvent-exchange, which leads to oligomer and polymer formation. Mechanistic insights into the chain formation were obtained by solid-state, solution, and gas-phase studies. The study shows how reactivity control of molecular metal oxides can be used to assemble complex inorganic polymeric structures.
Collapse
Affiliation(s)
- Benjamin Schwarz
- Institute of Inorganic Chemistry I , Ulm University , Albert-Einstein-Allee 11 , 89081 Ulm , Germany
| | - Maximilian Dürr
- Chair of Bioinorganic Chemistry , Friedrich-Alexander-University Erlangen-Nuernberg , Egerlandstr. 1 , 91058 Erlangen , Germany
| | - Katharina Kastner
- Institute of Inorganic Chemistry I , Ulm University , Albert-Einstein-Allee 11 , 89081 Ulm , Germany
| | - Nora Heber
- Institute of Inorganic Chemistry I , Ulm University , Albert-Einstein-Allee 11 , 89081 Ulm , Germany
| | - Ivana Ivanović-Burmazović
- Chair of Bioinorganic Chemistry , Friedrich-Alexander-University Erlangen-Nuernberg , Egerlandstr. 1 , 91058 Erlangen , Germany
| | - Carsten Streb
- Institute of Inorganic Chemistry I , Ulm University , Albert-Einstein-Allee 11 , 89081 Ulm , Germany.,Helmholtz-Institute Ulm , Helmholtzstr. 11 , 89081 Ulm , Germany
| |
Collapse
|
5
|
Piacentino EL, Rodriguez E, Parker K, Gilbert TM, O'Hair RAJ, Ryzhov V. Gas-phase functionalized carbon-carbon coupling reactions catalyzed by Ni (II) complexes. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:520-526. [PMID: 30989744 DOI: 10.1002/jms.4360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Gas-phase C-C coupling reactions mediated by Ni (II) complexes were studied using a linear quadrupole ion trap mass spectrometer. Ternary nickel cationic carboxylate complexes, [(phen)Ni (OOCR1 )]+ (where phen = 1,10-phenanthroline), were formed by electrospray ionization. Upon collision-induced dissociation (CID), they extrude CO2 forming the organometallic cation [(phen)Ni(R1 )]+ , which undergoes gas-phase ion-molecule reactions (IMR) with acetate esters CH3 COOR2 to yield the acetate complex [(phen)Ni (OOCCH3 )]+ and a C-C coupling product R1 -R2 . These Ni(II)/phenanthroline-mediated coupling reactions can be performed with a variety of carbon substituents R1 and R2 (sp3 , sp2 , or aromatic), some of them functionalized. Reaction rates do not seem to be strongly dependent on the nature of the substituents, as sp3 -sp3 or sp2 -sp2 coupling reactions proceed rapidly. Experimental results are supported by density functional theory calculations, which provide insights into the energetics associated with the C-C bond coupling step.
Collapse
Affiliation(s)
- Elettra L Piacentino
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Edwin Rodriguez
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Kevin Parker
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Thomas M Gilbert
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Richard A J O'Hair
- Bio 21 Institute and School of Chemistry, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| |
Collapse
|
6
|
Cheng GJ, Zhong XM, Wu YD, Zhang X. Mechanistic understanding of catalysis by combining mass spectrometry and computation. Chem Commun (Camb) 2019; 55:12749-12764. [PMID: 31560354 DOI: 10.1039/c9cc05458h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The combination of mass spectrometry and computational chemistry has been proven to be powerful for exploring reaction mechanisms. The former provides information of reaction intermediates, while the latter gives detailed reaction energy profiles.
Collapse
Affiliation(s)
- Gui-Juan Cheng
- Lab of Computational Chemistry and Drug Design
- State Key Laboratory of Chemical Oncogenomics
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Xiu-Mei Zhong
- Lab of Computational Chemistry and Drug Design
- State Key Laboratory of Chemical Oncogenomics
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design
- State Key Laboratory of Chemical Oncogenomics
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Xinhao Zhang
- Lab of Computational Chemistry and Drug Design
- State Key Laboratory of Chemical Oncogenomics
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| |
Collapse
|
7
|
Yin X, Jiang Y, Chu S, Ma G, Yin Q, Fang X, Pan Y. Insight into copper-catalyzed decarboxylative thiolation of carboxylic acids in the gas phase. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.04.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Silva López C, Faza ON, Mansell A, Theis Z, Bellert D. Three Reaction Channels with Signature Proton Transfers in the Ni(I)-Catalyzed Decomposition of Ethyl Acetate. Organometallics 2017. [DOI: 10.1021/acs.organomet.6b00769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Carlos Silva López
- Universidade de Vigo, Departamento de Quı́mica
Orgánica, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Olalla Nieto Faza
- Universidade de Vigo, Departamento de Quı́mica
Orgánica, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Adam Mansell
- Department
of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Zachry Theis
- Department
of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Darrin Bellert
- Department
of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|